xref: /openbmc/linux/fs/dax.c (revision 110e6f26)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 {
37 	struct request_queue *q = bdev->bd_queue;
38 	long rc = -EIO;
39 
40 	dax->addr = (void __pmem *) ERR_PTR(-EIO);
41 	if (blk_queue_enter(q, true) != 0)
42 		return rc;
43 
44 	rc = bdev_direct_access(bdev, dax);
45 	if (rc < 0) {
46 		dax->addr = (void __pmem *) ERR_PTR(rc);
47 		blk_queue_exit(q);
48 		return rc;
49 	}
50 	return rc;
51 }
52 
53 static void dax_unmap_atomic(struct block_device *bdev,
54 		const struct blk_dax_ctl *dax)
55 {
56 	if (IS_ERR(dax->addr))
57 		return;
58 	blk_queue_exit(bdev->bd_queue);
59 }
60 
61 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
62 {
63 	struct page *page = alloc_pages(GFP_KERNEL, 0);
64 	struct blk_dax_ctl dax = {
65 		.size = PAGE_SIZE,
66 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
67 	};
68 	long rc;
69 
70 	if (!page)
71 		return ERR_PTR(-ENOMEM);
72 
73 	rc = dax_map_atomic(bdev, &dax);
74 	if (rc < 0)
75 		return ERR_PTR(rc);
76 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
77 	dax_unmap_atomic(bdev, &dax);
78 	return page;
79 }
80 
81 /*
82  * dax_clear_sectors() is called from within transaction context from XFS,
83  * and hence this means the stack from this point must follow GFP_NOFS
84  * semantics for all operations.
85  */
86 int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
87 {
88 	struct blk_dax_ctl dax = {
89 		.sector = _sector,
90 		.size = _size,
91 	};
92 
93 	might_sleep();
94 	do {
95 		long count, sz;
96 
97 		count = dax_map_atomic(bdev, &dax);
98 		if (count < 0)
99 			return count;
100 		sz = min_t(long, count, SZ_128K);
101 		clear_pmem(dax.addr, sz);
102 		dax.size -= sz;
103 		dax.sector += sz / 512;
104 		dax_unmap_atomic(bdev, &dax);
105 		cond_resched();
106 	} while (dax.size);
107 
108 	wmb_pmem();
109 	return 0;
110 }
111 EXPORT_SYMBOL_GPL(dax_clear_sectors);
112 
113 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
114 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
115 		loff_t pos, loff_t end)
116 {
117 	loff_t final = end - pos + first; /* The final byte of the buffer */
118 
119 	if (first > 0)
120 		clear_pmem(addr, first);
121 	if (final < size)
122 		clear_pmem(addr + final, size - final);
123 }
124 
125 static bool buffer_written(struct buffer_head *bh)
126 {
127 	return buffer_mapped(bh) && !buffer_unwritten(bh);
128 }
129 
130 /*
131  * When ext4 encounters a hole, it returns without modifying the buffer_head
132  * which means that we can't trust b_size.  To cope with this, we set b_state
133  * to 0 before calling get_block and, if any bit is set, we know we can trust
134  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
135  * and would save us time calling get_block repeatedly.
136  */
137 static bool buffer_size_valid(struct buffer_head *bh)
138 {
139 	return bh->b_state != 0;
140 }
141 
142 
143 static sector_t to_sector(const struct buffer_head *bh,
144 		const struct inode *inode)
145 {
146 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
147 
148 	return sector;
149 }
150 
151 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
152 		      loff_t start, loff_t end, get_block_t get_block,
153 		      struct buffer_head *bh)
154 {
155 	loff_t pos = start, max = start, bh_max = start;
156 	bool hole = false, need_wmb = false;
157 	struct block_device *bdev = NULL;
158 	int rw = iov_iter_rw(iter), rc;
159 	long map_len = 0;
160 	struct blk_dax_ctl dax = {
161 		.addr = (void __pmem *) ERR_PTR(-EIO),
162 	};
163 
164 	if (rw == READ)
165 		end = min(end, i_size_read(inode));
166 
167 	while (pos < end) {
168 		size_t len;
169 		if (pos == max) {
170 			unsigned blkbits = inode->i_blkbits;
171 			long page = pos >> PAGE_SHIFT;
172 			sector_t block = page << (PAGE_SHIFT - blkbits);
173 			unsigned first = pos - (block << blkbits);
174 			long size;
175 
176 			if (pos == bh_max) {
177 				bh->b_size = PAGE_ALIGN(end - pos);
178 				bh->b_state = 0;
