1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/sched.h> 29 #include <linux/sched/signal.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/iomap.h> 36 #include "internal.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/fs_dax.h> 40 41 static inline unsigned int pe_order(enum page_entry_size pe_size) 42 { 43 if (pe_size == PE_SIZE_PTE) 44 return PAGE_SHIFT - PAGE_SHIFT; 45 if (pe_size == PE_SIZE_PMD) 46 return PMD_SHIFT - PAGE_SHIFT; 47 if (pe_size == PE_SIZE_PUD) 48 return PUD_SHIFT - PAGE_SHIFT; 49 return ~0; 50 } 51 52 /* We choose 4096 entries - same as per-zone page wait tables */ 53 #define DAX_WAIT_TABLE_BITS 12 54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 55 56 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 57 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 58 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 59 60 /* The order of a PMD entry */ 61 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 62 63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 64 65 static int __init init_dax_wait_table(void) 66 { 67 int i; 68 69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 70 init_waitqueue_head(wait_table + i); 71 return 0; 72 } 73 fs_initcall(init_dax_wait_table); 74 75 /* 76 * DAX pagecache entries use XArray value entries so they can't be mistaken 77 * for pages. We use one bit for locking, one bit for the entry size (PMD) 78 * and two more to tell us if the entry is a zero page or an empty entry that 79 * is just used for locking. In total four special bits. 80 * 81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 83 * block allocation. 84 */ 85 #define DAX_SHIFT (4) 86 #define DAX_LOCKED (1UL << 0) 87 #define DAX_PMD (1UL << 1) 88 #define DAX_ZERO_PAGE (1UL << 2) 89 #define DAX_EMPTY (1UL << 3) 90 91 static unsigned long dax_to_pfn(void *entry) 92 { 93 return xa_to_value(entry) >> DAX_SHIFT; 94 } 95 96 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 97 { 98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 99 } 100 101 static bool dax_is_locked(void *entry) 102 { 103 return xa_to_value(entry) & DAX_LOCKED; 104 } 105 106 static unsigned int dax_entry_order(void *entry) 107 { 108 if (xa_to_value(entry) & DAX_PMD) 109 return PMD_ORDER; 110 return 0; 111 } 112 113 static unsigned long dax_is_pmd_entry(void *entry) 114 { 115 return xa_to_value(entry) & DAX_PMD; 116 } 117 118 static bool dax_is_pte_entry(void *entry) 119 { 120 return !(xa_to_value(entry) & DAX_PMD); 121 } 122 123 static int dax_is_zero_entry(void *entry) 124 { 125 return xa_to_value(entry) & DAX_ZERO_PAGE; 126 } 127 128 static int dax_is_empty_entry(void *entry) 129 { 130 return xa_to_value(entry) & DAX_EMPTY; 131 } 132 133 /* 134 * DAX page cache entry locking 135 */ 136 struct exceptional_entry_key { 137 struct xarray *xa; 138 pgoff_t entry_start; 139 }; 140 141 struct wait_exceptional_entry_queue { 142 wait_queue_entry_t wait; 143 struct exceptional_entry_key key; 144 }; 145 146 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 147 void *entry, struct exceptional_entry_key *key) 148 { 149 unsigned long hash; 150 unsigned long index = xas->xa_index; 151 152 /* 153 * If 'entry' is a PMD, align the 'index' that we use for the wait 154 * queue to the start of that PMD. This ensures that all offsets in 155 * the range covered by the PMD map to the same bit lock. 156 */ 157 if (dax_is_pmd_entry(entry)) 158 index &= ~PG_PMD_COLOUR; 159 key->xa = xas->xa; 160 key->entry_start = index; 161 162 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 163 return wait_table + hash; 164 } 165 166 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 167 unsigned int mode, int sync, void *keyp) 168 { 169 struct exceptional_entry_key *key = keyp; 170 struct wait_exceptional_entry_queue *ewait = 171 container_of(wait, struct wait_exceptional_entry_queue, wait); 172 173 if (key->xa != ewait->key.xa || 174 key->entry_start != ewait->key.entry_start) 175 return 0; 176 return autoremove_wake_function(wait, mode, sync, NULL); 177 } 178 179 /* 180 * @entry may no longer be the entry at the index in the mapping. 181 * The important information it's conveying is whether the entry at 182 * this index used to be a PMD entry. 183 */ 184 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all) 185 { 186 struct exceptional_entry_key key; 187 wait_queue_head_t *wq; 188 189 wq = dax_entry_waitqueue(xas, entry, &key); 190 191 /* 192 * Checking for locked entry and prepare_to_wait_exclusive() happens 193 * under the i_pages lock, ditto for entry handling in our callers. 194 * So at this point all tasks that could have seen our entry locked 195 * must be in the waitqueue and the following check will see them. 196 */ 197 if (waitqueue_active(wq)) 198 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 199 } 200 201 /* 202 * Look up entry in page cache, wait for it to become unlocked if it 203 * is a DAX entry and return it. The caller must subsequently call 204 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 205 * if it did. 206 * 207 * Must be called with the i_pages lock held. 208 */ 209 static void *get_unlocked_entry(struct xa_state *xas) 210 { 211 void *entry; 212 struct wait_exceptional_entry_queue ewait; 213 wait_queue_head_t *wq; 214 215 init_wait(&ewait.wait); 216 ewait.wait.func = wake_exceptional_entry_func; 217 218 for (;;) { 219 entry = xas_find_conflict(xas); 220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) || 221 !dax_is_locked(entry)) 222 return entry; 223 224 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 225 prepare_to_wait_exclusive(wq, &ewait.wait, 226 TASK_UNINTERRUPTIBLE); 227 xas_unlock_irq(xas); 228 xas_reset(xas); 229 schedule(); 230 finish_wait(wq, &ewait.wait); 231 xas_lock_irq(xas); 232 } 233 } 234 235 /* 236 * The only thing keeping the address space around is the i_pages lock 237 * (it's cycled in clear_inode() after removing the entries from i_pages) 238 * After we call xas_unlock_irq(), we cannot touch xas->xa. 239 */ 240 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 241 { 242 struct wait_exceptional_entry_queue ewait; 243 wait_queue_head_t *wq; 244 245 init_wait(&ewait.wait); 246 ewait.wait.func = wake_exceptional_entry_func; 247 248 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 249 prepare_to_wait_exclusive(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 250 xas_unlock_irq(xas); 251 schedule(); 252 finish_wait(wq, &ewait.wait); 253 254 /* 255 * Entry lock waits are exclusive. Wake up the next waiter since 256 * we aren't sure we will acquire the entry lock and thus wake 257 * the next waiter up on unlock. 