xref: /openbmc/linux/fs/crypto/keysetup.c (revision c88773dc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup facility for FS encryption support.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #include <crypto/skcipher.h>
12 #include <linux/key.h>
13 #include <linux/random.h>
14 
15 #include "fscrypt_private.h"
16 
17 struct fscrypt_mode fscrypt_modes[] = {
18 	[FSCRYPT_MODE_AES_256_XTS] = {
19 		.friendly_name = "AES-256-XTS",
20 		.cipher_str = "xts(aes)",
21 		.keysize = 64,
22 		.ivsize = 16,
23 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
24 	},
25 	[FSCRYPT_MODE_AES_256_CTS] = {
26 		.friendly_name = "AES-256-CTS-CBC",
27 		.cipher_str = "cts(cbc(aes))",
28 		.keysize = 32,
29 		.ivsize = 16,
30 	},
31 	[FSCRYPT_MODE_AES_128_CBC] = {
32 		.friendly_name = "AES-128-CBC-ESSIV",
33 		.cipher_str = "essiv(cbc(aes),sha256)",
34 		.keysize = 16,
35 		.ivsize = 16,
36 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
37 	},
38 	[FSCRYPT_MODE_AES_128_CTS] = {
39 		.friendly_name = "AES-128-CTS-CBC",
40 		.cipher_str = "cts(cbc(aes))",
41 		.keysize = 16,
42 		.ivsize = 16,
43 	},
44 	[FSCRYPT_MODE_ADIANTUM] = {
45 		.friendly_name = "Adiantum",
46 		.cipher_str = "adiantum(xchacha12,aes)",
47 		.keysize = 32,
48 		.ivsize = 32,
49 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
50 	},
51 };
52 
53 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
54 
55 static struct fscrypt_mode *
56 select_encryption_mode(const union fscrypt_policy *policy,
57 		       const struct inode *inode)
58 {
59 	if (S_ISREG(inode->i_mode))
60 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
61 
62 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
63 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
64 
65 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
66 		  inode->i_ino, (inode->i_mode & S_IFMT));
67 	return ERR_PTR(-EINVAL);
68 }
69 
70 /* Create a symmetric cipher object for the given encryption mode and key */
71 static struct crypto_skcipher *
72 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
73 			  const struct inode *inode)
74 {
75 	struct crypto_skcipher *tfm;
76 	int err;
77 
78 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
79 	if (IS_ERR(tfm)) {
80 		if (PTR_ERR(tfm) == -ENOENT) {
81 			fscrypt_warn(inode,
82 				     "Missing crypto API support for %s (API name: \"%s\")",
83 				     mode->friendly_name, mode->cipher_str);
84 			return ERR_PTR(-ENOPKG);
85 		}
86 		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
87 			    mode->cipher_str, PTR_ERR(tfm));
88 		return tfm;
89 	}
90 	if (!xchg(&mode->logged_impl_name, 1)) {
91 		/*
92 		 * fscrypt performance can vary greatly depending on which
93 		 * crypto algorithm implementation is used.  Help people debug
94 		 * performance problems by logging the ->cra_driver_name the
95 		 * first time a mode is used.
96 		 */
97 		pr_info("fscrypt: %s using implementation \"%s\"\n",
98 			mode->friendly_name, crypto_skcipher_driver_name(tfm));
99 	}
100 	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
101 		err = -EINVAL;
102 		goto err_free_tfm;
103 	}
104 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
105 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
106 	if (err)
107 		goto err_free_tfm;
108 
109 	return tfm;
110 
111 err_free_tfm:
112 	crypto_free_skcipher(tfm);
113 	return ERR_PTR(err);
114 }
115 
116 /*
117  * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
118  * raw key, encryption mode, and flag indicating which encryption implementation
119  * (fs-layer or blk-crypto) will be used.
