xref: /openbmc/linux/fs/crypto/keysetup_v1.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup for v1 encryption policies
4  *
5  * Copyright 2015, 2019 Google LLC
6  */
7 
8 /*
9  * This file implements compatibility functions for the original encryption
10  * policy version ("v1"), including:
11  *
12  * - Deriving per-file keys using the AES-128-ECB based KDF
13  *   (rather than the new method of using HKDF-SHA512)
14  *
15  * - Retrieving fscrypt master keys from process-subscribed keyrings
16  *   (rather than the new method of using a filesystem-level keyring)
17  *
18  * - Handling policies with the DIRECT_KEY flag set using a master key table
19  *   (rather than the new method of implementing DIRECT_KEY with per-mode keys
20  *    managed alongside the master keys in the filesystem-level keyring)
21  */
22 
23 #include <crypto/algapi.h>
24 #include <crypto/skcipher.h>
25 #include <keys/user-type.h>
26 #include <linux/hashtable.h>
27 #include <linux/scatterlist.h>
28 
29 #include "fscrypt_private.h"
30 
31 /* Table of keys referenced by DIRECT_KEY policies */
32 static DEFINE_HASHTABLE(fscrypt_direct_keys, 6); /* 6 bits = 64 buckets */
33 static DEFINE_SPINLOCK(fscrypt_direct_keys_lock);
34 
35 /*
36  * v1 key derivation function.  This generates the derived key by encrypting the
37  * master key with AES-128-ECB using the nonce as the AES key.  This provides a
38  * unique derived key with sufficient entropy for each inode.  However, it's
39  * nonstandard, non-extensible, doesn't evenly distribute the entropy from the
40  * master key, and is trivially reversible: an attacker who compromises a
41  * derived key can "decrypt" it to get back to the master key, then derive any
42  * other key.  For all new code, use HKDF instead.
43  *
44  * The master key must be at least as long as the derived key.  If the master
45  * key is longer, then only the first 'derived_keysize' bytes are used.
46  */
47 static int derive_key_aes(const u8 *master_key,
48 			  const u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE],
49 			  u8 *derived_key, unsigned int derived_keysize)
50 {
51 	int res = 0;
52 	struct skcipher_request *req = NULL;
53 	DECLARE_CRYPTO_WAIT(wait);
54 	struct scatterlist src_sg, dst_sg;
55 	struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
56 
57 	if (IS_ERR(tfm)) {
58 		res = PTR_ERR(tfm);
59 		tfm = NULL;
60 		goto out;
61 	}
62 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
63 	req = skcipher_request_alloc(tfm, GFP_NOFS);
64 	if (!req) {
65 		res = -ENOMEM;
66 		goto out;
67 	}
68 	skcipher_request_set_callback(req,
69 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
70 			crypto_req_done, &wait);
71 	res = crypto_skcipher_setkey(tfm, nonce, FS_KEY_DERIVATION_NONCE_SIZE);
72 	if (res < 0)
73 		goto out;
74 
75 	sg_init_one(&src_sg, master_key, derived_keysize);
76 	sg_init_one(&dst_sg, derived_key, derived_keysize);
77 	skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
78 				   NULL);
79 	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
80 out:
81 	skcipher_request_free(req);
82 	crypto_free_skcipher(tfm);
83 	return res;
84 }
85 
86 /*
87  * Search the current task's subscribed keyrings for a "logon" key with
88  * description prefix:descriptor, and if found acquire a read lock on it and
89  * return a pointer to its validated payload in *payload_ret.
