xref: /openbmc/linux/fs/crypto/keysetup.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup facility for FS encryption support.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #include <crypto/skcipher.h>
12 #include <linux/key.h>
13 
14 #include "fscrypt_private.h"
15 
16 struct fscrypt_mode fscrypt_modes[] = {
17 	[FSCRYPT_MODE_AES_256_XTS] = {
18 		.friendly_name = "AES-256-XTS",
19 		.cipher_str = "xts(aes)",
20 		.keysize = 64,
21 		.ivsize = 16,
22 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
23 	},
24 	[FSCRYPT_MODE_AES_256_CTS] = {
25 		.friendly_name = "AES-256-CTS-CBC",
26 		.cipher_str = "cts(cbc(aes))",
27 		.keysize = 32,
28 		.ivsize = 16,
29 	},
30 	[FSCRYPT_MODE_AES_128_CBC] = {
31 		.friendly_name = "AES-128-CBC-ESSIV",
32 		.cipher_str = "essiv(cbc(aes),sha256)",
33 		.keysize = 16,
34 		.ivsize = 16,
35 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
36 	},
37 	[FSCRYPT_MODE_AES_128_CTS] = {
38 		.friendly_name = "AES-128-CTS-CBC",
39 		.cipher_str = "cts(cbc(aes))",
40 		.keysize = 16,
41 		.ivsize = 16,
42 	},
43 	[FSCRYPT_MODE_ADIANTUM] = {
44 		.friendly_name = "Adiantum",
45 		.cipher_str = "adiantum(xchacha12,aes)",
46 		.keysize = 32,
47 		.ivsize = 32,
48 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
49 	},
50 };
51 
52 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
53 
54 static struct fscrypt_mode *
55 select_encryption_mode(const union fscrypt_policy *policy,
56 		       const struct inode *inode)
57 {
58 	if (S_ISREG(inode->i_mode))
59 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
60 
61 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
62 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
63 
64 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
65 		  inode->i_ino, (inode->i_mode & S_IFMT));
66 	return ERR_PTR(-EINVAL);
67 }
68 
69 /* Create a symmetric cipher object for the given encryption mode and key */
70 static struct crypto_skcipher *
71 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
72 			  const struct inode *inode)
73 {
74 	struct crypto_skcipher *tfm;
75 	int err;
76 
77 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
78 	if (IS_ERR(tfm)) {
79 		if (PTR_ERR(tfm) == -ENOENT) {
80 			fscrypt_warn(inode,
81 				     "Missing crypto API support for %s (API name: \"%s\")",
82 				     mode->friendly_name, mode->cipher_str);
83 			return ERR_PTR(-ENOPKG);
84 		}
85 		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
86 			    mode->cipher_str, PTR_ERR(tfm));
87 		return tfm;
88 	}
89 	if (!xchg(&mode->logged_impl_name, 1)) {
90 		/*
91 		 * fscrypt performance can vary greatly depending on which
92 		 * crypto algorithm implementation is used.  Help people debug
93 		 * performance problems by logging the ->cra_driver_name the
94 		 * first time a mode is used.
95 		 */
96 		pr_info("fscrypt: %s using implementation \"%s\"\n",
97 			mode->friendly_name, crypto_skcipher_driver_name(tfm));
98 	}
99 	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
100 		err = -EINVAL;
101 		goto err_free_tfm;
102 	}
103 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
104 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
105 	if (err)
106 		goto err_free_tfm;
107 
108 	return tfm;
109 
110 err_free_tfm:
111 	crypto_free_skcipher(tfm);
112 	return ERR_PTR(err);
113 }
114 
115 /*
116  * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
117  * raw key, encryption mode, and flag indicating which encryption implementation
118  * (fs-layer or blk-crypto) will be used.
119  */
120 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
121 			const u8 *raw_key, const struct fscrypt_info *ci)
122 {
123 	struct crypto_skcipher *tfm;
124 
125 	if (fscrypt_using_inline_encryption(ci))
126 		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
127 
128 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
129 	if (IS_ERR(tfm))
130 		return PTR_ERR(tfm);
131 	/*
132 	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
133 	 * I.e., here we publish ->tfm with a RELEASE barrier so that
134 	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
135 	 * possible for per-mode keys, not for per-file keys.