258 */ 259 if (waitqueue_active(wq)) 260 __wake_up(wq, TASK_NORMAL, 1, &ewait.key); 261 } 262 263 static void put_unlocked_entry(struct xa_state *xas, void *entry) 264 { 265 /* If we were the only waiter woken, wake the next one */ 266 if (entry) 267 dax_wake_entry(xas, entry, false); 268 } 269 270 /* 271 * We used the xa_state to get the entry, but then we locked the entry and 272 * dropped the xa_lock, so we know the xa_state is stale and must be reset 273 * before use. 274 */ 275 static void dax_unlock_entry(struct xa_state *xas, void *entry) 276 { 277 void *old; 278 279 BUG_ON(dax_is_locked(entry)); 280 xas_reset(xas); 281 xas_lock_irq(xas); 282 old = xas_store(xas, entry); 283 xas_unlock_irq(xas); 284 BUG_ON(!dax_is_locked(old)); 285 dax_wake_entry(xas, entry, false); 286 } 287 288 /* 289 * Return: The entry stored at this location before it was locked. 290 */ 291 static void *dax_lock_entry(struct xa_state *xas, void *entry) 292 { 293 unsigned long v = xa_to_value(entry); 294 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 295 } 296 297 static unsigned long dax_entry_size(void *entry) 298 { 299 if (dax_is_zero_entry(entry)) 300 return 0; 301 else if (dax_is_empty_entry(entry)) 302 return 0; 303 else if (dax_is_pmd_entry(entry)) 304 return PMD_SIZE; 305 else 306 return PAGE_SIZE; 307 } 308 309 static unsigned long dax_end_pfn(void *entry) 310 { 311 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 312 } 313 314 /* 315 * Iterate through all mapped pfns represented by an entry, i.e. skip 316 * 'empty' and 'zero' entries. 317 */ 318 #define for_each_mapped_pfn(entry, pfn) \ 319 for (pfn = dax_to_pfn(entry); \ 320 pfn < dax_end_pfn(entry); pfn++) 321 322 /* 323 * TODO: for reflink+dax we need a way to associate a single page with 324 * multiple address_space instances at different linear_page_index() 325 * offsets. 326 */ 327 static void dax_associate_entry(void *entry, struct address_space *mapping, 328 struct vm_area_struct *vma, unsigned long address) 329 { 330 unsigned long size = dax_entry_size(entry), pfn, index; 331 int i = 0; 332 333 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 334 return; 335 336 index = linear_page_index(vma, address & ~(size - 1)); 337 for_each_mapped_pfn(entry, pfn) { 338 struct page *page = pfn_to_page(pfn); 339 340 WARN_ON_ONCE(page->mapping); 341 page->mapping = mapping; 342 page->index = index + i++; 343 } 344 } 345 346 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 347 bool trunc) 348 { 349 unsigned long pfn; 350 351 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 352 return; 353 354 for_each_mapped_pfn(entry, pfn) { 355 struct page *page = pfn_to_page(pfn); 356 357 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 358 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 359 page->mapping = NULL; 360 page->index = 0; 361 } 362 } 363 364 static struct page *dax_busy_page(void *entry) 365 { 366 unsigned long pfn; 367 368 for_each_mapped_pfn(entry, pfn) { 369 struct page *page = pfn_to_page(pfn); 370 371 if (page_ref_count(page) > 1) 372 return page; 373 } 374 return NULL; 375 } 376 377 /* 378 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 379 * @page: The page whose entry we want to lock 380 * 381 * Context: Process context. 382 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 383 * not be locked. 384 */ 385 dax_entry_t dax_lock_page(struct page *page) 386 { 387 XA_STATE(xas, NULL, 0); 388 void *entry; 389 390 /* Ensure page->mapping isn't freed while we look at it */ 391 rcu_read_lock(); 392 for (;;) { 393 struct address_space *mapping = READ_ONCE(page->mapping); 394 395 entry = NULL; 396 if (!mapping || !dax_mapping(mapping)) 397 break; 398 399 /* 400 * In the device-dax case there's no need to lock, a 401 * struct dev_pagemap pin is sufficient to keep the 402 * inode alive, and we assume we have dev_pagemap pin 403 * otherwise we would not have a valid pfn_to_page() 404 * translation. 405 */ 406 entry = (void *)~0UL; 407 if (S_ISCHR(mapping->host->i_mode)) 408 break; 409 410 xas.xa = &mapping->i_pages; 411 xas_lock_irq(&xas); 412 if (mapping != page->mapping) { 413 xas_unlock_irq(&xas); 414 continue; 415 } 416 xas_set(&xas, page->index); 417 entry = xas_load(&xas); 418 if (dax_is_locked(entry)) { 419 rcu_read_unlock(); 420 wait_entry_unlocked(&xas, entry); 421 rcu_read_lock(); 422 continue; 423 } 424 dax_lock_entry(&xas, entry); 425 xas_unlock_irq(&xas); 426 break; 427 } 428 rcu_read_unlock(); 429 return (dax_entry_t)entry; 430 } 431 432 void dax_unlock_page(struct page *page, dax_entry_t cookie) 433 { 434 struct address_space *mapping = page->mapping; 435 XA_STATE(xas, &mapping->i_pages, page->index); 436 437 if (S_ISCHR(mapping->host->i_mode)) 438 return; 439 440 dax_unlock_entry(&xas, (void *)cookie); 441 } 442 443 /* 444 * Find page cache entry at given index. If it is a DAX entry, return it 445 * with the entry locked. If the page cache doesn't contain an entry at 446 * that index, add a locked empty entry. 447 * 448 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 449 * either return that locked entry or will return VM_FAULT_FALLBACK. 450 * This will happen if there are any PTE entries within the PMD range 451 * that we are requesting. 452 * 453 * We always favor PTE entries over PMD entries. There isn't a flow where we 454 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 455 * insertion will fail if it finds any PTE entries already in the tree, and a 456 * PTE insertion will cause an existing PMD entry to be unmapped and 457 * downgraded to PTE entries. This happens for both PMD zero pages as 458 * well as PMD empty entries. 459 * 460 * The exception to this downgrade path is for PMD entries that have 461 * real storage backing them. We will leave these real PMD entries in 462 * the tree, and PTE writes will simply dirty the entire PMD entry. 