xref: /openbmc/linux/fs/dax.c (revision 1c2dd16a)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41 
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
47 
48 static int __init init_dax_wait_table(void)
49 {
50 	int i;
51 
52 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 		init_waitqueue_head(wait_table + i);
54 	return 0;
55 }
56 fs_initcall(init_dax_wait_table);
57 
58 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
59 {
60 	struct request_queue *q = bdev->bd_queue;
61 	long rc = -EIO;
62 
63 	dax->addr = ERR_PTR(-EIO);
64 	if (blk_queue_enter(q, true) != 0)
65 		return rc;
66 
67 	rc = bdev_direct_access(bdev, dax);
68 	if (rc < 0) {
69 		dax->addr = ERR_PTR(rc);
70 		blk_queue_exit(q);
71 		return rc;
72 	}
73 	return rc;
74 }
75 
76 static void dax_unmap_atomic(struct block_device *bdev,
77 		const struct blk_dax_ctl *dax)
78 {
79 	if (IS_ERR(dax->addr))
80 		return;
81 	blk_queue_exit(bdev->bd_queue);
82 }
83 
84 static int dax_is_pmd_entry(void *entry)
85 {
86 	return (unsigned long)entry & RADIX_DAX_PMD;
87 }
88 
89 static int dax_is_pte_entry(void *entry)
90 {
91 	return !((unsigned long)entry & RADIX_DAX_PMD);
92 }
93 
94 static int dax_is_zero_entry(void *entry)
95 {
96 	return (unsigned long)entry & RADIX_DAX_HZP;
97 }
98 
99 static int dax_is_empty_entry(void *entry)
100 {
101 	return (unsigned long)entry & RADIX_DAX_EMPTY;
102 }
103 
104 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
105 {
106 	struct page *page = alloc_pages(GFP_KERNEL, 0);
107 	struct blk_dax_ctl dax = {
108 		.size = PAGE_SIZE,
109 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
110 	};
111 	long rc;
112 
113 	if (!page)
114 		return ERR_PTR(-ENOMEM);
115 
116 	rc = dax_map_atomic(bdev, &dax);
117 	if (rc < 0)
118 		return ERR_PTR(rc);
119 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
120 	dax_unmap_atomic(bdev, &dax);
121 	return page;
122 }
123 
124 /*
125  * DAX radix tree locking
126  */
127 struct exceptional_entry_key {
128 	struct address_space *mapping;
129 	pgoff_t entry_start;
130 };
131 
132 struct wait_exceptional_entry_queue {
133 	wait_queue_t wait;
134 	struct exceptional_entry_key key;
135 };
136 
137 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
138 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
139 {
140 	unsigned long hash;
141 
142 	/*
143 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
144 	 * queue to the start of that PMD.  This ensures that all offsets in
145 	 * the range covered by the PMD map to the same bit lock.
146 	 */
147 	if (dax_is_pmd_entry(entry))
148 		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
149 
150 	key->mapping = mapping;
151 	key->entry_start = index;
152 
153 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
154 	return wait_table + hash;
155 }
156 
157 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
158 				       int sync, void *keyp)
159 {
160 	struct exceptional_entry_key *key = keyp;
161 	struct wait_exceptional_entry_queue *ewait =
162 		container_of(wait, struct wait_exceptional_entry_queue, wait);
163 
164 	if (key->mapping != ewait->key.mapping ||
165 	    key->entry_start != ewait->key.entry_start)
166 		return 0;
167 	return autoremove_wake_function(wait, mode, sync, NULL);
168 }
169 
170 /*
171  * Check whether the given slot is locked. The function must be called with
172  * mapping->tree_lock held
173  */
174 static inline int slot_locked(struct address_space *mapping, void **slot)
175 {
176 	unsigned long entry = (unsigned long)
177 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
178 	return entry & RADIX_DAX_ENTRY_LOCK;
179 }
180 
181 /*
182  * Mark the given slot is locked. The function must be called with
183  * mapping->tree_lock held
184  */
185 static inline void *lock_slot(struct address_space *mapping, void **slot)
186 {
187 	unsigned long entry = (unsigned long)
188 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
189 
190 	entry |= RADIX_DAX_ENTRY_LOCK;
191 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
192 	return (void *)entry;
193 }
194 
195 /*
196  * Mark the given slot is unlocked. The function must be called with
197  * mapping->tree_lock held
198  */
199 static inline void *unlock_slot(struct address_space *mapping, void **slot)
200 {
201 	unsigned long entry = (unsigned long)
202 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
203 
204 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
205 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
206 	return (void *)entry;
207 }
208 
209 /*
210  * Lookup entry in radix tree, wait for it to become unlocked if it is
211  * exceptional entry and return it. The caller must call
212  * put_unlocked_mapping_entry() when he decided not to lock the entry or
213  * put_locked_mapping_entry() when he locked the entry and now wants to
214  * unlock it.
215  *
216  * The function must be called with mapping->tree_lock held.