120  */
121 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
122 			const u8 *raw_key, const struct fscrypt_info *ci)
123 {
124 	struct crypto_skcipher *tfm;
125 
126 	if (fscrypt_using_inline_encryption(ci))
127 		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
128 
129 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
130 	if (IS_ERR(tfm))
131 		return PTR_ERR(tfm);
132 	/*
133 	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
134 	 * I.e., here we publish ->tfm with a RELEASE barrier so that
135 	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
136 	 * possible for per-mode keys, not for per-file keys.
137 	 */
138 	smp_store_release(&prep_key->tfm, tfm);
139 	return 0;
140 }
141 
142 /* Destroy a crypto transform object and/or blk-crypto key. */
143 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
144 {
145 	crypto_free_skcipher(prep_key->tfm);
146 	fscrypt_destroy_inline_crypt_key(prep_key);
147 }
148 
149 /* Given a per-file encryption key, set up the file's crypto transform object */
150 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
151 {
152 	ci->ci_owns_key = true;
153 	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
154 }
155 
156 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
157 				  struct fscrypt_master_key *mk,
158 				  struct fscrypt_prepared_key *keys,
159 				  u8 hkdf_context, bool include_fs_uuid)
160 {
161 	const struct inode *inode = ci->ci_inode;
162 	const struct super_block *sb = inode->i_sb;
163 	struct fscrypt_mode *mode = ci->ci_mode;
164 	const u8 mode_num = mode - fscrypt_modes;
165 	struct fscrypt_prepared_key *prep_key;
166 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
167 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
168 	unsigned int hkdf_infolen = 0;
169 	int err;
170 
171 	if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX))
172 		return -EINVAL;
173 
174 	prep_key = &keys[mode_num];
175 	if (fscrypt_is_key_prepared(prep_key, ci)) {
176 		ci->ci_enc_key = *prep_key;
177 		return 0;
178 	}
179 
180 	mutex_lock(&fscrypt_mode_key_setup_mutex);
181 
182 	if (fscrypt_is_key_prepared(prep_key, ci))
183 		goto done_unlock;
184 
185 	BUILD_BUG_ON(sizeof(mode_num) != 1);
186 	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
187 	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
188 	hkdf_info[hkdf_infolen++] = mode_num;
189 	if (include_fs_uuid) {
190 		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
191 		       sizeof(sb->s_uuid));
192 		hkdf_infolen += sizeof(sb->s_uuid);
193 	}
194 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
195 				  hkdf_context, hkdf_info, hkdf_infolen,
196 				  mode_key, mode->keysize);
197 	if (err)
198 		goto out_unlock;
199 	err = fscrypt_prepare_key(prep_key, mode_key, ci);
200 	memzero_explicit(mode_key, mode->keysize);
201 	if (err)
202 		goto out_unlock;
203 done_unlock:
204 	ci->ci_enc_key = *prep_key;
205 	err = 0;
206 out_unlock:
207 	mutex_unlock(&fscrypt_mode_key_setup_mutex);
208 	return err;
209 }
210 
211 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
212 			       const struct fscrypt_master_key *mk)
213 {
214 	int err;
215 
216 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY,
217 				  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
218 				  (u8 *)&ci->ci_dirhash_key,
219 				  sizeof(ci->ci_dirhash_key));
220 	if (err)
221 		return err;
222 	ci->ci_dirhash_key_initialized = true;
223 	return 0;
224 }
225 
226 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
227 			       const struct fscrypt_master_key *mk)
228 {
229 	WARN_ON(ci->ci_inode->i_ino == 0);
230 	WARN_ON(!mk->mk_ino_hash_key_initialized);
231 
232 	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
233 					      &mk->mk_ino_hash_key);
234 }
235 
236 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
237 					    struct fscrypt_master_key *mk)
238 {
239 	int err;
240 
241 	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
242 				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
243 	if (err)
244 		return err;
245 
246 	/* pairs with smp_store_release() below */
247 	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
248 
249 		mutex_lock(&fscrypt_mode_key_setup_mutex);
250 
251 		if (mk->mk_ino_hash_key_initialized)
252 			goto unlock;
253 
254 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
255 					  HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0,
256 					  (u8 *)&mk->mk_ino_hash_key,
257 					  sizeof(mk->mk_ino_hash_key));
258 		if (err)
259 			goto unlock;
260 		/* pairs with smp_load_acquire() above */
261 		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
262 unlock:
263 		mutex_unlock(&fscrypt_mode_key_setup_mutex);
264 		if (err)
265 			return err;
266 	}
267 
268 	/*
269 	 * New inodes may not have an inode number assigned yet.