136 	 */
137 	smp_store_release(&prep_key->tfm, tfm);
138 	return 0;
139 }
140 
141 /* Destroy a crypto transform object and/or blk-crypto key. */
142 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
143 {
144 	crypto_free_skcipher(prep_key->tfm);
145 	fscrypt_destroy_inline_crypt_key(prep_key);
146 }
147 
148 /* Given a per-file encryption key, set up the file's crypto transform object */
149 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
150 {
151 	ci->ci_owns_key = true;
152 	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
153 }
154 
155 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
156 				  struct fscrypt_master_key *mk,
157 				  struct fscrypt_prepared_key *keys,
158 				  u8 hkdf_context, bool include_fs_uuid)
159 {
160 	const struct inode *inode = ci->ci_inode;
161 	const struct super_block *sb = inode->i_sb;
162 	struct fscrypt_mode *mode = ci->ci_mode;
163 	const u8 mode_num = mode - fscrypt_modes;
164 	struct fscrypt_prepared_key *prep_key;
165 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
166 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
167 	unsigned int hkdf_infolen = 0;
168 	int err;
169 
170 	if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX))
171 		return -EINVAL;
172 
173 	prep_key = &keys[mode_num];
174 	if (fscrypt_is_key_prepared(prep_key, ci)) {
175 		ci->ci_enc_key = *prep_key;
176 		return 0;
177 	}
178 
179 	mutex_lock(&fscrypt_mode_key_setup_mutex);
180 
181 	if (fscrypt_is_key_prepared(prep_key, ci))
182 		goto done_unlock;
183 
184 	BUILD_BUG_ON(sizeof(mode_num) != 1);
185 	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
186 	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
187 	hkdf_info[hkdf_infolen++] = mode_num;
188 	if (include_fs_uuid) {
189 		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
190 		       sizeof(sb->s_uuid));
191 		hkdf_infolen += sizeof(sb->s_uuid);
192 	}
193 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
194 				  hkdf_context, hkdf_info, hkdf_infolen,
195 				  mode_key, mode->keysize);
196 	if (err)
197 		goto out_unlock;
198 	err = fscrypt_prepare_key(prep_key, mode_key, ci);
199 	memzero_explicit(mode_key, mode->keysize);
200 	if (err)
201 		goto out_unlock;
202 done_unlock:
203 	ci->ci_enc_key = *prep_key;
204 	err = 0;
205 out_unlock:
206 	mutex_unlock(&fscrypt_mode_key_setup_mutex);
207 	return err;
208 }
209 
210 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
211 			       const struct fscrypt_master_key *mk)
212 {
213 	int err;
214 
215 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY,
216 				  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
217 				  (u8 *)&ci->ci_dirhash_key,
218 				  sizeof(ci->ci_dirhash_key));
219 	if (err)
220 		return err;
221 	ci->ci_dirhash_key_initialized = true;
222 	return 0;
223 }
224 
225 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
226 					    struct fscrypt_master_key *mk)
227 {
228 	int err;
229 
230 	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
231 				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
232 	if (err)
233 		return err;
234 
235 	/* pairs with smp_store_release() below */
236 	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
237 
238 		mutex_lock(&fscrypt_mode_key_setup_mutex);
239 
240 		if (mk->mk_ino_hash_key_initialized)
241 			goto unlock;
242 
243 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
244 					  HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0,
245 					  (u8 *)&mk->mk_ino_hash_key,
246 					  sizeof(mk->mk_ino_hash_key));
247 		if (err)
248 			goto unlock;
249 		/* pairs with smp_load_acquire() above */
250 		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
251 unlock:
252 		mutex_unlock(&fscrypt_mode_key_setup_mutex);
253 		if (err)
254 			return err;
255 	}
256 
257 	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
258 					      &mk->mk_ino_hash_key);
259 	return 0;
260 }
261 
262 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
263 				     struct fscrypt_master_key *mk)
264 {
265 	int err;
266 
267 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
268 		/*
269 		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
270 		 * per-file nonce will be included in all the IVs.  But unlike
271 		 * v1 policies, for v2 policies in this case we don't encrypt
272 		 * with the master key directly but rather derive a per-mode
273 		 * encryption key.  This ensures that the master key is
274 		 * consistently used only for HKDF, avoiding key reuse issues.