179 				rc = get_block(inode, block, bh, rw == WRITE);
180 				if (rc)
181 					break;
182 				if (!buffer_size_valid(bh))
183 					bh->b_size = 1 << blkbits;
184 				bh_max = pos - first + bh->b_size;
185 				bdev = bh->b_bdev;
186 			} else {
187 				unsigned done = bh->b_size -
188 						(bh_max - (pos - first));
189 				bh->b_blocknr += done >> blkbits;
190 				bh->b_size -= done;
191 			}
192 
193 			hole = rw == READ && !buffer_written(bh);
194 			if (hole) {
195 				size = bh->b_size - first;
196 			} else {
197 				dax_unmap_atomic(bdev, &dax);
198 				dax.sector = to_sector(bh, inode);
199 				dax.size = bh->b_size;
200 				map_len = dax_map_atomic(bdev, &dax);
201 				if (map_len < 0) {
202 					rc = map_len;
203 					break;
204 				}
205 				if (buffer_unwritten(bh) || buffer_new(bh)) {
206 					dax_new_buf(dax.addr, map_len, first,
207 							pos, end);
208 					need_wmb = true;
209 				}
210 				dax.addr += first;
211 				size = map_len - first;
212 			}
213 			max = min(pos + size, end);
214 		}
215 
216 		if (iov_iter_rw(iter) == WRITE) {
217 			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
218 			need_wmb = true;
219 		} else if (!hole)
220 			len = copy_to_iter((void __force *) dax.addr, max - pos,
221 					iter);
222 		else
223 			len = iov_iter_zero(max - pos, iter);
224 
225 		if (!len) {
226 			rc = -EFAULT;
227 			break;
228 		}
229 
230 		pos += len;
231 		if (!IS_ERR(dax.addr))
232 			dax.addr += len;
233 	}
234 
235 	if (need_wmb)
236 		wmb_pmem();
237 	dax_unmap_atomic(bdev, &dax);
238 
239 	return (pos == start) ? rc : pos - start;
240 }
241 
242 /**
243  * dax_do_io - Perform I/O to a DAX file
244  * @iocb: The control block for this I/O
245  * @inode: The file which the I/O is directed at
246  * @iter: The addresses to do I/O from or to
247  * @pos: The file offset where the I/O starts
248  * @get_block: The filesystem method used to translate file offsets to blocks
249  * @end_io: A filesystem callback for I/O completion
250  * @flags: See below
251  *
252  * This function uses the same locking scheme as do_blockdev_direct_IO:
253  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
254  * caller for writes.  For reads, we take and release the i_mutex ourselves.
255  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
256  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
257  * is in progress.
258  */
259 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
260 		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
261 		  dio_iodone_t end_io, int flags)
262 {
263 	struct buffer_head bh;
264 	ssize_t retval = -EINVAL;
265 	loff_t end = pos + iov_iter_count(iter);
266 
267 	memset(&bh, 0, sizeof(bh));
268 	bh.b_bdev = inode->i_sb->s_bdev;
269 
270 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
271 		struct address_space *mapping = inode->i_mapping;
272 		inode_lock(inode);
273 		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
274 		if (retval) {
275 			inode_unlock(inode);
276 			goto out;
277 		}
278 	}
279 
280 	/* Protects against truncate */
281 	if (!(flags & DIO_SKIP_DIO_COUNT))
282 		inode_dio_begin(inode);
283 
284 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
285 
286 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
287 		inode_unlock(inode);
288 
289 	if (end_io) {
290 		int err;
291 
292 		err = end_io(iocb, pos, retval, bh.b_private);
293 		if (err)
294 			retval = err;
295 	}
296 
297 	if (!(flags & DIO_SKIP_DIO_COUNT))
298 		inode_dio_end(inode);
299  out:
300 	return retval;
301 }
302 EXPORT_SYMBOL_GPL(dax_do_io);
303 
304 /*
305  * The user has performed a load from a hole in the file.  Allocating
306  * a new page in the file would cause excessive storage usage for
307  * workloads with sparse files.  We allocate a page cache page instead.
308  * We'll kick it out of the page cache if it's ever written to,
309  * otherwise it will simply fall out of the page cache under memory
310  * pressure without ever having been dirtied.
