1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/fs.h> 21 #include <linux/genhd.h> 22 #include <linux/highmem.h> 23 #include <linux/memcontrol.h> 24 #include <linux/mm.h> 25 #include <linux/mutex.h> 26 #include <linux/sched.h> 27 #include <linux/uio.h> 28 #include <linux/vmstat.h> 29 30 int dax_clear_blocks(struct inode *inode, sector_t block, long size) 31 { 32 struct block_device *bdev = inode->i_sb->s_bdev; 33 sector_t sector = block << (inode->i_blkbits - 9); 34 35 might_sleep(); 36 do { 37 void *addr; 38 unsigned long pfn; 39 long count; 40 41 count = bdev_direct_access(bdev, sector, &addr, &pfn, size); 42 if (count < 0) 43 return count; 44 BUG_ON(size < count); 45 while (count > 0) { 46 unsigned pgsz = PAGE_SIZE - offset_in_page(addr); 47 if (pgsz > count) 48 pgsz = count; 49 if (pgsz < PAGE_SIZE) 50 memset(addr, 0, pgsz); 51 else 52 clear_page(addr); 53 addr += pgsz; 54 size -= pgsz; 55 count -= pgsz; 56 BUG_ON(pgsz & 511); 57 sector += pgsz / 512; 58 cond_resched(); 59 } 60 } while (size); 61 62 return 0; 63 } 64 EXPORT_SYMBOL_GPL(dax_clear_blocks); 65 66 static long dax_get_addr(struct buffer_head *bh, void **addr, unsigned blkbits) 67 { 68 unsigned long pfn; 69 sector_t sector = bh->b_blocknr << (blkbits - 9); 70 return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size); 71 } 72 73 static void dax_new_buf(void *addr, unsigned size, unsigned first, loff_t pos, 74 loff_t end) 75 { 76 loff_t final = end - pos + first; /* The final byte of the buffer */ 77 78 if (first > 0) 79 memset(addr, 0, first); 80 if (final < size) 81 memset(addr + final, 0, size - final); 82 } 83 84 static bool buffer_written(struct buffer_head *bh) 85 { 86 return buffer_mapped(bh) && !buffer_unwritten(bh); 87 } 88 89 /* 90 * When ext4 encounters a hole, it returns without modifying the buffer_head 91 * which means that we can't trust b_size. To cope with this, we set b_state 92 * to 0 before calling get_block and, if any bit is set, we know we can trust 93 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is 94 * and would save us time calling get_block repeatedly. 95 */ 96 static bool buffer_size_valid(struct buffer_head *bh) 97 { 98 return bh->b_state != 0; 99 } 100 101 static ssize_t dax_io(int rw, struct inode *inode, struct iov_iter *iter, 102 loff_t start, loff_t end, get_block_t get_block, 103 struct buffer_head *bh) 104 { 105 ssize_t retval = 0; 106 loff_t pos = start; 107 loff_t max = start; 108 loff_t bh_max = start; 109 void *addr; 110 bool hole = false; 111 112 if (rw != WRITE) 113 end = min(end, i_size_read(inode)); 114 115 while (pos < end) { 116 unsigned len; 117 if (pos == max) { 118 unsigned blkbits = inode->i_blkbits; 119 sector_t block = pos >> blkbits; 120 unsigned first = pos - (block << blkbits); 121 long size; 122 123 if (pos == bh_max) { 124 bh->b_size = PAGE_ALIGN(end - pos); 125 bh->b_state = 0; 126 retval = get_block(inode, block, bh, 127 rw == WRITE); 128 if (retval) 129 break; 130 if (!buffer_size_valid(bh)) 131 bh->b_size = 1 << blkbits; 132 bh_max = pos - first + bh->b_size; 133 } else { 134 unsigned done = bh->b_size - 135 (bh_max - (pos - first)); 136 bh->b_blocknr += done >> blkbits; 137 bh->b_size -= done; 138 } 139 140 hole = (rw != WRITE) && !buffer_written(bh); 141 if (hole) { 142 addr = NULL; 143 size = bh->b_size - first; 144 } else { 145 retval = dax_get_addr(bh, &addr, blkbits); 146 if (retval < 0) 147 break; 148 if (buffer_unwritten(bh) || buffer_new(bh)) 149 dax_new_buf(addr, retval, first, pos, 150 end); 151 addr += first; 152 size = retval - first; 153 } 154 max = min(pos + size, end); 155 } 156 157 if (rw == WRITE) 158 len = copy_from_iter(addr, max - pos, iter); 159 else if (!hole) 160 len = copy_to_iter(addr, max - pos, iter); 161 else 162 len = iov_iter_zero(max - pos, iter); 163 164 if (!len) 165 break; 166 167 pos += len; 168 addr += len; 169 } 170 171 return (pos == start) ? retval : pos - start; 172 } 173 174 /** 175 * dax_do_io - Perform I/O to a DAX file 176 * @rw: READ to read or WRITE to write 177 * @iocb: The control block for this I/O 178 * @inode: The file which the I/O is directed at 179 * @iter: The addresses to do I/O from or to 180 * @pos: The file offset where the I/O starts 181 * @get_block: The filesystem method used to translate file offsets to blocks 182 * @end_io: A filesystem callback for I/O completion 183 * @flags: See below 184 * 185 * This function uses the same locking scheme as do_blockdev_direct_IO: 186 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the 187 * caller for writes. For reads, we take and release the i_mutex ourselves. 188 * If DIO_LOCKING is not set, the filesystem takes care of its own locking. 189 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O 190 * is in progress. 191 */ 192 ssize_t dax_do_io(int rw, struct kiocb *iocb, struct inode *inode, 193 struct iov_iter *iter, loff_t pos, 194 get_block_t get_block, dio_iodone_t end_io, int flags) 195 { 196 struct buffer_head bh; 197 ssize_t retval = -EINVAL; 198 loff_t end = pos + iov_iter_count(iter); 199 200 memset(&bh, 0, sizeof(bh)); 201 202 if ((flags & DIO_LOCKING) && (rw == READ)) { 203 struct address_space *mapping = inode->i_mapping; 204 mutex_lock(&inode->i_mutex); 205 retval = filemap_write_and_wait_range(mapping, pos, end - 1); 206 if (retval) { 207 mutex_unlock(&inode->i_mutex); 208 goto out; 209 } 210 } 211 212 /* Protects against truncate */ 213 atomic_inc(&inode->i_dio_count); 214 215 retval = dax_io(rw, inode, iter, pos, end, get_block, &bh); 216 217 if ((flags & DIO_LOCKING) && (rw == READ)) 218 mutex_unlock(&inode->i_mutex); 219 220 if ((retval > 0) && end_io) 221 end_io(iocb, pos, retval, bh.b_private); 222 223 inode_dio_done(inode); 224 out: 225 return retval; 226 } 227 EXPORT_SYMBOL_GPL(dax_do_io); 228 229 /* 230 * The user has performed a load from a hole in the file. Allocating 231 * a new page in the file would cause excessive storage usage for 232 * workloads with sparse files. We allocate a page cache page instead. 233 * We'll kick it out of the page cache if it's ever written to, 234 * otherwise it will simply fall out of the page cache under memory 235 * pressure without ever having been dirtied. 236 */ 237 static int dax_load_hole(struct address_space *mapping, struct page *page, 238 struct vm_fault *vmf) 239 { 240 unsigned long size; 241 struct inode *inode = mapping->host; 242 if (!page) 243 page = find_or_create_page(mapping, vmf->pgoff, 244 GFP_KERNEL | __GFP_ZERO); 245 if (!page) 246 return VM_FAULT_OOM; 247 /* Recheck i_size under page lock to avoid truncate race */ 248 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 249 if (vmf->pgoff >= size) { 250 unlock_page(page); 251 page_cache_release(page); 252 return VM_FAULT_SIGBUS; 253 } 254 255 vmf->page = page; 256 return VM_FAULT_LOCKED; 257 } 258 259 static int copy_user_bh(struct page *to, struct buffer_head *bh, 260 unsigned blkbits, unsigned long vaddr) 261 { 262 void *vfrom, *vto; 263 if (dax_get_addr(bh, &vfrom, blkbits) < 0) 264 return -EIO; 265 vto = kmap_atomic(to); 266 copy_user_page(vto, vfrom, vaddr, to); 267 kunmap_atomic(vto); 268 return 0; 269 } 270 271 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh, 272 struct vm_area_struct *vma, struct vm_fault *vmf) 273 { 274 struct address_space *mapping = inode->i_mapping; 275 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); 276 unsigned long vaddr = (unsigned long)vmf->virtual_address; 277 void *addr; 278 unsigned long pfn; 279 pgoff_t size; 280 int error; 281 282 i_mmap_lock_read(mapping); 283 284 /* 285 * Check truncate didn't happen while we were allocating a block. 