275 		 */
276 		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
277 					     HKDF_CONTEXT_DIRECT_KEY, false);
278 	} else if (ci->ci_policy.v2.flags &
279 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
280 		/*
281 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
282 		 * mode_num, filesystem_uuid), and inode number is included in
283 		 * the IVs.  This format is optimized for use with inline
284 		 * encryption hardware compliant with the UFS standard.
285 		 */
286 		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
287 					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
288 					     true);
289 	} else if (ci->ci_policy.v2.flags &
290 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
291 		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
292 	} else {
293 		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
294 
295 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
296 					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
297 					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
298 					  derived_key, ci->ci_mode->keysize);
299 		if (err)
300 			return err;
301 
302 		err = fscrypt_set_per_file_enc_key(ci, derived_key);
303 		memzero_explicit(derived_key, ci->ci_mode->keysize);
304 	}
305 	if (err)
306 		return err;
307 
308 	/* Derive a secret dirhash key for directories that need it. */
309 	if (S_ISDIR(ci->ci_inode->i_mode) && IS_CASEFOLDED(ci->ci_inode)) {
310 		err = fscrypt_derive_dirhash_key(ci, mk);
311 		if (err)
312 			return err;
313 	}
314 
315 	return 0;
316 }
317 
318 /*
319  * Find the master key, then set up the inode's actual encryption key.
320  *
321  * If the master key is found in the filesystem-level keyring, then the
322  * corresponding 'struct key' is returned in *master_key_ret with
323  * ->mk_secret_sem read-locked.  This is needed to ensure that only one task
324  * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
325  * to create an fscrypt_info for the same inode), and to synchronize the master
326  * key being removed with a new inode starting to use it.
327  */
328 static int setup_file_encryption_key(struct fscrypt_info *ci,
329 				     struct key **master_key_ret)
330 {
331 	struct key *key;
332 	struct fscrypt_master_key *mk = NULL;
333 	struct fscrypt_key_specifier mk_spec;
334 	int err;
335 
336 	err = fscrypt_select_encryption_impl(ci);
337 	if (err)
338 		return err;
339 
340 	switch (ci->ci_policy.version) {
341 	case FSCRYPT_POLICY_V1:
342 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
343 		memcpy(mk_spec.u.descriptor,
344 		       ci->ci_policy.v1.master_key_descriptor,
345 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
346 		break;
347 	case FSCRYPT_POLICY_V2:
348 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
349 		memcpy(mk_spec.u.identifier,
350 		       ci->ci_policy.v2.master_key_identifier,
351 		       FSCRYPT_KEY_IDENTIFIER_SIZE);
352 		break;
353 	default:
354 		WARN_ON(1);
355 		return -EINVAL;
356 	}
357 
358 	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
359 	if (IS_ERR(key)) {
360 		if (key != ERR_PTR(-ENOKEY) ||
361 		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
362 			return PTR_ERR(key);
363 
364 		/*
365 		 * As a legacy fallback for v1 policies, search for the key in
366 		 * the current task's subscribed keyrings too.  Don't move this
367 		 * to before the search of ->s_master_keys, since users
368 		 * shouldn't be able to override filesystem-level keys.
369 		 */
370 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
371 	}
372 
373 	mk = key->payload.data[0];
374 	down_read(&mk->mk_secret_sem);
375 
376 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
377 	if (!is_master_key_secret_present(&mk->mk_secret)) {
378 		err = -ENOKEY;
379 		goto out_release_key;
380 	}
381 
382 	/*
383 	 * Require that the master key be at least as long as the derived key.
384 	 * Otherwise, the derived key cannot possibly contain as much entropy as
385 	 * that required by the encryption mode it will be used for.  For v1
386 	 * policies it's also required for the KDF to work at all.