463 * 464 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 465 * persistent memory the benefit is doubtful. We can add that later if we can 466 * show it helps. 467 * 468 * On error, this function does not return an ERR_PTR. Instead it returns 469 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 470 * overlap with xarray value entries. 471 */ 472 static void *grab_mapping_entry(struct xa_state *xas, 473 struct address_space *mapping, unsigned long size_flag) 474 { 475 unsigned long index = xas->xa_index; 476 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ 477 void *entry; 478 479 retry: 480 xas_lock_irq(xas); 481 entry = get_unlocked_entry(xas); 482 483 if (entry) { 484 if (!xa_is_value(entry)) { 485 xas_set_err(xas, EIO); 486 goto out_unlock; 487 } 488 489 if (size_flag & DAX_PMD) { 490 if (dax_is_pte_entry(entry)) { 491 put_unlocked_entry(xas, entry); 492 goto fallback; 493 } 494 } else { /* trying to grab a PTE entry */ 495 if (dax_is_pmd_entry(entry) && 496 (dax_is_zero_entry(entry) || 497 dax_is_empty_entry(entry))) { 498 pmd_downgrade = true; 499 } 500 } 501 } 502 503 if (pmd_downgrade) { 504 /* 505 * Make sure 'entry' remains valid while we drop 506 * the i_pages lock. 507 */ 508 dax_lock_entry(xas, entry); 509 510 /* 511 * Besides huge zero pages the only other thing that gets 512 * downgraded are empty entries which don't need to be 513 * unmapped. 514 */ 515 if (dax_is_zero_entry(entry)) { 516 xas_unlock_irq(xas); 517 unmap_mapping_pages(mapping, 518 xas->xa_index & ~PG_PMD_COLOUR, 519 PG_PMD_NR, false); 520 xas_reset(xas); 521 xas_lock_irq(xas); 522 } 523 524 dax_disassociate_entry(entry, mapping, false); 525 xas_store(xas, NULL); /* undo the PMD join */ 526 dax_wake_entry(xas, entry, true); 527 mapping->nrexceptional--; 528 entry = NULL; 529 xas_set(xas, index); 530 } 531 532 if (entry) { 533 dax_lock_entry(xas, entry); 534 } else { 535 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY); 536 dax_lock_entry(xas, entry); 537 if (xas_error(xas)) 538 goto out_unlock; 539 mapping->nrexceptional++; 540 } 541 542 out_unlock: 543 xas_unlock_irq(xas); 544 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 545 goto retry; 546 if (xas->xa_node == XA_ERROR(-ENOMEM)) 547 return xa_mk_internal(VM_FAULT_OOM); 548 if (xas_error(xas)) 549 return xa_mk_internal(VM_FAULT_SIGBUS); 550 return entry; 551 fallback: 552 xas_unlock_irq(xas); 553 return xa_mk_internal(VM_FAULT_FALLBACK); 554 } 555 556 /** 557 * dax_layout_busy_page - find first pinned page in @mapping 558 * @mapping: address space to scan for a page with ref count > 1 559 * 560 * DAX requires ZONE_DEVICE mapped pages. These pages are never 561 * 'onlined' to the page allocator so they are considered idle when 562 * page->count == 1. A filesystem uses this interface to determine if 563 * any page in the mapping is busy, i.e. for DMA, or other 564 * get_user_pages() usages. 565 * 566 * It is expected that the filesystem is holding locks to block the 567 * establishment of new mappings in this address_space. I.e. it expects 568 * to be able to run unmap_mapping_range() and subsequently not race 569 * mapping_mapped() becoming true. 570 */ 571 struct page *dax_layout_busy_page(struct address_space *mapping) 572 { 573 XA_STATE(xas, &mapping->i_pages, 0); 574 void *entry; 575 unsigned int scanned = 0; 576 struct page *page = NULL; 577 578 /* 579 * In the 'limited' case get_user_pages() for dax is disabled. 580 */ 581 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 582 return NULL; 583 584 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 585 return NULL; 586 587 /* 588 * If we race get_user_pages_fast() here either we'll see the 589 * elevated page count in the iteration and wait, or 590 * get_user_pages_fast() will see that the page it took a reference 591 * against is no longer mapped in the page tables and bail to the 592 * get_user_pages() slow path. The slow path is protected by 593 * pte_lock() and pmd_lock(). New references are not taken without 594 * holding those locks, and unmap_mapping_range() will not zero the 595 * pte or pmd without holding the respective lock, so we are 596 * guaranteed to either see new references or prevent new 597 * references from being established. 598 */ 599 unmap_mapping_range(mapping, 0, 0, 1); 600 601 xas_lock_irq(&xas); 602 xas_for_each(&xas, entry, ULONG_MAX) { 603 if (WARN_ON_ONCE(!xa_is_value(entry))) 604 continue; 605 if (unlikely(dax_is_locked(entry))) 606 entry = get_unlocked_entry(&xas); 607 if (entry) 608 page = dax_busy_page(entry); 609 put_unlocked_entry(&xas, entry); 610 if (page) 611 break; 612 if (++scanned % XA_CHECK_SCHED) 613 continue; 614 615 xas_pause(&xas); 616 xas_unlock_irq(&xas); 617 cond_resched(); 618 xas_lock_irq(&xas); 619 } 620 xas_unlock_irq(&xas); 621 return page; 622 } 623 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 624 625 static int __dax_invalidate_entry(struct address_space *mapping, 626 pgoff_t index, bool trunc) 627 { 628 XA_STATE(xas, &mapping->i_pages, index); 629 int ret = 0; 630 void *entry; 631 632 xas_lock_irq(&xas); 633 entry = get_unlocked_entry(&xas); 634 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 635 goto out; 636 if (!trunc && 637 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 638 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 639 goto out; 640 dax_disassociate_entry(entry, mapping, trunc); 641 xas_store(&xas, NULL); 642 mapping->nrexceptional--; 643 ret = 1; 644 out: 645 put_unlocked_entry(&xas, entry); 646 xas_unlock_irq(&xas); 647 return ret; 648 } 649 650 /* 651 * Delete DAX entry at @index from @mapping. Wait for it 652 * to be unlocked before deleting it. 653 */ 654 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 655 { 656 int ret = __dax_invalidate_entry(mapping, index, true); 657 658 /* 659 * This gets called from truncate / punch_hole path. As such, the caller 660 * must hold locks protecting against concurrent modifications of the 661 * page cache (usually fs-private i_mmap_sem for writing). Since the 662 * caller has seen a DAX entry for this index, we better find it 663 * at that index as well... 664 */ 665 WARN_ON_ONCE(!ret); 666 return ret; 667 } 668 669 /* 670 * Invalidate DAX entry if it is clean. 