1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #include <crypto/skcipher.h> 12 #include <linux/key.h> 13 #include <linux/random.h> 14 15 #include "fscrypt_private.h" 16 17 struct fscrypt_mode fscrypt_modes[] = { 18 [FSCRYPT_MODE_AES_256_XTS] = { 19 .friendly_name = "AES-256-XTS", 20 .cipher_str = "xts(aes)", 21 .keysize = 64, 22 .ivsize = 16, 23 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 24 }, 25 [FSCRYPT_MODE_AES_256_CTS] = { 26 .friendly_name = "AES-256-CTS-CBC", 27 .cipher_str = "cts(cbc(aes))", 28 .keysize = 32, 29 .ivsize = 16, 30 }, 31 [FSCRYPT_MODE_AES_128_CBC] = { 32 .friendly_name = "AES-128-CBC-ESSIV", 33 .cipher_str = "essiv(cbc(aes),sha256)", 34 .keysize = 16, 35 .ivsize = 16, 36 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 37 }, 38 [FSCRYPT_MODE_AES_128_CTS] = { 39 .friendly_name = "AES-128-CTS-CBC", 40 .cipher_str = "cts(cbc(aes))", 41 .keysize = 16, 42 .ivsize = 16, 43 }, 44 [FSCRYPT_MODE_ADIANTUM] = { 45 .friendly_name = "Adiantum", 46 .cipher_str = "adiantum(xchacha12,aes)", 47 .keysize = 32, 48 .ivsize = 32, 49 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 50 }, 51 }; 52 53 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 54 55 static struct fscrypt_mode * 56 select_encryption_mode(const union fscrypt_policy *policy, 57 const struct inode *inode) 58 { 59 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); 60 61 if (S_ISREG(inode->i_mode)) 62 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 63 64 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 65 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 66 67 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 68 inode->i_ino, (inode->i_mode & S_IFMT)); 69 return ERR_PTR(-EINVAL); 70 } 71 72 /* Create a symmetric cipher object for the given encryption mode and key */ 73 static struct crypto_skcipher * 74 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 75 const struct inode *inode) 76 { 77 struct crypto_skcipher *tfm; 78 int err; 79 80 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 81 if (IS_ERR(tfm)) { 82 if (PTR_ERR(tfm) == -ENOENT) { 83 fscrypt_warn(inode, 84 "Missing crypto API support for %s (API name: \"%s\")", 85 mode->friendly_name, mode->cipher_str); 86 return ERR_PTR(-ENOPKG); 87 } 88 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 89 mode->cipher_str, PTR_ERR(tfm)); 90 return tfm; 91 } 92 if (!xchg(&mode->logged_impl_name, 1)) { 93 /* 94 * fscrypt performance can vary greatly depending on which 95 * crypto algorithm implementation is used. Help people debug 96 * performance problems by logging the ->cra_driver_name the 97 * first time a mode is used. 98 */ 99 pr_info("fscrypt: %s using implementation \"%s\"\n", 100 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 101 } 102 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 103 err = -EINVAL; 104 goto err_free_tfm; 105 } 106 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 107 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 108 if (err) 109 goto err_free_tfm; 110 111 return tfm; 112 113 err_free_tfm: 114 crypto_free_skcipher(tfm); 115 return ERR_PTR(err); 116 } 117 118 /* 119 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 120 * raw key, encryption mode, and flag indicating which encryption implementation 121 * (fs-layer or blk-crypto) will be used. 122 */ 123 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 124 const u8 *raw_key, const struct fscrypt_info *ci) 125 { 126 struct crypto_skcipher *tfm; 127 128 if (fscrypt_using_inline_encryption(ci)) 129 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 130 131 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 132 if (IS_ERR(tfm)) 133 return PTR_ERR(tfm); 134 /* 135 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 136 * I.e., here we publish ->tfm with a RELEASE barrier so that 137 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 138 * possible for per-mode keys, not for per-file keys. 139 */ 140 smp_store_release(&prep_key->tfm, tfm); 141 return 0; 142 } 143 144 /* Destroy a crypto transform object and/or blk-crypto key. */ 145 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) 146 { 147 