90  */
91 static struct key *
92 find_and_lock_process_key(const char *prefix,
93 			  const u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE],
94 			  unsigned int min_keysize,
95 			  const struct fscrypt_key **payload_ret)
96 {
97 	char *description;
98 	struct key *key;
99 	const struct user_key_payload *ukp;
100 	const struct fscrypt_key *payload;
101 
102 	description = kasprintf(GFP_NOFS, "%s%*phN", prefix,
103 				FSCRYPT_KEY_DESCRIPTOR_SIZE, descriptor);
104 	if (!description)
105 		return ERR_PTR(-ENOMEM);
106 
107 	key = request_key(&key_type_logon, description, NULL);
108 	kfree(description);
109 	if (IS_ERR(key))
110 		return key;
111 
112 	down_read(&key->sem);
113 	ukp = user_key_payload_locked(key);
114 
115 	if (!ukp) /* was the key revoked before we acquired its semaphore? */
116 		goto invalid;
117 
118 	payload = (const struct fscrypt_key *)ukp->data;
119 
120 	if (ukp->datalen != sizeof(struct fscrypt_key) ||
121 	    payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) {
122 		fscrypt_warn(NULL,
123 			     "key with description '%s' has invalid payload",
124 			     key->description);
125 		goto invalid;
126 	}
127 
128 	if (payload->size < min_keysize) {
129 		fscrypt_warn(NULL,
130 			     "key with description '%s' is too short (got %u bytes, need %u+ bytes)",
131 			     key->description, payload->size, min_keysize);
132 		goto invalid;
133 	}
134 
135 	*payload_ret = payload;
136 	return key;
137 
138 invalid:
139 	up_read(&key->sem);
140 	key_put(key);
141 	return ERR_PTR(-ENOKEY);
142 }
143 
144 /* Master key referenced by DIRECT_KEY policy */
145 struct fscrypt_direct_key {
146 	struct hlist_node		dk_node;
147 	refcount_t			dk_refcount;
148 	const struct fscrypt_mode	*dk_mode;
149 	struct crypto_skcipher		*dk_ctfm;
150 	u8				dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
151 	u8				dk_raw[FSCRYPT_MAX_KEY_SIZE];
152 };
153 
154 static void free_direct_key(struct fscrypt_direct_key *dk)
155 {
156 	if (dk) {
157 		crypto_free_skcipher(dk->dk_ctfm);
158 		kzfree(dk);
159 	}
160 }
161 
162 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk)
163 {
164 	if (!refcount_dec_and_lock(&dk->dk_refcount, &fscrypt_direct_keys_lock))
165 		return;
166 	hash_del(&dk->dk_node);
167 	spin_unlock(&fscrypt_direct_keys_lock);
168 
169 	free_direct_key(dk);
170 }
171 
172 /*
173  * Find/insert the given key into the fscrypt_direct_keys table.  If found, it
174  * is returned with elevated refcount, and 'to_insert' is freed if non-NULL.  If
175  * not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise
176  * NULL is returned.
177  */
178 static struct fscrypt_direct_key *
179 find_or_insert_direct_key(struct fscrypt_direct_key *to_insert,
180 			  const u8 *raw_key, const struct fscrypt_info *ci)
181 {
182 	unsigned long hash_key;
183 	struct fscrypt_direct_key *dk;
184 
185 	/*
186 	 * Careful: to avoid potentially leaking secret key bytes via timing
187 	 * information, we must key the hash table by descriptor rather than by
188 	 * raw key, and use crypto_memneq() when comparing raw keys.
189 	 */
190 
191 	BUILD_BUG_ON(sizeof(hash_key) > FSCRYPT_KEY_DESCRIPTOR_SIZE);
192 	memcpy(&hash_key, ci->ci_policy.v1.master_key_descriptor,
193 	       sizeof(hash_key));
194 
195 	spin_lock(&fscrypt_direct_keys_lock);
196 	hash_for_each_possible(fscrypt_direct_keys, dk, dk_node, hash_key) {
197 		if (memcmp(ci->ci_policy.v1.master_key_descriptor,
198 			   dk->dk_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) != 0)
199 			continue;
200 		if (ci->ci_mode != dk->dk_mode)
201 			continue;
202 		if (crypto_memneq(raw_key, dk->dk_raw, ci->ci_mode->keysize))
203 			continue;
204 		/* using existing tfm with same (descriptor, mode, raw_key) */
205 		refcount_inc(&dk->dk_refcount);
206 		spin_unlock(&fscrypt_direct_keys_lock);
207 		free_direct_key(to_insert);
208 		return dk;
209 	}
210 	if (to_insert)
211 		hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key);