270 	 * Hashing their inode number is delayed until later.
271 	 */
272 	if (ci->ci_inode->i_ino == 0)
273 		WARN_ON(!(ci->ci_inode->i_state & I_CREATING));
274 	else
275 		fscrypt_hash_inode_number(ci, mk);
276 	return 0;
277 }
278 
279 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
280 				     struct fscrypt_master_key *mk,
281 				     bool need_dirhash_key)
282 {
283 	int err;
284 
285 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
286 		/*
287 		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
288 		 * per-file nonce will be included in all the IVs.  But unlike
289 		 * v1 policies, for v2 policies in this case we don't encrypt
290 		 * with the master key directly but rather derive a per-mode
291 		 * encryption key.  This ensures that the master key is
292 		 * consistently used only for HKDF, avoiding key reuse issues.
293 		 */
294 		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
295 					     HKDF_CONTEXT_DIRECT_KEY, false);
296 	} else if (ci->ci_policy.v2.flags &
297 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
298 		/*
299 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
300 		 * mode_num, filesystem_uuid), and inode number is included in
301 		 * the IVs.  This format is optimized for use with inline
302 		 * encryption hardware compliant with the UFS standard.
303 		 */
304 		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
305 					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
306 					     true);
307 	} else if (ci->ci_policy.v2.flags &
308 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
309 		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
310 	} else {
311 		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
312 
313 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
314 					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
315 					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
316 					  derived_key, ci->ci_mode->keysize);
317 		if (err)
318 			return err;
319 
320 		err = fscrypt_set_per_file_enc_key(ci, derived_key);
321 		memzero_explicit(derived_key, ci->ci_mode->keysize);
322 	}
323 	if (err)
324 		return err;
325 
326 	/* Derive a secret dirhash key for directories that need it. */
327 	if (need_dirhash_key) {
328 		err = fscrypt_derive_dirhash_key(ci, mk);
329 		if (err)
330 			return err;
331 	}
332 
333 	return 0;
334 }
335 
336 /*
337  * Find the master key, then set up the inode's actual encryption key.
338  *
339  * If the master key is found in the filesystem-level keyring, then the
340  * corresponding 'struct key' is returned in *master_key_ret with
341  * ->mk_secret_sem read-locked.  This is needed to ensure that only one task
342  * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
343  * to create an fscrypt_info for the same inode), and to synchronize the master
344  * key being removed with a new inode starting to use it.
345  */
346 static int setup_file_encryption_key(struct fscrypt_info *ci,
347 				     bool need_dirhash_key,
348 				     struct key **master_key_ret)
349 {
350 	struct key *key;
351 	struct fscrypt_master_key *mk = NULL;
352 	struct fscrypt_key_specifier mk_spec;
353 	int err;
354 
355 	err = fscrypt_select_encryption_impl(ci);
356 	if (err)
357 		return err;
358 
359 	switch (ci->ci_policy.version) {
360 	case FSCRYPT_POLICY_V1:
361 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
362 		memcpy(mk_spec.u.descriptor,
363 		       ci->ci_policy.v1.master_key_descriptor,
364 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
365 		break;
366 	case FSCRYPT_POLICY_V2:
367 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
368 		memcpy(mk_spec.u.identifier,
369 		       ci->ci_policy.v2.master_key_identifier,
370 		       FSCRYPT_KEY_IDENTIFIER_SIZE);
371 		break;
372 	default:
373 		WARN_ON(1);
374 		return -EINVAL;
375 	}
376 
377 	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
378 	if (IS_ERR(key)) {
379 		if (key != ERR_PTR(-ENOKEY) ||
380 		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
381 			return PTR_ERR(key);
382 
383 		/*
384 		 * As a legacy fallback for v1 policies, search for the key in
385 		 * the current task's subscribed keyrings too.  Don't move this
386 		 * to before the search of ->s_master_keys, since users
387 		 * shouldn't be able to override filesystem-level keys.