311  */
312 static int dax_load_hole(struct address_space *mapping, struct page *page,
313 							struct vm_fault *vmf)
314 {
315 	unsigned long size;
316 	struct inode *inode = mapping->host;
317 	if (!page)
318 		page = find_or_create_page(mapping, vmf->pgoff,
319 						GFP_KERNEL | __GFP_ZERO);
320 	if (!page)
321 		return VM_FAULT_OOM;
322 	/* Recheck i_size under page lock to avoid truncate race */
323 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
324 	if (vmf->pgoff >= size) {
325 		unlock_page(page);
326 		put_page(page);
327 		return VM_FAULT_SIGBUS;
328 	}
329 
330 	vmf->page = page;
331 	return VM_FAULT_LOCKED;
332 }
333 
334 static int copy_user_bh(struct page *to, struct inode *inode,
335 		struct buffer_head *bh, unsigned long vaddr)
336 {
337 	struct blk_dax_ctl dax = {
338 		.sector = to_sector(bh, inode),
339 		.size = bh->b_size,
340 	};
341 	struct block_device *bdev = bh->b_bdev;
342 	void *vto;
343 
344 	if (dax_map_atomic(bdev, &dax) < 0)
345 		return PTR_ERR(dax.addr);
346 	vto = kmap_atomic(to);
347 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
348 	kunmap_atomic(vto);
349 	dax_unmap_atomic(bdev, &dax);
350 	return 0;
351 }
352 
353 #define NO_SECTOR -1
354 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
355 
356 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
357 		sector_t sector, bool pmd_entry, bool dirty)
358 {
359 	struct radix_tree_root *page_tree = &mapping->page_tree;
360 	pgoff_t pmd_index = DAX_PMD_INDEX(index);
361 	int type, error = 0;
362 	void *entry;
363 
364 	WARN_ON_ONCE(pmd_entry && !dirty);
365 	if (dirty)
366 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
367 
368 	spin_lock_irq(&mapping->tree_lock);
369 
370 	entry = radix_tree_lookup(page_tree, pmd_index);
371 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
372 		index = pmd_index;
373 		goto dirty;
374 	}
375 
376 	entry = radix_tree_lookup(page_tree, index);
377 	if (entry) {
378 		type = RADIX_DAX_TYPE(entry);
379 		if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
380 					type != RADIX_DAX_PMD)) {
381 			error = -EIO;
382 			goto unlock;
383 		}
384 
385 		if (!pmd_entry || type == RADIX_DAX_PMD)
386 			goto dirty;
387 
388 		/*
389 		 * We only insert dirty PMD entries into the radix tree.  This
390 		 * means we don't need to worry about removing a dirty PTE
391 		 * entry and inserting a clean PMD entry, thus reducing the
392 		 * range we would flush with a follow-up fsync/msync call.
393 		 */
394 		radix_tree_delete(&mapping->page_tree, index);
395 		mapping->nrexceptional--;
396 	}
397 
398 	if (sector == NO_SECTOR) {
399 		/*
400 		 * This can happen during correct operation if our pfn_mkwrite
401 		 * fault raced against a hole punch operation.  If this
402 		 * happens the pte that was hole punched will have been
403 		 * unmapped and the radix tree entry will have been removed by
404 		 * the time we are called, but the call will still happen.  We
405 		 * will return all the way up to wp_pfn_shared(), where the
406 		 * pte_same() check will fail, eventually causing page fault
407 		 * to be retried by the CPU.
408 		 */
409 		goto unlock;
410 	}
411 
412 	error = radix_tree_insert(page_tree, index,
413 			RADIX_DAX_ENTRY(sector, pmd_entry));
414 	if (error)
415 		goto unlock;
416 
417 	mapping->nrexceptional++;
418  dirty:
419 	if (dirty)
420 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
421  unlock:
422 	spin_unlock_irq(&mapping->tree_lock);
423 	return error;
424 }
425 
426 static int dax_writeback_one(struct block_device *bdev,
427 		struct address_space *mapping, pgoff_t index, void *entry)
428 {
429 	struct radix_tree_root *page_tree = &mapping->page_tree;
430 	int type = RADIX_DAX_TYPE(entry);
431 	struct radix_tree_node *node;
432 	struct blk_dax_ctl dax;
433 	void **slot;
434 	int ret = 0;
435 
436 	spin_lock_irq(&mapping->tree_lock);
437 	/*
438 	 * Regular page slots are stabilized by the page lock even
439 	 * without the tree itself locked.  These unlocked entries
440 	 * need verification under the tree lock.
441 	 */
442 	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
443 		goto unlock;
444 	if (*slot != entry)
445 		goto unlock;
446 
447 	/* another fsync thread may have already written back this entry */
448 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
449 		goto unlock;
450 
451 	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
452 		ret = -EIO;
453 		goto unlock;
454 	}
455 
456 	dax.sector = RADIX_DAX_SECTOR(entry);
457 	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
458 	spin_unlock_irq(&mapping->tree_lock);
459 
460 	/*
461 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
462 	 * eventually calls cond_resched().