671 */ 672 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 673 pgoff_t index) 674 { 675 return __dax_invalidate_entry(mapping, index, false); 676 } 677 678 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 679 sector_t sector, size_t size, struct page *to, 680 unsigned long vaddr) 681 { 682 void *vto, *kaddr; 683 pgoff_t pgoff; 684 long rc; 685 int id; 686 687 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 688 if (rc) 689 return rc; 690 691 id = dax_read_lock(); 692 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); 693 if (rc < 0) { 694 dax_read_unlock(id); 695 return rc; 696 } 697 vto = kmap_atomic(to); 698 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 699 kunmap_atomic(vto); 700 dax_read_unlock(id); 701 return 0; 702 } 703 704 /* 705 * By this point grab_mapping_entry() has ensured that we have a locked entry 706 * of the appropriate size so we don't have to worry about downgrading PMDs to 707 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 708 * already in the tree, we will skip the insertion and just dirty the PMD as 709 * appropriate. 710 */ 711 static void *dax_insert_entry(struct xa_state *xas, 712 struct address_space *mapping, struct vm_fault *vmf, 713 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 714 { 715 void *new_entry = dax_make_entry(pfn, flags); 716 717 if (dirty) 718 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 719 720 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 721 unsigned long index = xas->xa_index; 722 /* we are replacing a zero page with block mapping */ 723 if (dax_is_pmd_entry(entry)) 724 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 725 PG_PMD_NR, false); 726 else /* pte entry */ 727 unmap_mapping_pages(mapping, index, 1, false); 728 } 729 730 xas_reset(xas); 731 xas_lock_irq(xas); 732 if (dax_entry_size(entry) != dax_entry_size(new_entry)) { 733 dax_disassociate_entry(entry, mapping, false); 734 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 735 } 736 737 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 738 /* 739 * Only swap our new entry into the page cache if the current 740 * entry is a zero page or an empty entry. If a normal PTE or 741 * PMD entry is already in the cache, we leave it alone. This 742 * means that if we are trying to insert a PTE and the 743 * existing entry is a PMD, we will just leave the PMD in the 744 * tree and dirty it if necessary. 745 */ 746 void *old = dax_lock_entry(xas, new_entry); 747 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 748 DAX_LOCKED)); 749 entry = new_entry; 750 } else { 751 xas_load(xas); /* Walk the xa_state */ 752 } 753 754 if (dirty) 755 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 756 757 xas_unlock_irq(xas); 758 return entry; 759 } 760 761 static inline 762 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 763 { 764 unsigned long address; 765 766 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 767 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 768 return address; 769 } 770 771 /* Walk all mappings of a given index of a file and writeprotect them */ 772 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 773 unsigned long pfn) 774 { 775 struct vm_area_struct *vma; 776 pte_t pte, *ptep = NULL; 777 pmd_t *pmdp = NULL; 778 spinlock_t *ptl; 779 780 i_mmap_lock_read(mapping); 781 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 782 unsigned long address, start, end; 783 784 cond_resched(); 785 786 if (!(vma->vm_flags & VM_SHARED)) 787 continue; 788 789 address = pgoff_address(index, vma); 790 791 /* 792 * Note because we provide start/end to follow_pte_pmd it will 793 * call mmu_notifier_invalidate_range_start() on our behalf 794 * before taking any lock. 795 */ 796 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl)) 797 continue; 798 799 /* 800 * No need to call mmu_notifier_invalidate_range() as we are 801 * downgrading page table protection not changing it to point 802 * to a new page. 803 * 804 * See Documentation/vm/mmu_notifier.rst 805 */ 806 if (pmdp) { 807 #ifdef CONFIG_FS_DAX_PMD 808 pmd_t pmd; 809 810 if (pfn != pmd_pfn(*pmdp)) 811 goto unlock_pmd; 812 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 813 goto unlock_pmd; 814 815 flush_cache_page(vma, address, pfn); 816 pmd = pmdp_huge_clear_flush(vma, address, pmdp); 817 pmd = pmd_wrprotect(pmd); 818 pmd = pmd_mkclean(pmd); 819 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 820 unlock_pmd: 821 #endif 822 spin_unlock(ptl); 823 } else { 824 if (pfn != pte_pfn(*ptep)) 825 goto unlock_pte; 826 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 827 goto unlock_pte; 828 829 flush_cache_page(vma, address, pfn); 830 pte = ptep_clear_flush(vma, address, ptep); 831 pte = pte_wrprotect(pte); 832 pte = pte_mkclean(pte); 833 set_pte_at(vma->vm_mm, address, ptep, pte); 834 unlock_pte: 835 pte_unmap_unlock(ptep, ptl); 836 } 837 838 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); 839 } 840 i_mmap_unlock_read(mapping); 841 } 842 843 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 844 struct address_space *mapping, void *entry) 845 { 846 unsigned long pfn; 847 long ret = 0; 848 size_t size; 849 850 /* 851 * A page got tagged dirty in DAX mapping? Something is seriously 852 * wrong. 853 */ 854 if (WARN_ON(!xa_is_value(entry))) 855 return -EIO; 856 857 if (unlikely(dax_is_locked(entry))) { 858 void *old_entry = entry; 859 860 entry = get_unlocked_entry(xas); 861 862 /* Entry got punched out / reallocated? */ 863 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 864 goto put_unlocked; 865 /* 866 * Entry got reallocated elsewhere? No need to writeback. 867 * We have to compare pfns as we must not bail out due to 868 * difference in lockbit or entry type. 869 */ 870 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 871 goto put_unlocked; 872 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 873 dax_is_zero_entry(entry))) { 874 ret = -EIO; 875 goto put_unlocked; 876 } 877 878 /* Another fsync thread may have already done this entry */ 879 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 880 goto put_unlocked; 881 } 882 883 /* Lock the entry to serialize with page faults */ 884 dax_lock_entry(xas, entry); 885 886 /* 887 * We can clear the tag now but we have to be careful so that concurrent 888 * dax_writeback_one() calls for the same index cannot finish before we 889 * actually flush the caches. This is achieved as the calls will look 890 * at the entry only under the i_pages lock and once they do that 891 * they will see the entry locked and wait for it to unlock. 