388 		 */
389 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
390 	}
391 
392 	mk = key->payload.data[0];
393 	down_read(&mk->mk_secret_sem);
394 
395 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
396 	if (!is_master_key_secret_present(&mk->mk_secret)) {
397 		err = -ENOKEY;
398 		goto out_release_key;
399 	}
400 
401 	/*
402 	 * Require that the master key be at least as long as the derived key.
403 	 * Otherwise, the derived key cannot possibly contain as much entropy as
404 	 * that required by the encryption mode it will be used for.  For v1
405 	 * policies it's also required for the KDF to work at all.
406 	 */
407 	if (mk->mk_secret.size < ci->ci_mode->keysize) {
408 		fscrypt_warn(NULL,
409 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
410 			     master_key_spec_type(&mk_spec),
411 			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
412 			     mk->mk_secret.size, ci->ci_mode->keysize);
413 		err = -ENOKEY;
414 		goto out_release_key;
415 	}
416 
417 	switch (ci->ci_policy.version) {
418 	case FSCRYPT_POLICY_V1:
419 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
420 		break;
421 	case FSCRYPT_POLICY_V2:
422 		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
423 		break;
424 	default:
425 		WARN_ON(1);
426 		err = -EINVAL;
427 		break;
428 	}
429 	if (err)
430 		goto out_release_key;
431 
432 	*master_key_ret = key;
433 	return 0;
434 
435 out_release_key:
436 	up_read(&mk->mk_secret_sem);
437 	key_put(key);
438 	return err;
439 }
440 
441 static void put_crypt_info(struct fscrypt_info *ci)
442 {
443 	struct key *key;
444 
445 	if (!ci)
446 		return;
447 
448 	if (ci->ci_direct_key)
449 		fscrypt_put_direct_key(ci->ci_direct_key);
450 	else if (ci->ci_owns_key)
451 		fscrypt_destroy_prepared_key(&ci->ci_enc_key);
452 
453 	key = ci->ci_master_key;
454 	if (key) {
455 		struct fscrypt_master_key *mk = key->payload.data[0];
456 
457 		/*
458 		 * Remove this inode from the list of inodes that were unlocked
459 		 * with the master key.
460 		 *
461 		 * In addition, if we're removing the last inode from a key that
462 		 * already had its secret removed, invalidate the key so that it
463 		 * gets removed from ->s_master_keys.
464 		 */
465 		spin_lock(&mk->mk_decrypted_inodes_lock);
466 		list_del(&ci->ci_master_key_link);
467 		spin_unlock(&mk->mk_decrypted_inodes_lock);
468 		if (refcount_dec_and_test(&mk->mk_refcount))
469 			key_invalidate(key);
470 		key_put(key);
471 	}
472 	memzero_explicit(ci, sizeof(*ci));
473 	kmem_cache_free(fscrypt_info_cachep, ci);
474 }
475 
476 static int
477 fscrypt_setup_encryption_info(struct inode *inode,
478 			      const union fscrypt_policy *policy,
479 			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
480 			      bool need_dirhash_key)
481 {
482 	struct fscrypt_info *crypt_info;
483 	struct fscrypt_mode *mode;
484 	struct key *master_key = NULL;
485 	int res;
486 
487 	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
488 	if (res)
489 		return res;
490 
491 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
492 	if (!crypt_info)
493 		return -ENOMEM;
494 
495 	crypt_info->ci_inode = inode;
496 	crypt_info->ci_policy = *policy;
497 	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
498 
499 	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
500 	if (IS_ERR(mode)) {
501 		res = PTR_ERR(mode);
502 		goto out;
503 	}
504 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
505 	crypt_info->ci_mode = mode;
506 
507 	res = setup_file_encryption_key(crypt_info, need_dirhash_key,
508 					&master_key);
509 	if (res)
510 		goto out;
511 
512 	/*
513 	 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
514 	 * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
515 	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
516 	 * RELEASE barrier so that other tasks can ACQUIRE it.