217  */
218 static void *get_unlocked_mapping_entry(struct address_space *mapping,
219 					pgoff_t index, void ***slotp)
220 {
221 	void *entry, **slot;
222 	struct wait_exceptional_entry_queue ewait;
223 	wait_queue_head_t *wq;
224 
225 	init_wait(&ewait.wait);
226 	ewait.wait.func = wake_exceptional_entry_func;
227 
228 	for (;;) {
229 		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
230 					  &slot);
231 		if (!entry || !radix_tree_exceptional_entry(entry) ||
232 		    !slot_locked(mapping, slot)) {
233 			if (slotp)
234 				*slotp = slot;
235 			return entry;
236 		}
237 
238 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
239 		prepare_to_wait_exclusive(wq, &ewait.wait,
240 					  TASK_UNINTERRUPTIBLE);
241 		spin_unlock_irq(&mapping->tree_lock);
242 		schedule();
243 		finish_wait(wq, &ewait.wait);
244 		spin_lock_irq(&mapping->tree_lock);
245 	}
246 }
247 
248 static void dax_unlock_mapping_entry(struct address_space *mapping,
249 				     pgoff_t index)
250 {
251 	void *entry, **slot;
252 
253 	spin_lock_irq(&mapping->tree_lock);
254 	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
255 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
256 			 !slot_locked(mapping, slot))) {
257 		spin_unlock_irq(&mapping->tree_lock);
258 		return;
259 	}
260 	unlock_slot(mapping, slot);
261 	spin_unlock_irq(&mapping->tree_lock);
262 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
263 }
264 
265 static void put_locked_mapping_entry(struct address_space *mapping,
266 				     pgoff_t index, void *entry)
267 {
268 	if (!radix_tree_exceptional_entry(entry)) {
269 		unlock_page(entry);
270 		put_page(entry);
271 	} else {
272 		dax_unlock_mapping_entry(mapping, index);
273 	}
274 }
275 
276 /*
277  * Called when we are done with radix tree entry we looked up via
278  * get_unlocked_mapping_entry() and which we didn't lock in the end.
279  */
280 static void put_unlocked_mapping_entry(struct address_space *mapping,
281 				       pgoff_t index, void *entry)
282 {
283 	if (!radix_tree_exceptional_entry(entry))
284 		return;
285 
286 	/* We have to wake up next waiter for the radix tree entry lock */
287 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
288 }
289 
290 /*
291  * Find radix tree entry at given index. If it points to a page, return with
292  * the page locked. If it points to the exceptional entry, return with the
293  * radix tree entry locked. If the radix tree doesn't contain given index,
294  * create empty exceptional entry for the index and return with it locked.
295  *
296  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
297  * either return that locked entry or will return an error.  This error will
298  * happen if there are any 4k entries (either zero pages or DAX entries)
299  * within the 2MiB range that we are requesting.
300  *
301  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
302  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
303  * insertion will fail if it finds any 4k entries already in the tree, and a
304  * 4k insertion will cause an existing 2MiB entry to be unmapped and
305  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
306  * well as 2MiB empty entries.
307  *
308  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
309  * real storage backing them.  We will leave these real 2MiB DAX entries in
310  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
311  *
312  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
313  * persistent memory the benefit is doubtful. We can add that later if we can
314  * show it helps.
315  */
316 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
317 		unsigned long size_flag)
318 {
319 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
320 	void *entry, **slot;
321 
322 restart:
323 	spin_lock_irq(&mapping->tree_lock);
324 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
325 
326 	if (entry) {
327 		if (size_flag & RADIX_DAX_PMD) {
328 			if (!radix_tree_exceptional_entry(entry) ||
329 			    dax_is_pte_entry(entry)) {
330 				put_unlocked_mapping_entry(mapping, index,
331 						entry);
332 				entry = ERR_PTR(-EEXIST);
333 				goto out_unlock;
334 			}
335 		} else { /* trying to grab a PTE entry */
336 			if (radix_tree_exceptional_entry(entry) &&
337 			    dax_is_pmd_entry(entry) &&
338 			    (dax_is_zero_entry(entry) ||
339 			     dax_is_empty_entry(entry))) {
340 				pmd_downgrade = true;
341 			}
342 		}
343 	}
344 
345 	/* No entry for given index? Make sure radix tree is big enough. */
346 	if (!entry || pmd_downgrade) {
347 		int err;
348 
349 		if (pmd_downgrade) {
350 			/*
351 			 * Make sure 'entry' remains valid while we drop
352 			 * mapping->tree_lock.
353 			 */
354 			entry = lock_slot(mapping, slot);
355 		}
356 
357 		spin_unlock_irq(&mapping->tree_lock);
358 		/*
359 		 * Besides huge zero pages the only other thing that gets
360 		 * downgraded are empty entries which don't need to be
361 		 * unmapped.
362 		 */
363 		if (pmd_downgrade && dax_is_zero_entry(entry))
364 			unmap_mapping_range(mapping,
365 				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
366 
367 		err = radix_tree_preload(
368 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
369 		if (err) {
370 			if (pmd_downgrade)
371 				put_locked_mapping_entry(mapping, index, entry);
372 			return ERR_PTR(err);
373 		}
374 		spin_lock_irq(&mapping->tree_lock);
375 
376 		if (!entry) {
377 			/*
378 			 * We needed to drop the page_tree lock while calling
379 			 * radix_tree_preload() and we didn't have an entry to
380 			 * lock.  See if another thread inserted an entry at
381 			 * our index during this time.
382 			 */
383 			entry = __radix_tree_lookup(&mapping->page_tree, index,
384 					NULL, &slot);
385 			if (entry) {
386 				radix_tree_preload_end();
387 				spin_unlock_irq(&mapping->tree_lock);
388 				goto restart;
389 			}
390 		}
391 
392 		if (pmd_downgrade) {
393 			radix_tree_delete(&mapping->page_tree, index);
394 			mapping->nrexceptional--;
395 			dax_wake_mapping_entry_waiter(mapping, index, entry,
396 					true);
397 		}
398 
399 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
400 
401 		err = __radix_tree_insert(&mapping->page_tree, index,
402 				dax_radix_order(entry), entry);
403 		radix_tree_preload_end();
404 		if (err) {
405 			spin_unlock_irq(&mapping->tree_lock);
406 			/*
407 			 * Our insertion of a DAX entry failed, most likely
408 			 * because we were inserting a PMD entry and it
409 			 * collided with a PTE sized entry at a different
410 			 * index in the PMD range.  We haven't inserted
411 			 * anything into the radix tree and have no waiters to
412 			 * wake.