892 */ 893 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 894 xas_unlock_irq(xas); 895 896 /* 897 * Even if dax_writeback_mapping_range() was given a wbc->range_start 898 * in the middle of a PMD, the 'index' we are given will be aligned to 899 * the start index of the PMD, as will the pfn we pull from 'entry'. 900 * This allows us to flush for PMD_SIZE and not have to worry about 901 * partial PMD writebacks. 902 */ 903 pfn = dax_to_pfn(entry); 904 size = PAGE_SIZE << dax_entry_order(entry); 905 906 dax_entry_mkclean(mapping, xas->xa_index, pfn); 907 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size); 908 /* 909 * After we have flushed the cache, we can clear the dirty tag. There 910 * cannot be new dirty data in the pfn after the flush has completed as 911 * the pfn mappings are writeprotected and fault waits for mapping 912 * entry lock. 913 */ 914 xas_reset(xas); 915 xas_lock_irq(xas); 916 xas_store(xas, entry); 917 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 918 dax_wake_entry(xas, entry, false); 919 920 trace_dax_writeback_one(mapping->host, xas->xa_index, 921 size >> PAGE_SHIFT); 922 return ret; 923 924 put_unlocked: 925 put_unlocked_entry(xas, entry); 926 return ret; 927 } 928 929 /* 930 * Flush the mapping to the persistent domain within the byte range of [start, 931 * end]. This is required by data integrity operations to ensure file data is 932 * on persistent storage prior to completion of the operation. 933 */ 934 int dax_writeback_mapping_range(struct address_space *mapping, 935 struct block_device *bdev, struct writeback_control *wbc) 936 { 937 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 938 struct inode *inode = mapping->host; 939 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 940 struct dax_device *dax_dev; 941 void *entry; 942 int ret = 0; 943 unsigned int scanned = 0; 944 945 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 946 return -EIO; 947 948 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 949 return 0; 950 951 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 952 if (!dax_dev) 953 return -EIO; 954 955 trace_dax_writeback_range(inode, xas.xa_index, end_index); 956 957 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 958 959 xas_lock_irq(&xas); 960 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 961 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 962 if (ret < 0) { 963 mapping_set_error(mapping, ret); 964 break; 965 } 966 if (++scanned % XA_CHECK_SCHED) 967 continue; 968 969 xas_pause(&xas); 970 xas_unlock_irq(&xas); 971 cond_resched(); 972 xas_lock_irq(&xas); 973 } 974 xas_unlock_irq(&xas); 975 put_dax(dax_dev); 976 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 977 return ret; 978 } 979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 980 981 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 982 { 983 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 984 } 985 986 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 987 pfn_t *pfnp) 988 { 989 const sector_t sector = dax_iomap_sector(iomap, pos); 990 pgoff_t pgoff; 991 int id, rc; 992 long length; 993 994 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 995 if (rc) 996 return rc; 997 id = dax_read_lock(); 998 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 999 NULL, pfnp); 1000 if (length < 0) { 1001 rc = length; 1002 goto out; 1003 } 1004 rc = -EINVAL; 1005 if (PFN_PHYS(length) < size) 1006 goto out; 1007 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1008 goto out; 1009 /* For larger pages we need devmap */ 1010 if (length > 1 && !pfn_t_devmap(*pfnp)) 1011 goto out; 1012 rc = 0; 1013 out: 1014 dax_read_unlock(id); 1015 return rc; 1016 } 1017 1018 /* 1019 * The user has performed a load from a hole in the file. Allocating a new 1020 * page in the file would cause excessive storage usage for workloads with 1021 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1022 * If this page is ever written to we will re-fault and change the mapping to 1023 * point to real DAX storage instead. 1024 */ 1025 static vm_fault_t dax_load_hole(struct xa_state *xas, 1026 struct address_space *mapping, void **entry, 1027 struct vm_fault *vmf) 1028 { 1029 struct inode *inode = mapping->host; 1030 unsigned long vaddr = vmf->address; 1031 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1032 vm_fault_t ret; 1033 1034 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1035 DAX_ZERO_PAGE, false); 1036 1037 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1038 trace_dax_load_hole(inode, vmf, ret); 1039 return ret; 1040 } 1041 1042 static bool dax_range_is_aligned(struct block_device *bdev, 1043 unsigned int offset, unsigned int length) 1044 { 1045 unsigned short sector_size = bdev_logical_block_size(bdev); 1046 1047 if (!IS_ALIGNED(offset, sector_size)) 1048 return false; 1049 if (!IS_ALIGNED(length, sector_size)) 1050 return false; 1051 1052 return true; 1053 } 1054 1055 int __dax_zero_page_range(struct block_device *bdev, 1056 struct dax_device *dax_dev, sector_t sector, 1057 unsigned int offset, unsigned int size) 1058 { 1059 if (dax_range_is_aligned(bdev, offset, size)) { 1060 sector_t start_sector = sector + (offset >> 9); 1061 1062 return blkdev_issue_zeroout(bdev, start_sector, 1063 size >> 9, GFP_NOFS, 0); 1064 } else { 1065 pgoff_t pgoff; 1066 long rc, id; 1067 void *kaddr; 1068 1069 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 1070 if (rc) 1071 return rc; 1072 1073 id = dax_read_lock(); 1074 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1075 if (rc < 0) { 1076 dax_read_unlock(id); 1077 return rc; 1078 } 1079 memset(kaddr + offset, 0, size); 1080 dax_flush(dax_dev, kaddr + offset, size); 1081 dax_read_unlock(id); 1082 } 1083 return 0; 1084 } 1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 1086 1087 static loff_t 1088 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1089 struct