crypto_free_skcipher(prep_key->tfm); 148 fscrypt_destroy_inline_crypt_key(prep_key); 149 } 150 151 /* Given a per-file encryption key, set up the file's crypto transform object */ 152 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 153 { 154 ci->ci_owns_key = true; 155 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 156 } 157 158 static int setup_per_mode_enc_key(struct fscrypt_info *ci, 159 struct fscrypt_master_key *mk, 160 struct fscrypt_prepared_key *keys, 161 u8 hkdf_context, bool include_fs_uuid) 162 { 163 const struct inode *inode = ci->ci_inode; 164 const struct super_block *sb = inode->i_sb; 165 struct fscrypt_mode *mode = ci->ci_mode; 166 const u8 mode_num = mode - fscrypt_modes; 167 struct fscrypt_prepared_key *prep_key; 168 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 169 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 170 unsigned int hkdf_infolen = 0; 171 int err; 172 173 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) 174 return -EINVAL; 175 176 prep_key = &keys[mode_num]; 177 if (fscrypt_is_key_prepared(prep_key, ci)) { 178 ci->ci_enc_key = *prep_key; 179 return 0; 180 } 181 182 mutex_lock(&fscrypt_mode_key_setup_mutex); 183 184 if (fscrypt_is_key_prepared(prep_key, ci)) 185 goto done_unlock; 186 187 BUILD_BUG_ON(sizeof(mode_num) != 1); 188 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 189 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 190 hkdf_info[hkdf_infolen++] = mode_num; 191 if (include_fs_uuid) { 192 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 193 sizeof(sb->s_uuid)); 194 hkdf_infolen += sizeof(sb->s_uuid); 195 } 196 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 197 hkdf_context, hkdf_info, hkdf_infolen, 198 mode_key, mode->keysize); 199 if (err) 200 goto out_unlock; 201 err = fscrypt_prepare_key(prep_key, mode_key, ci); 202 memzero_explicit(mode_key, mode->keysize); 203 if (err) 204 goto out_unlock; 205 done_unlock: 206 ci->ci_enc_key = *prep_key; 207 err = 0; 208 out_unlock: 209 mutex_unlock(&fscrypt_mode_key_setup_mutex); 210 return err; 211 } 212 213 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 214 const struct fscrypt_master_key *mk) 215 { 216 int err; 217 218 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY, 219 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 220 (u8 *)&ci->ci_dirhash_key, 221 sizeof(ci->ci_dirhash_key)); 222 if (err) 223 return err; 224 ci->ci_dirhash_key_initialized = true; 225 return 0; 226 } 227 228 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 229 const struct fscrypt_master_key *mk) 230 { 231 WARN_ON(ci->ci_inode->i_ino == 0); 232 WARN_ON(!mk->mk_ino_hash_key_initialized); 233 234 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 235 &mk->mk_ino_hash_key); 236 } 237 238 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 239 struct fscrypt_master_key *mk) 240 { 241 int err; 242 243 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 244 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 245 if (err) 246 return err; 247 248 /* pairs with smp_store_release() below */ 249 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 250 251 mutex_lock(&fscrypt_mode_key_setup_mutex); 252 253 if (mk->mk_ino_hash_key_initialized) 254 goto unlock; 255 256 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 257 HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0, 258 (u8 *)&mk->mk_ino_hash_key, 259 sizeof(mk->mk_ino_hash_key)); 260 if (err) 261 goto unlock; 262 /* pairs with smp_load_acquire() above */ 263 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 264 unlock: 265 mutex_unlock(&fscrypt_mode_key_setup_mutex); 266 if (err) 267 return err; 268 } 269 270 /* 271 * New inodes may not have an inode number assigned yet. 272 * Hashing their inode number is delayed until later. 273 */ 274 if (ci->ci_inode->i_ino) 275 fscrypt_hash_inode_number(ci, mk); 276 return 0; 277 } 278 279 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 280 struct fscrypt_master_key *mk, 281 bool need_dirhash_key) 282 { 283 int err; 284 285 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 286 /* 287 * DIRECT_KEY: instead of deriving per-file encryption keys, the 288 * per-file nonce will be included in all the IVs. But unlike 289 * v1 policies, for v2 policies in this case we don't encrypt 290 * with the master key directly but rather derive a per-mode 291 * encryption key. This ensures that the master key is 292 * consistently used only for HKDF, avoiding key reuse issues. 