212 	spin_unlock(&fscrypt_direct_keys_lock);
213 	return to_insert;
214 }
215 
216 /* Prepare to encrypt directly using the master key in the given mode */
217 static struct fscrypt_direct_key *
218 fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
219 {
220 	struct fscrypt_direct_key *dk;
221 	int err;
222 
223 	/* Is there already a tfm for this key? */
224 	dk = find_or_insert_direct_key(NULL, raw_key, ci);
225 	if (dk)
226 		return dk;
227 
228 	/* Nope, allocate one. */
229 	dk = kzalloc(sizeof(*dk), GFP_NOFS);
230 	if (!dk)
231 		return ERR_PTR(-ENOMEM);
232 	refcount_set(&dk->dk_refcount, 1);
233 	dk->dk_mode = ci->ci_mode;
234 	dk->dk_ctfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key,
235 						ci->ci_inode);
236 	if (IS_ERR(dk->dk_ctfm)) {
237 		err = PTR_ERR(dk->dk_ctfm);
238 		dk->dk_ctfm = NULL;
239 		goto err_free_dk;
240 	}
241 	memcpy(dk->dk_descriptor, ci->ci_policy.v1.master_key_descriptor,
242 	       FSCRYPT_KEY_DESCRIPTOR_SIZE);
243 	memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize);
244 
245 	return find_or_insert_direct_key(dk, raw_key, ci);
246 
247 err_free_dk:
248 	free_direct_key(dk);
249 	return ERR_PTR(err);
250 }
251 
252 /* v1 policy, DIRECT_KEY: use the master key directly */
253 static int setup_v1_file_key_direct(struct fscrypt_info *ci,
254 				    const u8 *raw_master_key)
255 {
256 	const struct fscrypt_mode *mode = ci->ci_mode;
257 	struct fscrypt_direct_key *dk;
258 
259 	if (!fscrypt_mode_supports_direct_key(mode)) {
260 		fscrypt_warn(ci->ci_inode,
261 			     "Direct key mode not allowed with %s",
262 			     mode->friendly_name);
263 		return -EINVAL;
264 	}
265 
266 	if (ci->ci_policy.v1.contents_encryption_mode !=
267 	    ci->ci_policy.v1.filenames_encryption_mode) {
268 		fscrypt_warn(ci->ci_inode,
269 			     "Direct key mode not allowed with different contents and filenames modes");
270 		return -EINVAL;
271 	}
272 
273 	/* ESSIV implies 16-byte IVs which implies !DIRECT_KEY */
274 	if (WARN_ON(mode->needs_essiv))
275 		return -EINVAL;
276 
277 	dk = fscrypt_get_direct_key(ci, raw_master_key);
278 	if (IS_ERR(dk))
279 		return PTR_ERR(dk);
280 	ci->ci_direct_key = dk;
281 	ci->ci_ctfm = dk->dk_ctfm;
282 	return 0;
283 }
284 
285 /* v1 policy, !DIRECT_KEY: derive the file's encryption key */
286 static int setup_v1_file_key_derived(struct fscrypt_info *ci,
287 				     const u8 *raw_master_key)
288 {
289 	u8 *derived_key;
290 	int err;
291 
292 	/*
293 	 * This cannot be a stack buffer because it will be passed to the
294 	 * scatterlist crypto API during derive_key_aes().
295 	 */
296 	derived_key = kmalloc(ci->ci_mode->keysize, GFP_NOFS);
297 	if (!derived_key)
298 		return -ENOMEM;
299 
300 	err = derive_key_aes(raw_master_key, ci->ci_nonce,
301 			     derived_key, ci->ci_mode->keysize);
302 	if (err)
303 		goto out;
304 
305 	err = fscrypt_set_derived_key(ci, derived_key);
306 out:
307 	kzfree(derived_key);
308 	return err;
309 }
310 
311 int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 *raw_master_key)
312 {
313 	if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
314 		return setup_v1_file_key_direct(ci, raw_master_key);
315 	else
316 		return setup_v1_file_key_derived(ci, raw_master_key);
317 }
318 
319 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci)
320 {
321 	struct key *key;
322 	const struct fscrypt_key *payload;
323 	int err;
324 
325 	key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX,
326 					ci->ci_policy.v1.master_key_descriptor,
327 					ci->ci_mode->keysize, &payload);
328 	if (key == ERR_PTR(-ENOKEY) && ci->ci_inode->i_sb->s_cop->key_prefix) {
329 		key = find_and_lock_process_key(ci->ci_inode->i_sb->s_cop->key_prefix,
330 						ci->ci_policy.v1.master_key_descriptor,
331 						ci->ci_mode->keysize, &payload);
332 	}
333 	if (IS_ERR(key))
334 		return PTR_ERR(key);
335 
336 	err = fscrypt_setup_v1_file_key(ci, payload->raw);
337 	up_read(&key->sem);
338 	key_put(key);
339 	return err;
340 }
341