iomap *iomap) 1090 { 1091 struct block_device *bdev = iomap->bdev; 1092 struct dax_device *dax_dev = iomap->dax_dev; 1093 struct iov_iter *iter = data; 1094 loff_t end = pos + length, done = 0; 1095 ssize_t ret = 0; 1096 size_t xfer; 1097 int id; 1098 1099 if (iov_iter_rw(iter) == READ) { 1100 end = min(end, i_size_read(inode)); 1101 if (pos >= end) 1102 return 0; 1103 1104 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1105 return iov_iter_zero(min(length, end - pos), iter); 1106 } 1107 1108 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1109 return -EIO; 1110 1111 /* 1112 * Write can allocate block for an area which has a hole page mapped 1113 * into page tables. We have to tear down these mappings so that data 1114 * written by write(2) is visible in mmap. 1115 */ 1116 if (iomap->flags & IOMAP_F_NEW) { 1117 invalidate_inode_pages2_range(inode->i_mapping, 1118 pos >> PAGE_SHIFT, 1119 (end - 1) >> PAGE_SHIFT); 1120 } 1121 1122 id = dax_read_lock(); 1123 while (pos < end) { 1124 unsigned offset = pos & (PAGE_SIZE - 1); 1125 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1126 const sector_t sector = dax_iomap_sector(iomap, pos); 1127 ssize_t map_len; 1128 pgoff_t pgoff; 1129 void *kaddr; 1130 1131 if (fatal_signal_pending(current)) { 1132 ret = -EINTR; 1133 break; 1134 } 1135 1136 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1137 if (ret) 1138 break; 1139 1140 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1141 &kaddr, NULL); 1142 if (map_len < 0) { 1143 ret = map_len; 1144 break; 1145 } 1146 1147 map_len = PFN_PHYS(map_len); 1148 kaddr += offset; 1149 map_len -= offset; 1150 if (map_len > end - pos) 1151 map_len = end - pos; 1152 1153 /* 1154 * The userspace address for the memory copy has already been 1155 * validated via access_ok() in either vfs_read() or 1156 * vfs_write(), depending on which operation we are doing. 1157 */ 1158 if (iov_iter_rw(iter) == WRITE) 1159 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1160 map_len, iter); 1161 else 1162 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1163 map_len, iter); 1164 1165 pos += xfer; 1166 length -= xfer; 1167 done += xfer; 1168 1169 if (xfer == 0) 1170 ret = -EFAULT; 1171 if (xfer < map_len) 1172 break; 1173 } 1174 dax_read_unlock(id); 1175 1176 return done ? done : ret; 1177 } 1178 1179 /** 1180 * dax_iomap_rw - Perform I/O to a DAX file 1181 * @iocb: The control block for this I/O 1182 * @iter: The addresses to do I/O from or to 1183 * @ops: iomap ops passed from the file system 1184 * 1185 * This function performs read and write operations to directly mapped 1186 * persistent memory. The callers needs to take care of read/write exclusion 1187 * and evicting any page cache pages in the region under I/O. 1188 */ 1189 ssize_t 1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1191 const struct iomap_ops *ops) 1192 { 1193 struct address_space *mapping = iocb->ki_filp->f_mapping; 1194 struct inode *inode = mapping->host; 1195 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1196 unsigned flags = 0; 1197 1198 if (iov_iter_rw(iter) == WRITE) { 1199 lockdep_assert_held_exclusive(&inode->i_rwsem); 1200 flags |= IOMAP_WRITE; 1201 } else { 1202 lockdep_assert_held(&inode->i_rwsem); 1203 } 1204 1205 while (iov_iter_count(iter)) { 1206 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1207 iter, dax_iomap_actor); 1208 if (ret <= 0) 1209 break; 1210 pos += ret; 1211 done += ret; 1212 } 1213 1214 iocb->ki_pos += done; 1215 return done ? done : ret; 1216 } 1217 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1218 1219 static vm_fault_t dax_fault_return(int error) 1220 { 1221 if (error == 0) 1222 return VM_FAULT_NOPAGE; 1223 if (error == -ENOMEM) 1224 return VM_FAULT_OOM; 1225 return VM_FAULT_SIGBUS; 1226 } 1227 1228 /* 1229 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1230 * flushed on write-faults (non-cow), but not read-faults. 1231 */ 1232 static bool dax_fault_is_synchronous(unsigned long flags, 1233 struct vm_area_struct *vma, struct iomap *iomap) 1234 { 1235 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1236 && (iomap->flags & IOMAP_F_DIRTY); 1237 } 1238 1239 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1240 int *iomap_errp, const struct iomap_ops *ops) 1241 { 1242 struct vm_area_struct *vma = vmf->vma; 1243 struct address_space *mapping = vma->vm_file->f_mapping; 1244 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1245 struct inode *inode = mapping->host; 1246 unsigned long vaddr = vmf->address; 1247 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1248 struct iomap iomap = { 0 }; 1249 unsigned flags = IOMAP_FAULT; 1250 int error, major = 0; 1251 bool write = vmf->flags & FAULT_FLAG_WRITE; 1252 bool sync; 1253 vm_fault_t ret = 0; 1254 void *entry; 1255 pfn_t pfn; 1256 1257 trace_dax_pte_fault(inode, vmf, ret); 1258 /* 1259 * Check whether offset isn't beyond end of file now. Caller is supposed 1260 * to hold locks serializing us with truncate / punch hole so this is 1261 * a reliable test. 1262 */ 1263 if (pos >= i_size_read(inode)) { 1264 ret = VM_FAULT_SIGBUS; 1265 goto out; 1266 } 1267 1268 if (write && !vmf->cow_page) 1269 flags |= IOMAP_WRITE; 1270 1271 entry = grab_mapping_entry(&xas, mapping, 0); 1272 if (xa_is_internal(entry)) { 1273 ret = xa_to_internal(entry); 1274 goto out; 1275 } 1276 1277 /* 1278 * It is possible, particularly with mixed reads & writes to private 1279 * mappings, that we have raced with a PMD fault that overlaps with 1280 * the PTE we need to set up. If so just return and the fault will be 1281 * retried. 