387 	 */
388 	if (mk->mk_secret.size < ci->ci_mode->keysize) {
389 		fscrypt_warn(NULL,
390 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
391 			     master_key_spec_type(&mk_spec),
392 			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
393 			     mk->mk_secret.size, ci->ci_mode->keysize);
394 		err = -ENOKEY;
395 		goto out_release_key;
396 	}
397 
398 	switch (ci->ci_policy.version) {
399 	case FSCRYPT_POLICY_V1:
400 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
401 		break;
402 	case FSCRYPT_POLICY_V2:
403 		err = fscrypt_setup_v2_file_key(ci, mk);
404 		break;
405 	default:
406 		WARN_ON(1);
407 		err = -EINVAL;
408 		break;
409 	}
410 	if (err)
411 		goto out_release_key;
412 
413 	*master_key_ret = key;
414 	return 0;
415 
416 out_release_key:
417 	up_read(&mk->mk_secret_sem);
418 	key_put(key);
419 	return err;
420 }
421 
422 static void put_crypt_info(struct fscrypt_info *ci)
423 {
424 	struct key *key;
425 
426 	if (!ci)
427 		return;
428 
429 	if (ci->ci_direct_key)
430 		fscrypt_put_direct_key(ci->ci_direct_key);
431 	else if (ci->ci_owns_key)
432 		fscrypt_destroy_prepared_key(&ci->ci_enc_key);
433 
434 	key = ci->ci_master_key;
435 	if (key) {
436 		struct fscrypt_master_key *mk = key->payload.data[0];
437 
438 		/*
439 		 * Remove this inode from the list of inodes that were unlocked
440 		 * with the master key.
441 		 *
442 		 * In addition, if we're removing the last inode from a key that
443 		 * already had its secret removed, invalidate the key so that it
444 		 * gets removed from ->s_master_keys.
445 		 */
446 		spin_lock(&mk->mk_decrypted_inodes_lock);
447 		list_del(&ci->ci_master_key_link);
448 		spin_unlock(&mk->mk_decrypted_inodes_lock);
449 		if (refcount_dec_and_test(&mk->mk_refcount))
450 			key_invalidate(key);
451 		key_put(key);
452 	}
453 	memzero_explicit(ci, sizeof(*ci));
454 	kmem_cache_free(fscrypt_info_cachep, ci);
455 }
456 
457 int fscrypt_get_encryption_info(struct inode *inode)
458 {
459 	struct fscrypt_info *crypt_info;
460 	union fscrypt_context ctx;
461 	struct fscrypt_mode *mode;
462 	struct key *master_key = NULL;
463 	int res;
464 
465 	if (fscrypt_has_encryption_key(inode))
466 		return 0;
467 
468 	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
469 	if (res)
470 		return res;
471 
472 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
473 	if (res < 0) {
474 		const union fscrypt_context *dummy_ctx =
475 			fscrypt_get_dummy_context(inode->i_sb);
476 
477 		if (IS_ENCRYPTED(inode) || !dummy_ctx) {
478 			fscrypt_warn(inode,
479 				     "Error %d getting encryption context",
480 				     res);
481 			return res;
482 		}
483 		/* Fake up a context for an unencrypted directory */
484 		res = fscrypt_context_size(dummy_ctx);
485 		memcpy(&ctx, dummy_ctx, res);
486 	}
487 
488 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
489 	if (!crypt_info)
490 		return -ENOMEM;
491 
492 	crypt_info->ci_inode = inode;
493 
494 	res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
495 	if (res) {
496 		fscrypt_warn(inode,
497 			     "Unrecognized or corrupt encryption context");
498 		goto out;
499 	}
500 
501 	memcpy(crypt_info->ci_nonce, fscrypt_context_nonce(&ctx),
502 	       FSCRYPT_FILE_NONCE_SIZE);
503 
504 	if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
505 		res = -EINVAL;
506 		goto out;
507 	}
508 
509 	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
510 	if (IS_ERR(mode)) {
511 		res = PTR_ERR(mode);
512 		goto out;
513 	}
514 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
515 	crypt_info->ci_mode = mode;
516 
517 	res = setup_file_encryption_key(crypt_info, &master_key);
518 	if (res)
519 		goto out;
520 
521 	/*
522 	 * Multiple tasks may race to set ->i_crypt_info, so use
523 	 * cmpxchg_release().  This pairs with the smp_load_acquire() in
524 	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
525 	 * RELEASE barrier so that other tasks can ACQUIRE it.