413 			 */
414 			return ERR_PTR(err);
415 		}
416 		/* Good, we have inserted empty locked entry into the tree. */
417 		mapping->nrexceptional++;
418 		spin_unlock_irq(&mapping->tree_lock);
419 		return entry;
420 	}
421 	/* Normal page in radix tree? */
422 	if (!radix_tree_exceptional_entry(entry)) {
423 		struct page *page = entry;
424 
425 		get_page(page);
426 		spin_unlock_irq(&mapping->tree_lock);
427 		lock_page(page);
428 		/* Page got truncated? Retry... */
429 		if (unlikely(page->mapping != mapping)) {
430 			unlock_page(page);
431 			put_page(page);
432 			goto restart;
433 		}
434 		return page;
435 	}
436 	entry = lock_slot(mapping, slot);
437  out_unlock:
438 	spin_unlock_irq(&mapping->tree_lock);
439 	return entry;
440 }
441 
442 /*
443  * We do not necessarily hold the mapping->tree_lock when we call this
444  * function so it is possible that 'entry' is no longer a valid item in the
445  * radix tree.  This is okay because all we really need to do is to find the
446  * correct waitqueue where tasks might be waiting for that old 'entry' and
447  * wake them.
448  */
449 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
450 		pgoff_t index, void *entry, bool wake_all)
451 {
452 	struct exceptional_entry_key key;
453 	wait_queue_head_t *wq;
454 
455 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
456 
457 	/*
458 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
459 	 * under mapping->tree_lock, ditto for entry handling in our callers.
460 	 * So at this point all tasks that could have seen our entry locked
461 	 * must be in the waitqueue and the following check will see them.
462 	 */
463 	if (waitqueue_active(wq))
464 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
465 }
466 
467 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
468 					  pgoff_t index, bool trunc)
469 {
470 	int ret = 0;
471 	void *entry;
472 	struct radix_tree_root *page_tree = &mapping->page_tree;
473 
474 	spin_lock_irq(&mapping->tree_lock);
475 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
476 	if (!entry || !radix_tree_exceptional_entry(entry))
477 		goto out;
478 	if (!trunc &&
479 	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
480 	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
481 		goto out;
482 	radix_tree_delete(page_tree, index);
483 	mapping->nrexceptional--;
484 	ret = 1;
485 out:
486 	put_unlocked_mapping_entry(mapping, index, entry);
487 	spin_unlock_irq(&mapping->tree_lock);
488 	return ret;
489 }
490 /*
491  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
492  * entry to get unlocked before deleting it.
493  */
494 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
495 {
496 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
497 
498 	/*
499 	 * This gets called from truncate / punch_hole path. As such, the caller
500 	 * must hold locks protecting against concurrent modifications of the
501 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
502 	 * caller has seen exceptional entry for this index, we better find it
503 	 * at that index as well...
504 	 */
505 	WARN_ON_ONCE(!ret);
506 	return ret;
507 }
508 
509 /*
510  * Invalidate exceptional DAX entry if easily possible. This handles DAX
511  * entries for invalidate_inode_pages() so we evict the entry only if we can
512  * do so without blocking.
513  */
514 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
515 {
516 	int ret = 0;
517 	void *entry, **slot;
518 	struct radix_tree_root *page_tree = &mapping->page_tree;
519 
520 	spin_lock_irq(&mapping->tree_lock);
521 	entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
522 	if (!entry || !radix_tree_exceptional_entry(entry) ||
523 	    slot_locked(mapping, slot))
524 		goto out;
525 	if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
526 	    radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
527 		goto out;
528 	radix_tree_delete(page_tree, index);
529 	mapping->nrexceptional--;
530 	ret = 1;
531 out:
532 	spin_unlock_irq(&mapping->tree_lock);
533 	if (ret)
534 		dax_wake_mapping_entry_waiter(mapping, index, entry, true);
535 	return ret;
536 }
537 
538 /*
539  * Invalidate exceptional DAX entry if it is clean.
540  */
541 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
542 				      pgoff_t index)
543 {
544 	return __dax_invalidate_mapping_entry(mapping, index, false);
545 }
546 
547 /*
548  * The user has performed a load from a hole in the file.  Allocating
549  * a new page in the file would cause excessive storage usage for
550  * workloads with sparse files.  We allocate a page cache page instead.
551  * We'll kick it out of the page cache if it's ever written to,
552  * otherwise it will simply fall out of the page cache under memory
553  * pressure without ever having been dirtied.
554  */
555 static int dax_load_hole(struct address_space *mapping, void **entry,
556 			 struct vm_fault *vmf)
557 {
558 	struct page *page;
559 	int ret;
560 
561 	/* Hole page already exists? Return it...  */
562 	if (!radix_tree_exceptional_entry(*entry)) {
563 		page = *entry;
564 		goto out;
565 	}
566 
567 	/* This will replace locked radix tree entry with a hole page */
568 	page = find_or_create_page(mapping, vmf->pgoff,
569 				   vmf->gfp_mask | __GFP_ZERO);
570 	if (!page)
571 		return VM_FAULT_OOM;
572  out:
573 	vmf->page = page;
574 	ret = finish_fault(vmf);
575 	vmf->page = NULL;
576 	*entry = page;
577 	if (!ret) {
578 		/* Grab reference for PTE that is now referencing the page */
579 		get_page(page);
580 		return VM_FAULT_NOPAGE;
581 	}
582 	return ret;
583 }
584 
585 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
586 		struct page *to, unsigned long vaddr)
587 {
588 	struct blk_dax_ctl dax = {
589 		.sector = sector,
590 		.size = size,
591 	};
592 	void *vto;
593 
594 	if (dax_map_atomic(bdev, &dax) < 0)
595 		return PTR_ERR(dax.addr);
596 	vto = kmap_atomic(to);
597 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
598 	kunmap_atomic(vto);
599 	dax_unmap_atomic(bdev, &dax);
600 	return 0;
601 }
602 
603 /*
604  * By this point grab_mapping_entry() has ensured that we have a locked entry
605  * of the appropriate size so we don't have to worry about downgrading PMDs to
606  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
607  * already in the tree, we will skip the insertion and just dirty the PMD as
608  * appropriate.