463 	 */
464 	ret = dax_map_atomic(bdev, &dax);
465 	if (ret < 0)
466 		return ret;
467 
468 	if (WARN_ON_ONCE(ret < dax.size)) {
469 		ret = -EIO;
470 		goto unmap;
471 	}
472 
473 	wb_cache_pmem(dax.addr, dax.size);
474 
475 	spin_lock_irq(&mapping->tree_lock);
476 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
477 	spin_unlock_irq(&mapping->tree_lock);
478  unmap:
479 	dax_unmap_atomic(bdev, &dax);
480 	return ret;
481 
482  unlock:
483 	spin_unlock_irq(&mapping->tree_lock);
484 	return ret;
485 }
486 
487 /*
488  * Flush the mapping to the persistent domain within the byte range of [start,
489  * end]. This is required by data integrity operations to ensure file data is
490  * on persistent storage prior to completion of the operation.
491  */
492 int dax_writeback_mapping_range(struct address_space *mapping,
493 		struct block_device *bdev, struct writeback_control *wbc)
494 {
495 	struct inode *inode = mapping->host;
496 	pgoff_t start_index, end_index, pmd_index;
497 	pgoff_t indices[PAGEVEC_SIZE];
498 	struct pagevec pvec;
499 	bool done = false;
500 	int i, ret = 0;
501 	void *entry;
502 
503 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
504 		return -EIO;
505 
506 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
507 		return 0;
508 
509 	start_index = wbc->range_start >> PAGE_SHIFT;
510 	end_index = wbc->range_end >> PAGE_SHIFT;
511 	pmd_index = DAX_PMD_INDEX(start_index);
512 
513 	rcu_read_lock();
514 	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
515 	rcu_read_unlock();
516 
517 	/* see if the start of our range is covered by a PMD entry */
518 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
519 		start_index = pmd_index;
520 
521 	tag_pages_for_writeback(mapping, start_index, end_index);
522 
523 	pagevec_init(&pvec, 0);
524 	while (!done) {
525 		pvec.nr = find_get_entries_tag(mapping, start_index,
526 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
527 				pvec.pages, indices);
528 
529 		if (pvec.nr == 0)
530 			break;
531 
532 		for (i = 0; i < pvec.nr; i++) {
533 			if (indices[i] > end_index) {
534 				done = true;
535 				break;
536 			}
537 
538 			ret = dax_writeback_one(bdev, mapping, indices[i],
539 					pvec.pages[i]);
540 			if (ret < 0)
541 				return ret;
542 		}
543 	}
544 	wmb_pmem();
545 	return 0;
546 }
547 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
548 
549 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
550 			struct vm_area_struct *vma, struct vm_fault *vmf)
551 {
552 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
553 	struct address_space *mapping = inode->i_mapping;
554 	struct block_device *bdev = bh->b_bdev;
555 	struct blk_dax_ctl dax = {
556 		.sector = to_sector(bh, inode),
557 		.size = bh->b_size,
558 	};
559 	pgoff_t size;
560 	int error;
561 
562 	i_mmap_lock_read(mapping);
563 
564 	/*
565 	 * Check truncate didn't happen while we were allocating a block.
566 	 * If it did, this block may or may not be still allocated to the
567 	 * file.  We can't tell the filesystem to free it because we can't
568 	 * take i_mutex here.  In the worst case, the file still has blocks
569 	 * allocated past the end of the file.
570 	 */
571 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
572 	if (unlikely(vmf->pgoff >= size)) {
573 		error = -EIO;
574 		goto out;
575 	}
576 
577 	if (dax_map_atomic(bdev, &dax) < 0) {
578 		error = PTR_ERR(dax.addr);
579 		goto out;
580 	}
581 
582 	if (buffer_unwritten(bh) || buffer_new(bh)) {
583 		clear_pmem(dax.addr, PAGE_SIZE);
584 		wmb_pmem();
585 	}
586 	dax_unmap_atomic(bdev, &dax);
587 
588 	error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
589 			vmf->flags & FAULT_FLAG_WRITE);
590 	if (error)
591 		goto out;
592 
593 	error = vm_insert_mixed(vma, vaddr, dax.pfn);
594 
595  out:
596 	i_mmap_unlock_read(mapping);
597 
598 	return error;
599 }
600 
601 /**
602  * __dax_fault - handle a page fault on a DAX file
603  * @vma: The virtual memory area where the fault occurred
604  * @vmf: The description of the fault
605  * @get_block: The filesystem method used to translate file offsets to blocks
606  * @complete_unwritten: The filesystem method used to convert unwritten blocks
607  *	to written so the data written to them is exposed. This is required for
608  *	required by write faults for filesystems that will return unwritten
609  *	extent mappings from @get_block, but it is optional for reads as
610  *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
611  *	not support unwritten extents, the it should pass NULL.
612  *
613  * When a page fault occurs, filesystems may call this helper in their
614  * fault handler for DAX files. __dax_fault() assumes the caller has done all
615  * the necessary locking for the page fault to proceed successfully.