286 * If it did, this block may or may not be still allocated to the 287 * file. We can't tell the filesystem to free it because we can't 288 * take i_mutex here. In the worst case, the file still has blocks 289 * allocated past the end of the file. 290 */ 291 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 292 if (unlikely(vmf->pgoff >= size)) { 293 error = -EIO; 294 goto out; 295 } 296 297 error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size); 298 if (error < 0) 299 goto out; 300 if (error < PAGE_SIZE) { 301 error = -EIO; 302 goto out; 303 } 304 305 if (buffer_unwritten(bh) || buffer_new(bh)) 306 clear_page(addr); 307 308 error = vm_insert_mixed(vma, vaddr, pfn); 309 310 out: 311 i_mmap_unlock_read(mapping); 312 313 if (bh->b_end_io) 314 bh->b_end_io(bh, 1); 315 316 return error; 317 } 318 319 static int do_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 320 get_block_t get_block) 321 { 322 struct file *file = vma->vm_file; 323 struct address_space *mapping = file->f_mapping; 324 struct inode *inode = mapping->host; 325 struct page *page; 326 struct buffer_head bh; 327 unsigned long vaddr = (unsigned long)vmf->virtual_address; 328 unsigned blkbits = inode->i_blkbits; 329 sector_t block; 330 pgoff_t size; 331 int error; 332 int major = 0; 333 334 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 335 if (vmf->pgoff >= size) 336 return VM_FAULT_SIGBUS; 337 338 memset(&bh, 0, sizeof(bh)); 339 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); 340 bh.b_size = PAGE_SIZE; 341 342 repeat: 343 page = find_get_page(mapping, vmf->pgoff); 344 if (page) { 345 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 346 page_cache_release(page); 347 return VM_FAULT_RETRY; 348 } 349 if (unlikely(page->mapping != mapping)) { 350 unlock_page(page); 351 page_cache_release(page); 352 goto repeat; 353 } 354 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 355 if (unlikely(vmf->pgoff >= size)) { 356 /* 357 * We have a struct page covering a hole in the file 358 * from a read fault and we've raced with a truncate 359 */ 360 error = -EIO; 361 goto unlock_page; 362 } 363 } 364 365 error = get_block(inode, block, &bh, 0); 366 if (!error && (bh.b_size < PAGE_SIZE)) 367 error = -EIO; /* fs corruption? */ 368 if (error) 369 goto unlock_page; 370 371 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) { 372 if (vmf->flags & FAULT_FLAG_WRITE) { 373 error = get_block(inode, block, &bh, 1); 374 count_vm_event(PGMAJFAULT); 375 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 376 major = VM_FAULT_MAJOR; 377 if (!error && (bh.b_size < PAGE_SIZE)) 378 error = -EIO; 379 if (error) 380 goto unlock_page; 381 } else { 382 return dax_load_hole(mapping, page, vmf); 383 } 384 } 385 386 if (vmf->cow_page) { 387 struct page *new_page = vmf->cow_page; 388 if (buffer_written(&bh)) 389 error = copy_user_bh(new_page, &bh, blkbits, vaddr); 390 else 391 clear_user_highpage(new_page, vaddr); 392 if (error) 393 goto unlock_page; 394 vmf->page = page; 395 if (!page) { 396 i_mmap_lock_read(mapping); 397 /* Check we didn't race with truncate */ 398 size = (i_size_read(inode) + PAGE_SIZE - 1) >> 399 PAGE_SHIFT; 400 if (vmf->pgoff >= size) { 401 i_mmap_unlock_read(mapping); 402 error = -EIO; 403 goto out; 404 } 405 } 406 return VM_FAULT_LOCKED; 407 } 408 409 /* Check we didn't race with a read fault installing a new page */ 410 if (!page && major) 411 page = find_lock_page(mapping, vmf->pgoff); 412 413 if (page) { 414 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 415 PAGE_CACHE_SIZE, 0); 416 delete_from_page_cache(page); 417 unlock_page(page); 418 page_cache_release(page); 419 } 420 421 error = dax_insert_mapping(inode, &bh, vma, vmf); 422 423 out: 424 