609  */
610 static void *dax_insert_mapping_entry(struct address_space *mapping,
611 				      struct vm_fault *vmf,
612 				      void *entry, sector_t sector,
613 				      unsigned long flags)
614 {
615 	struct radix_tree_root *page_tree = &mapping->page_tree;
616 	int error = 0;
617 	bool hole_fill = false;
618 	void *new_entry;
619 	pgoff_t index = vmf->pgoff;
620 
621 	if (vmf->flags & FAULT_FLAG_WRITE)
622 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
623 
624 	/* Replacing hole page with block mapping? */
625 	if (!radix_tree_exceptional_entry(entry)) {
626 		hole_fill = true;
627 		/*
628 		 * Unmap the page now before we remove it from page cache below.
629 		 * The page is locked so it cannot be faulted in again.
630 		 */
631 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
632 				    PAGE_SIZE, 0);
633 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
634 		if (error)
635 			return ERR_PTR(error);
636 	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
637 		/* replacing huge zero page with PMD block mapping */
638 		unmap_mapping_range(mapping,
639 			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
640 	}
641 
642 	spin_lock_irq(&mapping->tree_lock);
643 	new_entry = dax_radix_locked_entry(sector, flags);
644 
645 	if (hole_fill) {
646 		__delete_from_page_cache(entry, NULL);
647 		/* Drop pagecache reference */
648 		put_page(entry);
649 		error = __radix_tree_insert(page_tree, index,
650 				dax_radix_order(new_entry), new_entry);
651 		if (error) {
652 			new_entry = ERR_PTR(error);
653 			goto unlock;
654 		}
655 		mapping->nrexceptional++;
656 	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
657 		/*
658 		 * Only swap our new entry into the radix tree if the current
659 		 * entry is a zero page or an empty entry.  If a normal PTE or
660 		 * PMD entry is already in the tree, we leave it alone.  This
661 		 * means that if we are trying to insert a PTE and the
662 		 * existing entry is a PMD, we will just leave the PMD in the
663 		 * tree and dirty it if necessary.
664 		 */
665 		struct radix_tree_node *node;
666 		void **slot;
667 		void *ret;
668 
669 		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
670 		WARN_ON_ONCE(ret != entry);
671 		__radix_tree_replace(page_tree, node, slot,
672 				     new_entry, NULL, NULL);
673 	}
674 	if (vmf->flags & FAULT_FLAG_WRITE)
675 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
676  unlock:
677 	spin_unlock_irq(&mapping->tree_lock);
678 	if (hole_fill) {
679 		radix_tree_preload_end();
680 		/*
681 		 * We don't need hole page anymore, it has been replaced with
682 		 * locked radix tree entry now.
683 		 */
684 		if (mapping->a_ops->freepage)
685 			mapping->a_ops->freepage(entry);
686 		unlock_page(entry);
687 		put_page(entry);
688 	}
689 	return new_entry;
690 }
691 
692 static inline unsigned long
693 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
694 {
695 	unsigned long address;
696 
697 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
698 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
699 	return address;
700 }
701 
702 /* Walk all mappings of a given index of a file and writeprotect them */
703 static void dax_mapping_entry_mkclean(struct address_space *mapping,
704 				      pgoff_t index, unsigned long pfn)
705 {
706 	struct vm_area_struct *vma;
707 	pte_t pte, *ptep = NULL;
708 	pmd_t *pmdp = NULL;
709 	spinlock_t *ptl;
710 	bool changed;
711 
712 	i_mmap_lock_read(mapping);
713 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
714 		unsigned long address;
715 
716 		cond_resched();
717 
718 		if (!(vma->vm_flags & VM_SHARED))
719 			continue;
720 
721 		address = pgoff_address(index, vma);
722 		changed = false;
723 		if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
724 			continue;
725 
726 		if (pmdp) {
727 #ifdef CONFIG_FS_DAX_PMD
728 			pmd_t pmd;
729 
730 			if (pfn != pmd_pfn(*pmdp))
731 				goto unlock_pmd;
732 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
733 				goto unlock_pmd;
734 
735 			flush_cache_page(vma, address, pfn);
736 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
737 			pmd = pmd_wrprotect(pmd);
738 			pmd = pmd_mkclean(pmd);
739 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
740 			changed = true;
741 unlock_pmd:
742 			spin_unlock(ptl);
743 #endif
744 		} else {
745 			if (pfn != pte_pfn(*ptep))
746 				goto unlock_pte;
747 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
748 				goto unlock_pte;
749 
750 			flush_cache_page(vma, address, pfn);
751 			pte = ptep_clear_flush(vma, address, ptep);
752 			pte = pte_wrprotect(pte);
753 			pte = pte_mkclean(pte);
754 			set_pte_at(vma->vm_mm, address, ptep, pte);
755 			changed = true;
756 unlock_pte:
757 			pte_unmap_unlock(ptep, ptl);
758 		}
759 
760 		if (changed)
761 			mmu_notifier_invalidate_page(vma->vm_mm, address);
762 	}
763 	i_mmap_unlock_read(mapping);
764 }
765 
766 static int dax_writeback_one(struct block_device *bdev,
767 		struct address_space *mapping, pgoff_t index, void *entry)
768 {
769 	struct radix_tree_root *page_tree = &mapping->page_tree;
770 	struct blk_dax_ctl dax;
771 	void *entry2, **slot;
772 	int ret = 0;
773 
774 	/*
775 	 * A page got tagged dirty in DAX mapping? Something is seriously
776 	 * wrong.