1282 */ 1283 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1284 ret = VM_FAULT_NOPAGE; 1285 goto unlock_entry; 1286 } 1287 1288 /* 1289 * Note that we don't bother to use iomap_apply here: DAX required 1290 * the file system block size to be equal the page size, which means 1291 * that we never have to deal with more than a single extent here. 1292 */ 1293 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1294 if (iomap_errp) 1295 *iomap_errp = error; 1296 if (error) { 1297 ret = dax_fault_return(error); 1298 goto unlock_entry; 1299 } 1300 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1301 error = -EIO; /* fs corruption? */ 1302 goto error_finish_iomap; 1303 } 1304 1305 if (vmf->cow_page) { 1306 sector_t sector = dax_iomap_sector(&iomap, pos); 1307 1308 switch (iomap.type) { 1309 case IOMAP_HOLE: 1310 case IOMAP_UNWRITTEN: 1311 clear_user_highpage(vmf->cow_page, vaddr); 1312 break; 1313 case IOMAP_MAPPED: 1314 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1315 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1316 break; 1317 default: 1318 WARN_ON_ONCE(1); 1319 error = -EIO; 1320 break; 1321 } 1322 1323 if (error) 1324 goto error_finish_iomap; 1325 1326 __SetPageUptodate(vmf->cow_page); 1327 ret = finish_fault(vmf); 1328 if (!ret) 1329 ret = VM_FAULT_DONE_COW; 1330 goto finish_iomap; 1331 } 1332 1333 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1334 1335 switch (iomap.type) { 1336 case IOMAP_MAPPED: 1337 if (iomap.flags & IOMAP_F_NEW) { 1338 count_vm_event(PGMAJFAULT); 1339 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1340 major = VM_FAULT_MAJOR; 1341 } 1342 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1343 if (error < 0) 1344 goto error_finish_iomap; 1345 1346 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1347 0, write && !sync); 1348 1349 /* 1350 * If we are doing synchronous page fault and inode needs fsync, 1351 * we can insert PTE into page tables only after that happens. 1352 * Skip insertion for now and return the pfn so that caller can 1353 * insert it after fsync is done. 1354 */ 1355 if (sync) { 1356 if (WARN_ON_ONCE(!pfnp)) { 1357 error = -EIO; 1358 goto error_finish_iomap; 1359 } 1360 *pfnp = pfn; 1361 ret = VM_FAULT_NEEDDSYNC | major; 1362 goto finish_iomap; 1363 } 1364 trace_dax_insert_mapping(inode, vmf, entry); 1365 if (write) 1366 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1367 else 1368 ret = vmf_insert_mixed(vma, vaddr, pfn); 1369 1370 goto finish_iomap; 1371 case IOMAP_UNWRITTEN: 1372 case IOMAP_HOLE: 1373 if (!write) { 1374 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1375 goto finish_iomap; 1376 } 1377 /*FALLTHRU*/ 1378 default: 1379 WARN_ON_ONCE(1); 1380 error = -EIO; 1381 break; 1382 } 1383 1384 error_finish_iomap: 1385 ret = dax_fault_return(error); 1386 finish_iomap: 1387 if (ops->iomap_end) { 1388 int copied = PAGE_SIZE; 1389 1390 if (ret & VM_FAULT_ERROR) 1391 copied = 0; 1392 /* 1393 * The fault is done by now and there's no way back (other 1394 * thread may be already happily using PTE we have installed). 1395 * Just ignore error from ->iomap_end since we cannot do much 1396 * with it. 1397 */ 1398 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1399 } 1400 unlock_entry: 1401 dax_unlock_entry(&xas, entry); 1402 out: 1403 trace_dax_pte_fault_done(inode, vmf, ret); 1404 return ret | major; 1405 } 1406 1407 #ifdef CONFIG_FS_DAX_PMD 1408 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1409 struct iomap *iomap, void **entry) 1410 { 1411 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1412 unsigned long pmd_addr = vmf->address & PMD_MASK; 1413 struct inode *inode = mapping->host; 1414 struct page *zero_page; 1415 spinlock_t *ptl; 1416 pmd_t pmd_entry; 1417 pfn_t pfn; 1418 1419 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1420 1421 if (unlikely(!zero_page)) 1422 goto fallback; 1423 1424 pfn = page_to_pfn_t(zero_page); 1425 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1426 DAX_PMD | DAX_ZERO_PAGE, false); 1427 1428 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1429 if (!pmd_none(*(vmf->pmd))) { 1430 spin_unlock(ptl); 1431 goto fallback; 1432 } 1433 1434 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1435 pmd_entry = pmd_mkhuge(pmd_entry); 1436 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1437 spin_unlock(ptl); 1438 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1439 return VM_FAULT_NOPAGE; 1440 1441 fallback: 1442 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1443 return VM_FAULT_FALLBACK; 1444 } 1445 1446 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1447 const struct iomap_ops *ops) 1448 { 1449 struct vm_area_struct *vma = vmf->vma; 1450 struct address_space *mapping = vma->vm_file->f_mapping; 1451 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1452 unsigned long pmd_addr = vmf->address & PMD_MASK; 1453 bool write = vmf->flags & FAULT_FLAG_WRITE; 1454 bool sync; 1455 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1456 struct inode *inode = mapping->host; 1457 vm_fault_t result = VM_FAULT_FALLBACK; 1458 struct iomap iomap = { 0 }; 1459 pgoff_t max_pgoff; 1460 void *entry; 1461 loff_t pos; 1462 int error; 1463 pfn_t pfn; 1464 1465 /* 1466 * Check whether offset isn't beyond end of file now. Caller is 1467 * supposed to hold locks serializing us with truncate / punch hole so 1468 * this is a reliable test. 1469 */ 1470 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1471 1472 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1473 1474 /* 1475 * Make sure that the faulting address's PMD offset (color) matches 1476 * the PMD offset from the start of the file. This is necessary so 1477 * that a PMD range in the page table overlaps exactly with a PMD 1478 * range in the page cache. 1479 */ 1480 if ((vmf->pgoff & PG_PMD_COLOUR) != 1481 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1482 goto fallback; 1483 1484 /* Fall back to PTEs if we're going to COW */ 1485 if (write && !(vma->vm_flags & VM_SHARED)) 1486 goto fallback; 1487 1488 /* If the PMD would extend outside the VMA */ 1489 if (pmd_addr < vma->vm_start) 1490 goto fallback; 1491 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1492 goto fallback; 1493 1494 if (xas.xa_index >= max_pgoff) { 1495 result = VM_FAULT_SIGBUS; 1496 goto out; 1497 } 1498 1499 /* If the PMD would extend beyond the file size */ 1500 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1501 goto fallback; 1502 1503 /* 1504 * grab_mapping_entry() will make sure we get an empty PMD entry, 1505 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1506 * entry is already in the array, for instance), it will return 1507 * VM_FAULT_FALLBACK. 1508 */ 1509 entry = grab_mapping_entry(&xas, mapping, DAX_PMD); 1510 if (xa_is_internal(entry)) { 1511 result = xa_to_internal(entry); 1512 goto fallback; 1513 } 1514 1515 /* 1516 * It is possible, particularly with mixed reads & writes to private 1517 * mappings, that we have raced with a PTE fault that overlaps with 1518 * the PMD we need to set up. If so just return and the fault will be 1519 * retried. 