616  */
617 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
618 			get_block_t get_block, dax_iodone_t complete_unwritten)
619 {
620 	struct file *file = vma->vm_file;
621 	struct address_space *mapping = file->f_mapping;
622 	struct inode *inode = mapping->host;
623 	struct page *page;
624 	struct buffer_head bh;
625 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
626 	unsigned blkbits = inode->i_blkbits;
627 	sector_t block;
628 	pgoff_t size;
629 	int error;
630 	int major = 0;
631 
632 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
633 	if (vmf->pgoff >= size)
634 		return VM_FAULT_SIGBUS;
635 
636 	memset(&bh, 0, sizeof(bh));
637 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
638 	bh.b_bdev = inode->i_sb->s_bdev;
639 	bh.b_size = PAGE_SIZE;
640 
641  repeat:
642 	page = find_get_page(mapping, vmf->pgoff);
643 	if (page) {
644 		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
645 			put_page(page);
646 			return VM_FAULT_RETRY;
647 		}
648 		if (unlikely(page->mapping != mapping)) {
649 			unlock_page(page);
650 			put_page(page);
651 			goto repeat;
652 		}
653 		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
654 		if (unlikely(vmf->pgoff >= size)) {
655 			/*
656 			 * We have a struct page covering a hole in the file
657 			 * from a read fault and we've raced with a truncate
658 			 */
659 			error = -EIO;
660 			goto unlock_page;
661 		}
662 	}
663 
664 	error = get_block(inode, block, &bh, 0);
665 	if (!error && (bh.b_size < PAGE_SIZE))
666 		error = -EIO;		/* fs corruption? */
667 	if (error)
668 		goto unlock_page;
669 
670 	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
671 		if (vmf->flags & FAULT_FLAG_WRITE) {
672 			error = get_block(inode, block, &bh, 1);
673 			count_vm_event(PGMAJFAULT);
674 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
675 			major = VM_FAULT_MAJOR;
676 			if (!error && (bh.b_size < PAGE_SIZE))
677 				error = -EIO;
678 			if (error)
679 				goto unlock_page;
680 		} else {
681 			return dax_load_hole(mapping, page, vmf);
682 		}
683 	}
684 
685 	if (vmf->cow_page) {
686 		struct page *new_page = vmf->cow_page;
687 		if (buffer_written(&bh))
688 			error = copy_user_bh(new_page, inode, &bh, vaddr);
689 		else
690 			clear_user_highpage(new_page, vaddr);
691 		if (error)
692 			goto unlock_page;
693 		vmf->page = page;
694 		if (!page) {
695 			i_mmap_lock_read(mapping);
696 			/* Check we didn't race with truncate */
697 			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
698 								PAGE_SHIFT;
699 			if (vmf->pgoff >= size) {
700 				i_mmap_unlock_read(mapping);
701 				error = -EIO;
702 				goto out;
703 			}
704 		}
705 		return VM_FAULT_LOCKED;
706 	}
707 
708 	/* Check we didn't race with a read fault installing a new page */
709 	if (!page && major)
710 		page = find_lock_page(mapping, vmf->pgoff);
711 
712 	if (page) {
713 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
714 							PAGE_SIZE, 0);
715 		delete_from_page_cache(page);
716 		unlock_page(page);
717 		put_page(page);
718 		page = NULL;
719 	}
720 
721 	/*
722 	 * If we successfully insert the new mapping over an unwritten extent,
723 	 * we need to ensure we convert the unwritten extent. If there is an
724 	 * error inserting the mapping, the filesystem needs to leave it as
725 	 * unwritten to prevent exposure of the stale underlying data to
726 	 * userspace, but we still need to call the completion function so
727 	 * the private resources on the mapping buffer can be released. We
728 	 * indicate what the callback should do via the uptodate variable, same
729 	 * as for normal BH based IO completions.
730 	 */
731 	error = dax_insert_mapping(inode, &bh, vma, vmf);
732 	if (buffer_unwritten(&bh)) {
733 		if (complete_unwritten)
734 			complete_unwritten(&bh, !error);
735 		else
736 			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
737 	}
738 
739  out:
740 	if (error == -ENOMEM)
741 		return VM_FAULT_OOM | major;
742 	/* -EBUSY is fine, somebody else faulted on the same PTE */
743 	if ((error < 0) && (error != -EBUSY))
744 		return VM_FAULT_SIGBUS | major;
745 	return VM_FAULT_NOPAGE | major;
746 
747  unlock_page:
748 	if (page) {
749 		unlock_page(page);
750 		put_page(page);
751 	}
752 	goto out;
753 }
754 EXPORT_SYMBOL(__dax_fault);
755 
756 /**
757  * dax_fault - handle a page fault on a DAX file
758  * @vma: The virtual memory area where the fault occurred
759  * @vmf: The description of the fault
760  * @get_block: The filesystem method used to translate file offsets to blocks
761  *
762  * When a page fault occurs, filesystems may call this helper in their
763  * fault handler for DAX files.