777 	 */
778 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
779 		return -EIO;
780 
781 	spin_lock_irq(&mapping->tree_lock);
782 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
783 	/* Entry got punched out / reallocated? */
784 	if (!entry2 || !radix_tree_exceptional_entry(entry2))
785 		goto put_unlocked;
786 	/*
787 	 * Entry got reallocated elsewhere? No need to writeback. We have to
788 	 * compare sectors as we must not bail out due to difference in lockbit
789 	 * or entry type.
790 	 */
791 	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
792 		goto put_unlocked;
793 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
794 				dax_is_zero_entry(entry))) {
795 		ret = -EIO;
796 		goto put_unlocked;
797 	}
798 
799 	/* Another fsync thread may have already written back this entry */
800 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
801 		goto put_unlocked;
802 	/* Lock the entry to serialize with page faults */
803 	entry = lock_slot(mapping, slot);
804 	/*
805 	 * We can clear the tag now but we have to be careful so that concurrent
806 	 * dax_writeback_one() calls for the same index cannot finish before we
807 	 * actually flush the caches. This is achieved as the calls will look
808 	 * at the entry only under tree_lock and once they do that they will
809 	 * see the entry locked and wait for it to unlock.
810 	 */
811 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
812 	spin_unlock_irq(&mapping->tree_lock);
813 
814 	/*
815 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
816 	 * in the middle of a PMD, the 'index' we are given will be aligned to
817 	 * the start index of the PMD, as will the sector we pull from
818 	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
819 	 * worry about partial PMD writebacks.
820 	 */
821 	dax.sector = dax_radix_sector(entry);
822 	dax.size = PAGE_SIZE << dax_radix_order(entry);
823 
824 	/*
825 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
826 	 * eventually calls cond_resched().
827 	 */
828 	ret = dax_map_atomic(bdev, &dax);
829 	if (ret < 0) {
830 		put_locked_mapping_entry(mapping, index, entry);
831 		return ret;
832 	}
833 
834 	if (WARN_ON_ONCE(ret < dax.size)) {
835 		ret = -EIO;
836 		goto unmap;
837 	}
838 
839 	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
840 	wb_cache_pmem(dax.addr, dax.size);
841 	/*
842 	 * After we have flushed the cache, we can clear the dirty tag. There
843 	 * cannot be new dirty data in the pfn after the flush has completed as
844 	 * the pfn mappings are writeprotected and fault waits for mapping
845 	 * entry lock.
846 	 */
847 	spin_lock_irq(&mapping->tree_lock);
848 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
849 	spin_unlock_irq(&mapping->tree_lock);
850  unmap:
851 	dax_unmap_atomic(bdev, &dax);
852 	put_locked_mapping_entry(mapping, index, entry);
853 	return ret;
854 
855  put_unlocked:
856 	put_unlocked_mapping_entry(mapping, index, entry2);
857 	spin_unlock_irq(&mapping->tree_lock);
858 	return ret;
859 }
860 
861 /*
862  * Flush the mapping to the persistent domain within the byte range of [start,
863  * end]. This is required by data integrity operations to ensure file data is
864  * on persistent storage prior to completion of the operation.
865  */
866 int dax_writeback_mapping_range(struct address_space *mapping,
867 		struct block_device *bdev, struct writeback_control *wbc)
868 {
869 	struct inode *inode = mapping->host;
870 	pgoff_t start_index, end_index;
871 	pgoff_t indices[PAGEVEC_SIZE];
872 	struct pagevec pvec;
873 	bool done = false;
874 	int i, ret = 0;
875 
876 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
877 		return -EIO;
878 
879 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
880 		return 0;
881 
882 	start_index = wbc->range_start >> PAGE_SHIFT;
883 	end_index = wbc->range_end >> PAGE_SHIFT;
884 
885 	tag_pages_for_writeback(mapping, start_index, end_index);
886 
887 	pagevec_init(&pvec, 0);
888 	while (!done) {
889 		pvec.nr = find_get_entries_tag(mapping, start_index,
890 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
891 				pvec.pages, indices);
892 
893 		if (pvec.nr == 0)
894 			break;
895 
896 		for (i = 0; i < pvec.nr; i++) {
897 			if (indices[i] > end_index) {
898 				done = true;
899 				break;
900 			}
901 
902 			ret = dax_writeback_one(bdev, mapping, indices[i],
903 					pvec.pages[i]);
904 			if (ret < 0)
905 				return ret;
906 		}
907 	}
908 	return 0;
909 }
910 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
911 
912 static int dax_insert_mapping(struct address_space *mapping,
913 		struct block_device *bdev, sector_t sector, size_t size,
914 		void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
915 {
916 	unsigned long vaddr = vmf->address;
917 	struct blk_dax_ctl dax = {
918 		.sector = sector,
919 		.size = size,
920 	};
921 	void *ret;
922 	void *entry = *entryp;
923 
924 	if (dax_map_atomic(bdev, &dax) < 0)
925 		return PTR_ERR(dax.addr);
926 	dax_unmap_atomic(bdev, &dax);
927 
928 	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
929 	if (IS_ERR(ret))
930 		return PTR_ERR(ret);
931 	*entryp = ret;
932 
933 	return vm_insert_mixed(vma, vaddr, dax.pfn);
934 }
935 
936 /**
937  * dax_pfn_mkwrite - handle first write to DAX page
938  * @vmf: The description of the fault
939  */
940 int dax_pfn_mkwrite(struct vm_fault *vmf)
941 {
942 	struct file *file = vmf->vma->vm_file;
943 	struct address_space *mapping = file->f_mapping;
944 	void *entry, **slot;
945 	pgoff_t index = vmf->pgoff;
946 
947 	spin_lock_irq(&mapping->tree_lock);
948 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
949 	if (!entry || !radix_tree_exceptional_entry(entry)) {
950 		if (entry)
951 			put_unlocked_mapping_entry(mapping, index, entry);
952 		spin_unlock_irq(&mapping->tree_lock);
953 		return VM_FAULT_NOPAGE;
954 	}
955 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
956 	entry = lock_slot(mapping, slot);
957 	spin_unlock_irq(&mapping->tree_lock);
958 	/*
959 	 * If we race with somebody updating the PTE and finish_mkwrite_fault()
960 	 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
961 	 * the fault in either case.