293 */ 294 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 295 HKDF_CONTEXT_DIRECT_KEY, false); 296 } else if (ci->ci_policy.v2.flags & 297 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 298 /* 299 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 300 * mode_num, filesystem_uuid), and inode number is included in 301 * the IVs. This format is optimized for use with inline 302 * encryption hardware compliant with the UFS standard. 303 */ 304 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 305 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 306 true); 307 } else if (ci->ci_policy.v2.flags & 308 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 309 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 310 } else { 311 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 312 313 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 314 HKDF_CONTEXT_PER_FILE_ENC_KEY, 315 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 316 derived_key, ci->ci_mode->keysize); 317 if (err) 318 return err; 319 320 err = fscrypt_set_per_file_enc_key(ci, derived_key); 321 memzero_explicit(derived_key, ci->ci_mode->keysize); 322 } 323 if (err) 324 return err; 325 326 /* Derive a secret dirhash key for directories that need it. */ 327 if (need_dirhash_key) { 328 err = fscrypt_derive_dirhash_key(ci, mk); 329 if (err) 330 return err; 331 } 332 333 return 0; 334 } 335 336 /* 337 * Find the master key, then set up the inode's actual encryption key. 338 * 339 * If the master key is found in the filesystem-level keyring, then the 340 * corresponding 'struct key' is returned in *master_key_ret with its semaphore 341 * read-locked. This is needed to ensure that only one task links the 342 * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create 343 * an fscrypt_info for the same inode), and to synchronize the master key being 344 * removed with a new inode starting to use it. 345 */ 346 static int setup_file_encryption_key(struct fscrypt_info *ci, 347 bool need_dirhash_key, 348 struct key **master_key_ret) 349 { 350 struct key *key; 351 struct fscrypt_master_key *mk = NULL; 352 struct fscrypt_key_specifier mk_spec; 353 int err; 354 355 err = fscrypt_select_encryption_impl(ci); 356 if (err) 357 return err; 358 359 switch (ci->ci_policy.version) { 360 case FSCRYPT_POLICY_V1: 361 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; 362 memcpy(mk_spec.u.descriptor, 363 ci->ci_policy.v1.master_key_descriptor, 364 FSCRYPT_KEY_DESCRIPTOR_SIZE); 365 break; 366 case FSCRYPT_POLICY_V2: 367 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 368 memcpy(mk_spec.u.identifier, 369 ci->ci_policy.v2.master_key_identifier, 370 FSCRYPT_KEY_IDENTIFIER_SIZE); 371 break; 372 default: 373 WARN_ON(1); 374 return -EINVAL; 375 } 376 377 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 378 if (IS_ERR(key)) { 379 if (key != ERR_PTR(-ENOKEY) || 380 ci->ci_policy.version != FSCRYPT_POLICY_V1) 381 return PTR_ERR(key); 382 383 /* 384 * As a legacy fallback for v1 policies, search for the key in 385 * the current task's subscribed keyrings too. Don't move this 386 * to before the search of ->s_master_keys, since users 387 * shouldn't be able to override filesystem-level keys. 388 */ 389 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 390 } 391 392 mk = key->payload.data[0]; 393 down_read(&key->sem); 394 395 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 396 if (!is_master_key_secret_present(&mk->mk_secret)) { 397 err = -ENOKEY; 398 goto out_release_key; 399 } 400 401 /* 402 * Require that the master key be at least as long as the derived key. 403 * Otherwise, the derived key cannot possibly contain as much entropy as 404 * that required by the encryption mode it will be used for. For v1 405 * policies it's also required for the KDF to work at all. 406 */ 407 if (mk->mk_secret.size < ci->ci_mode->keysize) { 408 