if (error == -ENOMEM) 425 return VM_FAULT_OOM | major; 426 /* -EBUSY is fine, somebody else faulted on the same PTE */ 427 if ((error < 0) && (error != -EBUSY)) 428 return VM_FAULT_SIGBUS | major; 429 return VM_FAULT_NOPAGE | major; 430 431 unlock_page: 432 if (page) { 433 unlock_page(page); 434 page_cache_release(page); 435 } 436 goto out; 437 } 438 439 /** 440 * dax_fault - handle a page fault on a DAX file 441 * @vma: The virtual memory area where the fault occurred 442 * @vmf: The description of the fault 443 * @get_block: The filesystem method used to translate file offsets to blocks 444 * 445 * When a page fault occurs, filesystems may call this helper in their 446 * fault handler for DAX files. 447 */ 448 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 449 get_block_t get_block) 450 { 451 int result; 452 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 453 454 if (vmf->flags & FAULT_FLAG_WRITE) { 455 sb_start_pagefault(sb); 456 file_update_time(vma->vm_file); 457 } 458 result = do_dax_fault(vma, vmf, get_block); 459 if (vmf->flags & FAULT_FLAG_WRITE) 460 sb_end_pagefault(sb); 461 462 return result; 463 } 464 EXPORT_SYMBOL_GPL(dax_fault); 465 466 /** 467 * dax_zero_page_range - zero a range within a page of a DAX file 468 * @inode: The file being truncated 469 * @from: The file offset that is being truncated to 470 * @length: The number of bytes to zero 471 * @get_block: The filesystem method used to translate file offsets to blocks 472 * 473 * This function can be called by a filesystem when it is zeroing part of a 474 * page in a DAX file. This is intended for hole-punch operations. If 475 * you are truncating a file, the helper function dax_truncate_page() may be 476 * more convenient. 477 * 478 * We work in terms of PAGE_CACHE_SIZE here for commonality with 479 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem 480 * took care of disposing of the unnecessary blocks. Even if the filesystem 481 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page 482 * since the file might be mmapped. 483 */ 484 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, 485 get_block_t get_block) 486 { 487 struct buffer_head bh; 488 pgoff_t index = from >> PAGE_CACHE_SHIFT; 489 unsigned offset = from & (PAGE_CACHE_SIZE-1); 490 int err; 491 492 /* Block boundary? Nothing to do */ 493 if (!length) 494 return 0; 495 BUG_ON((offset + length) > PAGE_CACHE_SIZE); 496 497 memset(&bh, 0, sizeof(bh)); 498 bh.b_size = PAGE_CACHE_SIZE; 499 err = get_block(inode, index, &bh, 0); 500 if (err < 0) 501 return err; 502 if (buffer_written(&bh)) { 503 void *addr; 504 err = dax_get_addr(&bh, &addr, inode->i_blkbits); 505 if (err < 0) 506 return err; 507 memset(addr + offset, 0, length); 508 } 509 510 return 0; 511 } 512 EXPORT_SYMBOL_GPL(dax_zero_page_range); 513 514 /** 515 * dax_truncate_page - handle a partial page being truncated in a DAX file 516 * @inode: The file being truncated 517 * @from: The file offset that is being truncated to 518 * @get_block: The filesystem method used to translate file offsets to blocks 519 * 520 * Similar to block_truncate_page(), this function can be called by a 521 * filesystem when it is truncating a DAX file to handle the partial page. 522 * 523 * We work in terms of PAGE_CACHE_SIZE here for commonality with 524 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem 525 * took care of disposing of the unnecessary blocks. Even if the filesystem 526 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page 527 * since the file might be mmapped. 528 */ 529 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) 530 { 531 unsigned length = PAGE_CACHE_ALIGN(from) - from; 532 return dax_zero_page_range(inode, from, length, get_block); 533 } 534 EXPORT_SYMBOL_GPL(dax_truncate_page); 535