962 	 */
963 	finish_mkwrite_fault(vmf);
964 	put_locked_mapping_entry(mapping, index, entry);
965 	return VM_FAULT_NOPAGE;
966 }
967 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
968 
969 static bool dax_range_is_aligned(struct block_device *bdev,
970 				 unsigned int offset, unsigned int length)
971 {
972 	unsigned short sector_size = bdev_logical_block_size(bdev);
973 
974 	if (!IS_ALIGNED(offset, sector_size))
975 		return false;
976 	if (!IS_ALIGNED(length, sector_size))
977 		return false;
978 
979 	return true;
980 }
981 
982 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
983 		unsigned int offset, unsigned int length)
984 {
985 	struct blk_dax_ctl dax = {
986 		.sector		= sector,
987 		.size		= PAGE_SIZE,
988 	};
989 
990 	if (dax_range_is_aligned(bdev, offset, length)) {
991 		sector_t start_sector = dax.sector + (offset >> 9);
992 
993 		return blkdev_issue_zeroout(bdev, start_sector,
994 				length >> 9, GFP_NOFS, 0);
995 	} else {
996 		if (dax_map_atomic(bdev, &dax) < 0)
997 			return PTR_ERR(dax.addr);
998 		clear_pmem(dax.addr + offset, length);
999 		dax_unmap_atomic(bdev, &dax);
1000 	}
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1004 
1005 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1006 {
1007 	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
1008 }
1009 
1010 static loff_t
1011 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1012 		struct iomap *iomap)
1013 {
1014 	struct iov_iter *iter = data;
1015 	loff_t end = pos + length, done = 0;
1016 	ssize_t ret = 0;
1017 
1018 	if (iov_iter_rw(iter) == READ) {
1019 		end = min(end, i_size_read(inode));
1020 		if (pos >= end)
1021 			return 0;
1022 
1023 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1024 			return iov_iter_zero(min(length, end - pos), iter);
1025 	}
1026 
1027 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1028 		return -EIO;
1029 
1030 	/*
1031 	 * Write can allocate block for an area which has a hole page mapped
1032 	 * into page tables. We have to tear down these mappings so that data
1033 	 * written by write(2) is visible in mmap.
1034 	 */
1035 	if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1036 		invalidate_inode_pages2_range(inode->i_mapping,
1037 					      pos >> PAGE_SHIFT,
1038 					      (end - 1) >> PAGE_SHIFT);
1039 	}
1040 
1041 	while (pos < end) {
1042 		unsigned offset = pos & (PAGE_SIZE - 1);
1043 		struct blk_dax_ctl dax = { 0 };
1044 		ssize_t map_len;
1045 
1046 		if (fatal_signal_pending(current)) {
1047 			ret = -EINTR;
1048 			break;
1049 		}
1050 
1051 		dax.sector = dax_iomap_sector(iomap, pos);
1052 		dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1053 		map_len = dax_map_atomic(iomap->bdev, &dax);
1054 		if (map_len < 0) {
1055 			ret = map_len;
1056 			break;
1057 		}
1058 
1059 		dax.addr += offset;
1060 		map_len -= offset;
1061 		if (map_len > end - pos)
1062 			map_len = end - pos;
1063 
1064 		if (iov_iter_rw(iter) == WRITE)
1065 			map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1066 		else
1067 			map_len = copy_to_iter(dax.addr, map_len, iter);
1068 		dax_unmap_atomic(iomap->bdev, &dax);
1069 		if (map_len <= 0) {
1070 			ret = map_len ? map_len : -EFAULT;
1071 			break;
1072 		}
1073 
1074 		pos += map_len;
1075 		length -= map_len;
1076 		done += map_len;
1077 	}
1078 
1079 	return done ? done : ret;
1080 }
1081 
1082 /**
1083  * dax_iomap_rw - Perform I/O to a DAX file
1084  * @iocb:	The control block for this I/O
1085  * @iter:	The addresses to do I/O from or to
1086  * @ops:	iomap ops passed from the file system
1087  *
1088  * This function performs read and write operations to directly mapped
1089  * persistent memory.  The callers needs to take care of read/write exclusion
1090  * and evicting any page cache pages in the region under I/O.
1091  */
1092 ssize_t
1093 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1094 		const struct iomap_ops *ops)
1095 {
1096 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1097 	struct inode *inode = mapping->host;
1098 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1099 	unsigned flags = 0;
1100 
1101 	if (iov_iter_rw(iter) == WRITE) {
1102 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1103 		flags |= IOMAP_WRITE;
1104 	} else {
1105 		lockdep_assert_held(&inode->i_rwsem);
1106 	}
1107 
1108 	while (iov_iter_count(iter)) {
1109 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1110 				iter, dax_iomap_actor);
1111 		if (ret <= 0)
1112 			break;
1113 		pos += ret;
1114 		done += ret;
1115 	}
1116 
1117 	iocb->ki_pos += done;
1118 	return done ? done : ret;
1119 }
1120 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1121 
1122 static int dax_fault_return(int error)
1123 {
1124 	if (error == 0)
1125 		return VM_FAULT_NOPAGE;
1126 	if (error == -ENOMEM)
1127 		return VM_FAULT_OOM;
1128 	return VM_FAULT_SIGBUS;
1129 }
1130 
1131 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1132 			       const struct iomap_ops *ops)
1133 {
1134 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1135 	struct inode *inode = mapping->host;
1136 	unsigned long vaddr = vmf->address;
1137 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1138 	sector_t sector;
1139 	struct iomap iomap = { 0 };
1140 	unsigned flags = IOMAP_FAULT;
1141 	int error, major = 0;
1142 	int vmf_ret = 0;
1143 	void *entry;
1144 
1145 	/*
1146 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1147 	 * to hold locks serializing us with truncate / punch hole so this is
1148 	 * a reliable test.