fscrypt_warn(NULL, 409 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 410 master_key_spec_type(&mk_spec), 411 master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u, 412 mk->mk_secret.size, ci->ci_mode->keysize); 413 err = -ENOKEY; 414 goto out_release_key; 415 } 416 417 switch (ci->ci_policy.version) { 418 case FSCRYPT_POLICY_V1: 419 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 420 break; 421 case FSCRYPT_POLICY_V2: 422 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); 423 break; 424 default: 425 WARN_ON(1); 426 err = -EINVAL; 427 break; 428 } 429 if (err) 430 goto out_release_key; 431 432 *master_key_ret = key; 433 return 0; 434 435 out_release_key: 436 up_read(&key->sem); 437 key_put(key); 438 return err; 439 } 440 441 static void put_crypt_info(struct fscrypt_info *ci) 442 { 443 struct key *key; 444 445 if (!ci) 446 return; 447 448 if (ci->ci_direct_key) 449 fscrypt_put_direct_key(ci->ci_direct_key); 450 else if (ci->ci_owns_key) 451 fscrypt_destroy_prepared_key(&ci->ci_enc_key); 452 453 key = ci->ci_master_key; 454 if (key) { 455 struct fscrypt_master_key *mk = key->payload.data[0]; 456 457 /* 458 * Remove this inode from the list of inodes that were unlocked 459 * with the master key. 460 * 461 * In addition, if we're removing the last inode from a key that 462 * already had its secret removed, invalidate the key so that it 463 * gets removed from ->s_master_keys. 464 */ 465 spin_lock(&mk->mk_decrypted_inodes_lock); 466 list_del(&ci->ci_master_key_link); 467 spin_unlock(&mk->mk_decrypted_inodes_lock); 468 if (refcount_dec_and_test(&mk->mk_refcount)) 469 key_invalidate(key); 470 key_put(key); 471 } 472 memzero_explicit(ci, sizeof(*ci)); 473 kmem_cache_free(fscrypt_info_cachep, ci); 474 } 475 476 static int 477 fscrypt_setup_encryption_info(struct inode *inode, 478 const union fscrypt_policy *policy, 479 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], 480 bool need_dirhash_key) 481 { 482 struct fscrypt_info *crypt_info; 483 struct fscrypt_mode *mode; 484 struct key *master_key = NULL; 485 int res; 486 487 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 488 if (res) 489 return res; 490 491 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); 492 if (!crypt_info) 493 return -ENOMEM; 494 495 crypt_info->ci_inode = inode; 496 crypt_info->ci_policy = *policy; 497 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); 498 499 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 500 if (IS_ERR(mode)) { 501 res = PTR_ERR(mode); 502 goto out; 503 } 504 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 505 crypt_info->ci_mode = mode; 506 507 res = setup_file_encryption_key(crypt_info, need_dirhash_key, 508 &master_key); 509 if (res) 510 goto out; 511 512 /* 513 * For existing inodes, multiple tasks may race to set ->i_crypt_info. 514 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in 515 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 516 * RELEASE barrier so that other tasks can ACQUIRE it. 517 */ 518 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 519 /* 520 * We won the race and set ->i_crypt_info to our crypt_info. 521 * Now link it into the master key's inode list. 522 */ 523 if (master_key) { 524 struct fscrypt_master_key *mk = 525 master_key->payload.data[0]; 526 527 refcount_inc(&mk->mk_refcount); 528 crypt_info->ci_master_key = key_get(master_key); 529 spin_lock(&mk->mk_decrypted_inodes_lock); 530 list_add(&crypt_info->ci_master_key_link, 531 &mk->mk_decrypted_inodes); 532 spin_unlock(&mk->mk_decrypted_inodes_lock); 533 } 534 crypt_info = NULL; 535 } 536 res = 0; 537 out: 538 if (master_key) { 539 up_read(&master_key->sem); 540 key_put(master_key); 541 } 542 put_crypt_info(crypt_info); 543 return res; 544 } 545 546 /** 547 * fscrypt_get_encryption_info() - set up an inode's encryption key 548 * @inode: the inode to set up the key for. Must be encrypted. 549 * @allow_unsupported: if %true, treat an unsupported encryption policy (or 550 * unrecognized encryption context) the same way as the key 551 * being unavailable, instead of returning an error. Use 552 * %false unless the operation being performed is needed in 553 * order for files (or directories) to be deleted. 