764  */
765 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
766 	      get_block_t get_block, dax_iodone_t complete_unwritten)
767 {
768 	int result;
769 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
770 
771 	if (vmf->flags & FAULT_FLAG_WRITE) {
772 		sb_start_pagefault(sb);
773 		file_update_time(vma->vm_file);
774 	}
775 	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
776 	if (vmf->flags & FAULT_FLAG_WRITE)
777 		sb_end_pagefault(sb);
778 
779 	return result;
780 }
781 EXPORT_SYMBOL_GPL(dax_fault);
782 
783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
784 /*
785  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
786  * more often than one might expect in the below function.
787  */
788 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
789 
790 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
791 		const char *reason, const char *fn)
792 {
793 	if (bh) {
794 		char bname[BDEVNAME_SIZE];
795 		bdevname(bh->b_bdev, bname);
796 		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
797 			"length %zd fallback: %s\n", fn, current->comm,
798 			address, bname, bh->b_state, (u64)bh->b_blocknr,
799 			bh->b_size, reason);
800 	} else {
801 		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
802 			current->comm, address, reason);
803 	}
804 }
805 
806 #define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
807 
808 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
809 		pmd_t *pmd, unsigned int flags, get_block_t get_block,
810 		dax_iodone_t complete_unwritten)
811 {
812 	struct file *file = vma->vm_file;
813 	struct address_space *mapping = file->f_mapping;
814 	struct inode *inode = mapping->host;
815 	struct buffer_head bh;
816 	unsigned blkbits = inode->i_blkbits;
817 	unsigned long pmd_addr = address & PMD_MASK;
818 	bool write = flags & FAULT_FLAG_WRITE;
819 	struct block_device *bdev;
820 	pgoff_t size, pgoff;
821 	sector_t block;
822 	int error, result = 0;
823 	bool alloc = false;
824 
825 	/* dax pmd mappings require pfn_t_devmap() */
826 	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
827 		return VM_FAULT_FALLBACK;
828 
829 	/* Fall back to PTEs if we're going to COW */
830 	if (write && !(vma->vm_flags & VM_SHARED)) {
831 		split_huge_pmd(vma, pmd, address);
832 		dax_pmd_dbg(NULL, address, "cow write");
833 		return VM_FAULT_FALLBACK;
834 	}
835 	/* If the PMD would extend outside the VMA */
836 	if (pmd_addr < vma->vm_start) {
837 		dax_pmd_dbg(NULL, address, "vma start unaligned");
838 		return VM_FAULT_FALLBACK;
839 	}
840 	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
841 		dax_pmd_dbg(NULL, address, "vma end unaligned");
842 		return VM_FAULT_FALLBACK;
843 	}
844 
845 	pgoff = linear_page_index(vma, pmd_addr);
846 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
847 	if (pgoff >= size)
848 		return VM_FAULT_SIGBUS;
849 	/* If the PMD would cover blocks out of the file */
850 	if ((pgoff | PG_PMD_COLOUR) >= size) {
851 		dax_pmd_dbg(NULL, address,
852 				"offset + huge page size > file size");
853 		return VM_FAULT_FALLBACK;
854 	}
855 
856 	memset(&bh, 0, sizeof(bh));
857 	bh.b_bdev = inode->i_sb->s_bdev;
858 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
859 
860 	bh.b_size = PMD_SIZE;
861 
862 	if (get_block(inode, block, &bh, 0) != 0)
863 		return VM_FAULT_SIGBUS;
864 
865 	if (!buffer_mapped(&bh) && write) {
866 		if (get_block(inode, block, &bh, 1) != 0)
867 			return VM_FAULT_SIGBUS;
868 		alloc = true;
869 	}
870 
871 	bdev = bh.b_bdev;
872 
873 	/*
874 	 * If the filesystem isn't willing to tell us the length of a hole,
875 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
876 	 * would be silly.
877 	 */
878 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
879 		dax_pmd_dbg(&bh, address, "allocated block too small");
880 		return VM_FAULT_FALLBACK;
881 	}
882 
883 	/*
884 	 * If we allocated new storage, make sure no process has any
885 	 * zero pages covering this hole
886 	 */
887 	if (alloc) {
888 		loff_t lstart = pgoff << PAGE_SHIFT;
889 		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
890 
891 		truncate_pagecache_range(inode, lstart, lend);
892 	}
893 
894 	i_mmap_lock_read(mapping);
895 
896 	/*
897 	 * If a truncate happened while we were allocating blocks, we may
898 	 * leave blocks allocated to the file that are beyond EOF.  We can't
899 	 * take i_mutex here, so just leave them hanging; they'll be freed
900 	 * when the file is deleted.