1149 	 */
1150 	if (pos >= i_size_read(inode))
1151 		return VM_FAULT_SIGBUS;
1152 
1153 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1154 		flags |= IOMAP_WRITE;
1155 
1156 	/*
1157 	 * Note that we don't bother to use iomap_apply here: DAX required
1158 	 * the file system block size to be equal the page size, which means
1159 	 * that we never have to deal with more than a single extent here.
1160 	 */
1161 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1162 	if (error)
1163 		return dax_fault_return(error);
1164 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1165 		vmf_ret = dax_fault_return(-EIO);	/* fs corruption? */
1166 		goto finish_iomap;
1167 	}
1168 
1169 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1170 	if (IS_ERR(entry)) {
1171 		vmf_ret = dax_fault_return(PTR_ERR(entry));
1172 		goto finish_iomap;
1173 	}
1174 
1175 	sector = dax_iomap_sector(&iomap, pos);
1176 
1177 	if (vmf->cow_page) {
1178 		switch (iomap.type) {
1179 		case IOMAP_HOLE:
1180 		case IOMAP_UNWRITTEN:
1181 			clear_user_highpage(vmf->cow_page, vaddr);
1182 			break;
1183 		case IOMAP_MAPPED:
1184 			error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1185 					vmf->cow_page, vaddr);
1186 			break;
1187 		default:
1188 			WARN_ON_ONCE(1);
1189 			error = -EIO;
1190 			break;
1191 		}
1192 
1193 		if (error)
1194 			goto error_unlock_entry;
1195 
1196 		__SetPageUptodate(vmf->cow_page);
1197 		vmf_ret = finish_fault(vmf);
1198 		if (!vmf_ret)
1199 			vmf_ret = VM_FAULT_DONE_COW;
1200 		goto unlock_entry;
1201 	}
1202 
1203 	switch (iomap.type) {
1204 	case IOMAP_MAPPED:
1205 		if (iomap.flags & IOMAP_F_NEW) {
1206 			count_vm_event(PGMAJFAULT);
1207 			mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1208 			major = VM_FAULT_MAJOR;
1209 		}
1210 		error = dax_insert_mapping(mapping, iomap.bdev, sector,
1211 				PAGE_SIZE, &entry, vmf->vma, vmf);
1212 		/* -EBUSY is fine, somebody else faulted on the same PTE */
1213 		if (error == -EBUSY)
1214 			error = 0;
1215 		break;
1216 	case IOMAP_UNWRITTEN:
1217 	case IOMAP_HOLE:
1218 		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1219 			vmf_ret = dax_load_hole(mapping, &entry, vmf);
1220 			goto unlock_entry;
1221 		}
1222 		/*FALLTHRU*/
1223 	default:
1224 		WARN_ON_ONCE(1);
1225 		error = -EIO;
1226 		break;
1227 	}
1228 
1229  error_unlock_entry:
1230 	vmf_ret = dax_fault_return(error) | major;
1231  unlock_entry:
1232 	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1233  finish_iomap:
1234 	if (ops->iomap_end) {
1235 		int copied = PAGE_SIZE;
1236 
1237 		if (vmf_ret & VM_FAULT_ERROR)
1238 			copied = 0;
1239 		/*
1240 		 * The fault is done by now and there's no way back (other
1241 		 * thread may be already happily using PTE we have installed).
1242 		 * Just ignore error from ->iomap_end since we cannot do much
1243 		 * with it.
1244 		 */
1245 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1246 	}
1247 	return vmf_ret;
1248 }
1249 
1250 #ifdef CONFIG_FS_DAX_PMD
1251 /*
1252  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1253  * more often than one might expect in the below functions.