517 	 */
518 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
519 		/*
520 		 * We won the race and set ->i_crypt_info to our crypt_info.
521 		 * Now link it into the master key's inode list.
522 		 */
523 		if (master_key) {
524 			struct fscrypt_master_key *mk =
525 				master_key->payload.data[0];
526 
527 			refcount_inc(&mk->mk_refcount);
528 			crypt_info->ci_master_key = key_get(master_key);
529 			spin_lock(&mk->mk_decrypted_inodes_lock);
530 			list_add(&crypt_info->ci_master_key_link,
531 				 &mk->mk_decrypted_inodes);
532 			spin_unlock(&mk->mk_decrypted_inodes_lock);
533 		}
534 		crypt_info = NULL;
535 	}
536 	res = 0;
537 out:
538 	if (master_key) {
539 		struct fscrypt_master_key *mk = master_key->payload.data[0];
540 
541 		up_read(&mk->mk_secret_sem);
542 		key_put(master_key);
543 	}
544 	put_crypt_info(crypt_info);
545 	return res;
546 }
547 
548 /**
549  * fscrypt_get_encryption_info() - set up an inode's encryption key
550  * @inode: the inode to set up the key for.  Must be encrypted.
551  *
552  * Set up ->i_crypt_info, if it hasn't already been done.
553  *
554  * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
555  * generally this shouldn't be called from within a filesystem transaction.
556  *
557  * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
558  *	   encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
559  *	   distinguish these cases.)  Also can return another -errno code.
560  */
561 int fscrypt_get_encryption_info(struct inode *inode)
562 {
563 	int res;
564 	union fscrypt_context ctx;
565 	union fscrypt_policy policy;
566 
567 	if (fscrypt_has_encryption_key(inode))
568 		return 0;
569 
570 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
571 	if (res < 0) {
572 		fscrypt_warn(inode, "Error %d getting encryption context", res);
573 		return res;
574 	}
575 
576 	res = fscrypt_policy_from_context(&policy, &ctx, res);
577 	if (res) {
578 		fscrypt_warn(inode,
579 			     "Unrecognized or corrupt encryption context");
580 		return res;
581 	}
582 
583 	if (!fscrypt_supported_policy(&policy, inode))
584 		return -EINVAL;
585 
586 	res = fscrypt_setup_encryption_info(inode, &policy,
587 					    fscrypt_context_nonce(&ctx),
588 					    IS_CASEFOLDED(inode) &&
589 					    S_ISDIR(inode->i_mode));
590 	if (res == -ENOKEY)
591 		res = 0;
592 	return res;
593 }
594 EXPORT_SYMBOL(fscrypt_get_encryption_info);
595 
596 /**
597  * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
598  * @dir: a possibly-encrypted directory
599  * @inode: the new inode.  ->i_mode must be set already.
600  *	   ->i_ino doesn't need to be set yet.
601  * @encrypt_ret: (output) set to %true if the new inode will be encrypted
602  *
603  * If the directory is encrypted, set up its ->i_crypt_info in preparation for
604  * encrypting the name of the new file.  Also, if the new inode will be
605  * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
606  *
607  * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
608  * any filesystem transaction to create the inode.  For this reason, ->i_ino
609  * isn't required to be set yet, as the filesystem may not have set it yet.