1520 */ 1521 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1522 !pmd_devmap(*vmf->pmd)) { 1523 result = 0; 1524 goto unlock_entry; 1525 } 1526 1527 /* 1528 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1529 * setting up a mapping, so really we're using iomap_begin() as a way 1530 * to look up our filesystem block. 1531 */ 1532 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1533 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1534 if (error) 1535 goto unlock_entry; 1536 1537 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1538 goto finish_iomap; 1539 1540 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1541 1542 switch (iomap.type) { 1543 case IOMAP_MAPPED: 1544 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1545 if (error < 0) 1546 goto finish_iomap; 1547 1548 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1549 DAX_PMD, write && !sync); 1550 1551 /* 1552 * If we are doing synchronous page fault and inode needs fsync, 1553 * we can insert PMD into page tables only after that happens. 1554 * Skip insertion for now and return the pfn so that caller can 1555 * insert it after fsync is done. 1556 */ 1557 if (sync) { 1558 if (WARN_ON_ONCE(!pfnp)) 1559 goto finish_iomap; 1560 *pfnp = pfn; 1561 result = VM_FAULT_NEEDDSYNC; 1562 goto finish_iomap; 1563 } 1564 1565 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1566 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, 1567 write); 1568 break; 1569 case IOMAP_UNWRITTEN: 1570 case IOMAP_HOLE: 1571 if (WARN_ON_ONCE(write)) 1572 break; 1573 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1574 break; 1575 default: 1576 WARN_ON_ONCE(1); 1577 break; 1578 } 1579 1580 finish_iomap: 1581 if (ops->iomap_end) { 1582 int copied = PMD_SIZE; 1583 1584 if (result == VM_FAULT_FALLBACK) 1585 copied = 0; 1586 /* 1587 * The fault is done by now and there's no way back (other 1588 * thread may be already happily using PMD we have installed). 1589 * Just ignore error from ->iomap_end since we cannot do much 1590 * with it. 1591 */ 1592 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1593 &iomap); 1594 } 1595 unlock_entry: 1596 dax_unlock_entry(&xas, entry); 1597 fallback: 1598 if (result == VM_FAULT_FALLBACK) { 1599 split_huge_pmd(vma, vmf->pmd, vmf->address); 1600 count_vm_event(THP_FAULT_FALLBACK); 1601 } 1602 out: 1603 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1604 return result; 1605 } 1606 #else 1607 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1608 const struct iomap_ops *ops) 1609 { 1610 return VM_FAULT_FALLBACK; 1611 } 1612 #endif /* CONFIG_FS_DAX_PMD */ 1613 1614 /** 1615 * dax_iomap_fault - handle a page fault on a DAX file 1616 * @vmf: The description of the fault 1617 * @pe_size: Size of the page to fault in 1618 * @pfnp: PFN to insert for synchronous faults if fsync is required 1619 * @iomap_errp: Storage for detailed error code in case of error 1620 * @ops: Iomap ops passed from the file system 1621 * 1622 * When a page fault occurs, filesystems may call this helper in 1623 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1624 * has done all the necessary locking for page fault to proceed 1625 * successfully. 1626 */ 1627 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1628 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1629 { 1630 switch (pe_size) { 1631 case PE_SIZE_PTE: 1632 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1633 case PE_SIZE_PMD: 1634 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1635 default: 1636 return VM_FAULT_FALLBACK; 1637 } 1638 } 1639 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1640 1641 /* 1642 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1643 * @vmf: The description of the fault 1644 * @pfn: PFN to insert 1645 * @order: Order of entry to insert. 1646 * 1647 * This function inserts a writeable PTE or PMD entry into the page tables 1648 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1649 */ 1650 static vm_fault_t 1651 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1652 { 1653 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1654 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1655 void *entry; 1656 vm_fault_t ret; 1657 1658 xas_lock_irq(&xas); 1659 entry = get_unlocked_entry(&xas); 1660 /* Did we race with someone splitting entry or so? */ 1661 if (!entry || 1662 (order == 0 && !dax_is_pte_entry(entry)) || 1663 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) { 1664 put_unlocked_entry(&xas, entry); 1665 xas_unlock_irq(&xas); 1666 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1667 VM_FAULT_NOPAGE); 1668 return VM_FAULT_NOPAGE; 1669 } 1670 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1671 dax_lock_entry(&xas, entry); 1672 xas_unlock_irq(&xas); 1673 if (order == 0) 1674 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1675 #ifdef CONFIG_FS_DAX_PMD 1676 else if (order == PMD_ORDER) 1677 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, 1678 pfn, true); 1679 #endif 1680 else 1681 ret = VM_FAULT_FALLBACK; 1682 dax_unlock_entry(&xas, entry); 1683 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1684 return ret; 1685 } 1686 1687 /** 1688 * dax_finish_sync_fault - finish synchronous page fault 1689 * @vmf: The description of the fault 1690 * @pe_size: Size of entry to be inserted 1691 * @pfn: PFN to insert 1692 * 1693 * This function ensures that the file range touched by the page fault is 1694 * stored persistently on the media and handles inserting of appropriate page 1695 * table entry. 1696 */ 1697 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1698 enum page_entry_size pe_size, pfn_t pfn) 1699 { 1700 int err; 1701 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1702 unsigned int order = pe_order(pe_size); 1703 size_t len = PAGE_SIZE << order; 1704 1705 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1706 if (err) 1707 return VM_FAULT_SIGBUS; 1708 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1709 } 1710 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1711