526 	 */
527 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
528 		/*
529 		 * We won the race and set ->i_crypt_info to our crypt_info.
530 		 * Now link it into the master key's inode list.
531 		 */
532 		if (master_key) {
533 			struct fscrypt_master_key *mk =
534 				master_key->payload.data[0];
535 
536 			refcount_inc(&mk->mk_refcount);
537 			crypt_info->ci_master_key = key_get(master_key);
538 			spin_lock(&mk->mk_decrypted_inodes_lock);
539 			list_add(&crypt_info->ci_master_key_link,
540 				 &mk->mk_decrypted_inodes);
541 			spin_unlock(&mk->mk_decrypted_inodes_lock);
542 		}
543 		crypt_info = NULL;
544 	}
545 	res = 0;
546 out:
547 	if (master_key) {
548 		struct fscrypt_master_key *mk = master_key->payload.data[0];
549 
550 		up_read(&mk->mk_secret_sem);
551 		key_put(master_key);
552 	}
553 	if (res == -ENOKEY)
554 		res = 0;
555 	put_crypt_info(crypt_info);
556 	return res;
557 }
558 EXPORT_SYMBOL(fscrypt_get_encryption_info);
559 
560 /**
561  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
562  * @inode: an inode being evicted
563  *
564  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
565  * being evicted.  An RCU grace period need not have elapsed yet.
566  */
567 void fscrypt_put_encryption_info(struct inode *inode)
568 {
569 	put_crypt_info(inode->i_crypt_info);
570 	inode->i_crypt_info = NULL;
571 }
572 EXPORT_SYMBOL(fscrypt_put_encryption_info);
573 
574 /**
575  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
576  * @inode: an inode being freed
577  *
578  * Free the inode's cached decrypted symlink target, if any.  Filesystems must
579  * call this after an RCU grace period, just before they free the inode.
580  */
581 void fscrypt_free_inode(struct inode *inode)
582 {
583 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
584 		kfree(inode->i_link);
585 		inode->i_link = NULL;
586 	}
587 }
588 EXPORT_SYMBOL(fscrypt_free_inode);
589 
590 /**
591  * fscrypt_drop_inode() - check whether the inode's master key has been removed
592  * @inode: an inode being considered for eviction
593  *
594  * Filesystems supporting fscrypt must call this from their ->drop_inode()
595  * method so that encrypted inodes are evicted as soon as they're no longer in
596  * use and their master key has been removed.
597  *
598  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
599  */
600 int fscrypt_drop_inode(struct inode *inode)
601 {
602 	const struct fscrypt_info *ci = fscrypt_get_info(inode);
603 	const struct fscrypt_master_key *mk;
604 
605 	/*
606 	 * If ci is NULL, then the inode doesn't have an encryption key set up
607 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
608 	 * was provided via the legacy mechanism of the process-subscribed
609 	 * keyrings, so we don't know whether it's been removed or not.
610 	 */
611 	if (!ci || !ci->ci_master_key)
612 		return 0;
613 	mk = ci->ci_master_key->payload.data[0];
614 
615 	/*
616 	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
617 	 * protected by the key were cleaned by sync_filesystem().  But if
618 	 * userspace is still using the files, inodes can be dirtied between
619 	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
620 	 */
621 	if (inode->i_state & I_DIRTY_ALL)
622 		return 0;
623 
624 	/*
625 	 * Note: since we aren't holding ->mk_secret_sem, the result here can
626 	 * immediately become outdated.  But there's no correctness problem with
627 	 * unnecessarily evicting.  Nor is there a correctness problem with not
628 	 * evicting while iput() is racing with the key being removed, since
629 	 * then the thread removing the key will either evict the inode itself
630 	 * or will correctly detect that it wasn't evicted due to the race.
631 	 */
632 	return !is_master_key_secret_present(&mk->mk_secret);
633 }
634 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
635