610  *
611  * This doesn't persist the new inode's encryption context.  That still needs to
612  * be done later by calling fscrypt_set_context().
613  *
614  * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
615  *	   -errno code
616  */
617 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
618 			      bool *encrypt_ret)
619 {
620 	const union fscrypt_policy *policy;
621 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
622 
623 	policy = fscrypt_policy_to_inherit(dir);
624 	if (policy == NULL)
625 		return 0;
626 	if (IS_ERR(policy))
627 		return PTR_ERR(policy);
628 
629 	if (WARN_ON_ONCE(inode->i_mode == 0))
630 		return -EINVAL;
631 
632 	/*
633 	 * Only regular files, directories, and symlinks are encrypted.
634 	 * Special files like device nodes and named pipes aren't.
635 	 */
636 	if (!S_ISREG(inode->i_mode) &&
637 	    !S_ISDIR(inode->i_mode) &&
638 	    !S_ISLNK(inode->i_mode))
639 		return 0;
640 
641 	*encrypt_ret = true;
642 
643 	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
644 	return fscrypt_setup_encryption_info(inode, policy, nonce,
645 					     IS_CASEFOLDED(dir) &&
646 					     S_ISDIR(inode->i_mode));
647 }
648 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
649 
650 /**
651  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
652  * @inode: an inode being evicted
653  *
654  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
655  * being evicted.  An RCU grace period need not have elapsed yet.
656  */
657 void fscrypt_put_encryption_info(struct inode *inode)
658 {
659 	put_crypt_info(inode->i_crypt_info);
660 	inode->i_crypt_info = NULL;
661 }
662 EXPORT_SYMBOL(fscrypt_put_encryption_info);
663 
664 /**
665  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
666  * @inode: an inode being freed
667  *
668  * Free the inode's cached decrypted symlink target, if any.  Filesystems must
669  * call this after an RCU grace period, just before they free the inode.
670  */
671 void fscrypt_free_inode(struct inode *inode)
672 {
673 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
674 		kfree(inode->i_link);
675 		inode->i_link = NULL;
676 	}
677 }
678 EXPORT_SYMBOL(fscrypt_free_inode);
679 
680 /**
681  * fscrypt_drop_inode() - check whether the inode's master key has been removed
682  * @inode: an inode being considered for eviction
683  *
684  * Filesystems supporting fscrypt must call this from their ->drop_inode()
685  * method so that encrypted inodes are evicted as soon as they're no longer in
686  * use and their master key has been removed.
687  *
688  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
689  */
690 int fscrypt_drop_inode(struct inode *inode)
691 {
692 	const struct fscrypt_info *ci = fscrypt_get_info(inode);
693 	const struct fscrypt_master_key *mk;
694 
695 	/*
696 	 * If ci is NULL, then the inode doesn't have an encryption key set up
697 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
698 	 * was provided via the legacy mechanism of the process-subscribed
699 	 * keyrings, so we don't know whether it's been removed or not.
700 	 */
701 	if (!ci || !ci->ci_master_key)
702 		return 0;
703 	mk = ci->ci_master_key->payload.data[0];
704 
705 	/*
706 	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
707 	 * protected by the key were cleaned by sync_filesystem().  But if
708 	 * userspace is still using the files, inodes can be dirtied between
709 	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
710 	 */
711 	if (inode->i_state & I_DIRTY_ALL)
712 		return 0;
713 
714 	/*
715 	 * Note: since we aren't holding ->mk_secret_sem, the result here can
716 	 * immediately become outdated.  But there's no correctness problem with
717 	 * unnecessarily evicting.  Nor is there a correctness problem with not
718 	 * evicting while iput() is racing with the key being removed, since
719 	 * then the thread removing the key will either evict the inode itself
720 	 * or will correctly detect that it wasn't evicted due to the race.
721 	 */
722 	return !is_master_key_secret_present(&mk->mk_secret);
723 }
724 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
725