1254  */
1255 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1256 
1257 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1258 		loff_t pos, void **entryp)
1259 {
1260 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1261 	struct block_device *bdev = iomap->bdev;
1262 	struct inode *inode = mapping->host;
1263 	struct blk_dax_ctl dax = {
1264 		.sector = dax_iomap_sector(iomap, pos),
1265 		.size = PMD_SIZE,
1266 	};
1267 	long length = dax_map_atomic(bdev, &dax);
1268 	void *ret = NULL;
1269 
1270 	if (length < 0) /* dax_map_atomic() failed */
1271 		goto fallback;
1272 	if (length < PMD_SIZE)
1273 		goto unmap_fallback;
1274 	if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1275 		goto unmap_fallback;
1276 	if (!pfn_t_devmap(dax.pfn))
1277 		goto unmap_fallback;
1278 
1279 	dax_unmap_atomic(bdev, &dax);
1280 
1281 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1282 			RADIX_DAX_PMD);
1283 	if (IS_ERR(ret))
1284 		goto fallback;
1285 	*entryp = ret;
1286 
1287 	trace_dax_pmd_insert_mapping(inode, vmf, length, dax.pfn, ret);
1288 	return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1289 			dax.pfn, vmf->flags & FAULT_FLAG_WRITE);
1290 
1291  unmap_fallback:
1292 	dax_unmap_atomic(bdev, &dax);
1293 fallback:
1294 	trace_dax_pmd_insert_mapping_fallback(inode, vmf, length,
1295 			dax.pfn, ret);
1296 	return VM_FAULT_FALLBACK;
1297 }
1298 
1299 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1300 		void **entryp)
1301 {
1302 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1303 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1304 	struct inode *inode = mapping->host;
1305 	struct page *zero_page;
1306 	void *ret = NULL;
1307 	spinlock_t *ptl;
1308 	pmd_t pmd_entry;
1309 
1310 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1311 
1312 	if (unlikely(!zero_page))
1313 		goto fallback;
1314 
1315 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1316 			RADIX_DAX_PMD | RADIX_DAX_HZP);
1317 	if (IS_ERR(ret))
1318 		goto fallback;
1319 	*entryp = ret;
1320 
1321 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1322 	if (!pmd_none(*(vmf->pmd))) {
1323 		spin_unlock(ptl);
1324 		goto fallback;
1325 	}
1326 
1327 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1328 	pmd_entry = pmd_mkhuge(pmd_entry);
1329 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1330 	spin_unlock(ptl);
1331 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1332 	return VM_FAULT_NOPAGE;
1333 
1334 fallback:
1335 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1336 	return VM_FAULT_FALLBACK;
1337 }
1338 
1339 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1340 			       const struct iomap_ops *ops)
1341 {
1342 	struct vm_area_struct *vma = vmf->vma;
1343 	struct address_space *mapping = vma->vm_file->f_mapping;
1344 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1345 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1346 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1347 	struct inode *inode = mapping->host;
1348 	int result = VM_FAULT_FALLBACK;
1349 	struct iomap iomap = { 0 };
1350 	pgoff_t max_pgoff, pgoff;
1351 	void *entry;
1352 	loff_t pos;
1353 	int error;
1354 
1355 	/*
1356 	 * Check whether offset isn't beyond end of file now. Caller is
1357 	 * supposed to hold locks serializing us with truncate / punch hole so
1358 	 * this is a reliable test.
1359 	 */
1360 	pgoff = linear_page_index(vma, pmd_addr);
1361 	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1362 
1363 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1364 
1365 	/* Fall back to PTEs if we're going to COW */
1366 	if (write && !(vma->vm_flags & VM_SHARED))
1367 		goto fallback;
1368 
1369 	/* If the PMD would extend outside the VMA */
1370 	if (pmd_addr < vma->vm_start)
1371 		goto fallback;
1372 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1373 		goto fallback;
1374 
1375 	if (pgoff > max_pgoff) {
1376 		result = VM_FAULT_SIGBUS;
1377 		goto out;
1378 	}
1379 
1380 	/* If the PMD would extend beyond the file size */
1381 	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1382 		goto fallback;
1383 
1384 	/*
1385 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1386 	 * setting up a mapping, so really we're using iomap_begin() as a way
1387 	 * to look up our filesystem block.
1388 	 */
1389 	pos = (loff_t)pgoff << PAGE_SHIFT;
1390 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1391 	if (error)
1392 		goto fallback;
1393 
1394 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1395 		goto finish_iomap;
1396 
1397 	/*
1398 	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1399 	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1400 	 * the tree, for instance), it will return -EEXIST and we just fall
1401 	 * back to 4k entries.
1402 	 */
1403 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1404 	if (IS_ERR(entry))
1405 		goto finish_iomap;
1406 
1407 	switch (iomap.type) {
1408 	case IOMAP_MAPPED:
1409 		result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1410 		break;
1411 	case IOMAP_UNWRITTEN:
1412 	case IOMAP_HOLE:
1413 		if (WARN_ON_ONCE(write))
1414 			goto unlock_entry;
1415 		result = dax_pmd_load_hole(vmf, &iomap, &entry);
1416 		break;
1417 	default:
1418 		WARN_ON_ONCE(1);
1419 		break;
1420 	}
1421 
1422  unlock_entry:
1423 	put_locked_mapping_entry(mapping, pgoff, entry);
1424  finish_iomap:
1425 	if (ops->iomap_end) {
1426 		int copied = PMD_SIZE;
1427 
1428 		if (result == VM_FAULT_FALLBACK)
1429 			copied = 0;
1430 		/*
1431 		 * The fault is done by now and there's no way back (other
1432 		 * thread may be already happily using PMD we have installed).
1433 		 * Just ignore error from ->iomap_end since we cannot do much
1434 		 * with it.
1435 		 */
1436 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1437 				&iomap);
1438 	}
1439  fallback:
1440 	if (result == VM_FAULT_FALLBACK) {
1441 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1442 		count_vm_event(THP_FAULT_FALLBACK);
1443 	}
1444 out:
1445 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1446 	return result;
1447 }
1448 #else
1449 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1450 			       const struct iomap_ops *ops)
1451 {
1452 	return VM_FAULT_FALLBACK;
1453 }
1454 #endif /* CONFIG_FS_DAX_PMD */
1455 
1456 /**
1457  * dax_iomap_fault - handle a page fault on a DAX file
1458  * @vmf: The description of the fault
1459  * @ops: iomap ops passed from the file system
1460  *
1461  * When a page fault occurs, filesystems may call this helper in
1462  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1463  * has done all the necessary locking for page fault to proceed
1464  * successfully.
1465  */
1466 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1467 		    const struct iomap_ops *ops)
1468 {
1469 	switch (pe_size) {
1470 	case PE_SIZE_PTE:
1471 		return dax_iomap_pte_fault(vmf, ops);
1472 	case PE_SIZE_PMD:
1473 		return dax_iomap_pmd_fault(vmf, ops);
1474 	default:
1475 		return VM_FAULT_FALLBACK;
1476 	}
1477 }
1478 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1479