901 	 */
902 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
903 	if (pgoff >= size) {
904 		result = VM_FAULT_SIGBUS;
905 		goto out;
906 	}
907 	if ((pgoff | PG_PMD_COLOUR) >= size) {
908 		dax_pmd_dbg(&bh, address,
909 				"offset + huge page size > file size");
910 		goto fallback;
911 	}
912 
913 	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
914 		spinlock_t *ptl;
915 		pmd_t entry;
916 		struct page *zero_page = get_huge_zero_page();
917 
918 		if (unlikely(!zero_page)) {
919 			dax_pmd_dbg(&bh, address, "no zero page");
920 			goto fallback;
921 		}
922 
923 		ptl = pmd_lock(vma->vm_mm, pmd);
924 		if (!pmd_none(*pmd)) {
925 			spin_unlock(ptl);
926 			dax_pmd_dbg(&bh, address, "pmd already present");
927 			goto fallback;
928 		}
929 
930 		dev_dbg(part_to_dev(bdev->bd_part),
931 				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
932 				__func__, current->comm, address,
933 				(unsigned long long) to_sector(&bh, inode));
934 
935 		entry = mk_pmd(zero_page, vma->vm_page_prot);
936 		entry = pmd_mkhuge(entry);
937 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
938 		result = VM_FAULT_NOPAGE;
939 		spin_unlock(ptl);
940 	} else {
941 		struct blk_dax_ctl dax = {
942 			.sector = to_sector(&bh, inode),
943 			.size = PMD_SIZE,
944 		};
945 		long length = dax_map_atomic(bdev, &dax);
946 
947 		if (length < 0) {
948 			result = VM_FAULT_SIGBUS;
949 			goto out;
950 		}
951 		if (length < PMD_SIZE) {
952 			dax_pmd_dbg(&bh, address, "dax-length too small");
953 			dax_unmap_atomic(bdev, &dax);
954 			goto fallback;
955 		}
956 		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
957 			dax_pmd_dbg(&bh, address, "pfn unaligned");
958 			dax_unmap_atomic(bdev, &dax);
959 			goto fallback;
960 		}
961 
962 		if (!pfn_t_devmap(dax.pfn)) {
963 			dax_unmap_atomic(bdev, &dax);
964 			dax_pmd_dbg(&bh, address, "pfn not in memmap");
965 			goto fallback;
966 		}
967 
968 		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
969 			clear_pmem(dax.addr, PMD_SIZE);
970 			wmb_pmem();
971 			count_vm_event(PGMAJFAULT);
972 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
973 			result |= VM_FAULT_MAJOR;
974 		}
975 		dax_unmap_atomic(bdev, &dax);
976 
977 		/*
978 		 * For PTE faults we insert a radix tree entry for reads, and
979 		 * leave it clean.  Then on the first write we dirty the radix
980 		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
981 		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
982 		 * call into get_block() to translate the pgoff to a sector in
983 		 * order to be able to create a new radix tree entry.
984 		 *
985 		 * The PMD path doesn't have an equivalent to
986 		 * dax_pfn_mkwrite(), though, so for a read followed by a
987 		 * write we traverse all the way through __dax_pmd_fault()
988 		 * twice.  This means we can just skip inserting a radix tree
989 		 * entry completely on the initial read and just wait until
990 		 * the write to insert a dirty entry.
991 		 */
992 		if (write) {
993 			error = dax_radix_entry(mapping, pgoff, dax.sector,
994 					true, true);
995 			if (error) {
996 				dax_pmd_dbg(&bh, address,
997 						"PMD radix insertion failed");
998 				goto fallback;
999 			}
1000 		}
1001 
1002 		dev_dbg(part_to_dev(bdev->bd_part),
1003 				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
1004 				__func__, current->comm, address,
1005 				pfn_t_to_pfn(dax.pfn),
1006 				(unsigned long long) dax.sector);
1007 		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1008 				dax.pfn, write);
1009 	}
1010 
1011  out:
1012 	i_mmap_unlock_read(mapping);
1013 
1014 	if (buffer_unwritten(&bh))
1015 		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1016 
1017 	return result;
1018 
1019  fallback:
1020 	count_vm_event(THP_FAULT_FALLBACK);
1021 	result = VM_FAULT_FALLBACK;
1022 	goto out;
1023 }
1024 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1025 
1026 /**
1027  * dax_pmd_fault - handle a PMD fault on a DAX file
1028  * @vma: The virtual memory area where the fault occurred
1029  * @vmf: The description of the fault
1030  * @get_block: The filesystem method used to translate file offsets to blocks
1031  *
1032  * When a page fault occurs, filesystems may call this helper in their
1033  * pmd_fault handler for DAX files.
1034  */
1035 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1036 			pmd_t *pmd, unsigned int flags, get_block_t get_block,
1037 			dax_iodone_t complete_unwritten)
1038 {
1039 	int result;
1040 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1041 
1042 	if (flags & FAULT_FLAG_WRITE) {
1043 		sb_start_pagefault(sb);
1044 		file_update_time(vma->vm_file);
1045 	}
1046 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1047 				complete_unwritten);
1048 	if (flags & FAULT_FLAG_WRITE)
1049 		sb_end_pagefault(sb);
1050 
1051 	return result;
1052 }
1053 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1054 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1055 
1056 /**
1057  * dax_pfn_mkwrite - handle first write to DAX page
1058  * @vma: The virtual memory area where the fault occurred
1059  * @vmf: The description of the fault
1060  */
1061 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1062 {
1063 	struct file *file = vma->vm_file;
1064 	int error;
1065 
1066 	/*
1067 	 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1068 	 * RADIX_DAX_PTE entry already exists in the radix tree from a
1069 	 * previous call to __dax_fault().  We just want to look up that PTE
1070 	 * entry using vmf->pgoff and make sure the dirty tag is set.  This
1071 	 * saves us from having to make a call to get_block() here to look
1072 	 * up the sector.
1073 	 */
1074 	error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false,
1075 			true);
1076 
1077 	if (error == -ENOMEM)
1078 		return VM_FAULT_OOM;
1079 	if (error)
1080 		return VM_FAULT_SIGBUS;
1081 	return VM_FAULT_NOPAGE;
1082 }
1083 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1084 
1085 /**
1086  * dax_zero_page_range - zero a range within a page of a DAX file
1087  * @inode: The file being truncated
1088  * @from: The file offset that is being truncated to
1089  * @length: The number of bytes to zero
1090  * @get_block: The filesystem method used to translate file offsets to blocks
1091  *
1092  * This function can be called by a filesystem when it is zeroing part of a
1093  * page in a DAX file.  This is intended for hole-punch operations.  If
1094  * you are truncating a file, the helper function dax_truncate_page() may be
1095  * more convenient.
1096  *
1097  * We work in terms of PAGE_SIZE here for commonality with
1098  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1099  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1100  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1101  * since the file might be mmapped.
1102  */
1103 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1104 							get_block_t get_block)
1105 {
1106 	struct buffer_head bh;
1107 	pgoff_t index = from >> PAGE_SHIFT;
1108 	unsigned offset = from & (PAGE_SIZE-1);
1109 	int err;
1110 
1111 	/* Block boundary? Nothing to do */
1112 	if (!length)
1113 		return 0;
1114 	BUG_ON((offset + length) > PAGE_SIZE);
1115 
1116 	memset(&bh, 0, sizeof(bh));
1117 	bh.b_bdev = inode->i_sb->s_bdev;
1118 	bh.b_size = PAGE_SIZE;
1119 	err = get_block(inode, index, &bh, 0);
1120 	if (err < 0)
1121 		return err;
1122 	if (buffer_written(&bh)) {
1123 		struct block_device *bdev = bh.b_bdev;
1124 		struct blk_dax_ctl dax = {
1125 			.sector = to_sector(&bh, inode),
1126 			.size = PAGE_SIZE,
1127 		};
1128 
1129 		if (dax_map_atomic(bdev, &dax) < 0)
1130 			return PTR_ERR(dax.addr);
1131 		clear_pmem(dax.addr + offset, length);
1132 		wmb_pmem();
1133 		dax_unmap_atomic(bdev, &dax);
1134 	}
1135 
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1139 
1140 /**
1141  * dax_truncate_page - handle a partial page being truncated in a DAX file
1142  * @inode: The file being truncated
1143  * @from: The file offset that is being truncated to
1144  * @get_block: The filesystem method used to translate file offsets to blocks
1145  *
1146  * Similar to block_truncate_page(), this function can be called by a
1147  * filesystem when it is truncating a DAX file to handle the partial page.
1148  *
1149  * We work in terms of PAGE_SIZE here for commonality with
1150  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1151  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1152  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1153  * since the file might be mmapped.
1154  */
1155 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1156 {
1157 	unsigned length = PAGE_ALIGN(from) - from;
1158 	return dax_zero_page_range(inode, from, length, get_block);
1159 }
1160 EXPORT_SYMBOL_GPL(dax_truncate_page);
1161