554 * 555 * Set up ->i_crypt_info, if it hasn't already been done. 556 * 557 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So 558 * generally this shouldn't be called from within a filesystem transaction. 559 * 560 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the 561 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to 562 * distinguish these cases.) Also can return another -errno code. 563 */ 564 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) 565 { 566 int res; 567 union fscrypt_context ctx; 568 union fscrypt_policy policy; 569 570 if (fscrypt_has_encryption_key(inode)) 571 return 0; 572 573 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 574 if (res < 0) { 575 if (res == -ERANGE && allow_unsupported) 576 return 0; 577 fscrypt_warn(inode, "Error %d getting encryption context", res); 578 return res; 579 } 580 581 res = fscrypt_policy_from_context(&policy, &ctx, res); 582 if (res) { 583 if (allow_unsupported) 584 return 0; 585 fscrypt_warn(inode, 586 "Unrecognized or corrupt encryption context"); 587 return res; 588 } 589 590 if (!fscrypt_supported_policy(&policy, inode)) { 591 if (allow_unsupported) 592 return 0; 593 return -EINVAL; 594 } 595 596 res = fscrypt_setup_encryption_info(inode, &policy, 597 fscrypt_context_nonce(&ctx), 598 IS_CASEFOLDED(inode) && 599 S_ISDIR(inode->i_mode)); 600 601 if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ 602 res = 0; 603 if (res == -ENOKEY) 604 res = 0; 605 return res; 606 } 607 608 /** 609 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory 610 * @dir: a possibly-encrypted directory 611 * @inode: the new inode. ->i_mode must be set already. 612 * ->i_ino doesn't need to be set yet. 613 * @encrypt_ret: (output) set to %true if the new inode will be encrypted 614 * 615 * If the directory is encrypted, set up its ->i_crypt_info in preparation for 616 * encrypting the name of the new file. Also, if the new inode will be 617 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. 618 * 619 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting 620 * any filesystem transaction to create the inode. For this reason, ->i_ino 621 * isn't required to be set yet, as the filesystem may not have set it yet. 622 * 623 * This doesn't persist the new inode's encryption context. That still needs to 624 * be done later by calling fscrypt_set_context(). 625 * 626 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another 627 * -errno code 628 */ 629 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 630 bool *encrypt_ret) 631 { 632 const union fscrypt_policy *policy; 633 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 634 635 policy = fscrypt_policy_to_inherit(dir); 636 if (policy == NULL) 637 return 0; 638 if (IS_ERR(policy)) 639 return PTR_ERR(policy); 640 641 if (WARN_ON_ONCE(inode->i_mode == 0)) 642 return -EINVAL; 643 644 /* 645 * Only regular files, directories, and symlinks are encrypted. 646 * Special files like device nodes and named pipes aren't. 647 */ 648 if (!S_ISREG(inode->i_mode) && 649 !S_ISDIR(inode->i_mode) && 650 !S_ISLNK(inode->i_mode)) 651 return 0; 652 653 *encrypt_ret = true; 654 655 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); 656 return fscrypt_setup_encryption_info(inode, policy, nonce, 657 IS_CASEFOLDED(dir) && 658 S_ISDIR(inode->i_mode)); 659 } 660 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); 661 662 /** 663 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 664 * @inode: an inode being evicted 665 * 666 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 667 * being evicted. An RCU grace period need not have elapsed yet. 668 */ 669 void fscrypt_put_encryption_info(struct inode *inode) 670 { 671 put_crypt_info(inode->i_crypt_info); 672 inode->i_crypt_info = NULL; 673 } 674 EXPORT_SYMBOL(fscrypt_put_encryption_info); 675 676 /** 677 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 678 * @inode: an inode being freed 679 * 680 * Free the inode's cached decrypted symlink target, if any. Filesystems must 681 * call this after an RCU grace period, just before they free the inode. 682 */ 683 void fscrypt_free_inode(struct inode *inode) 684 { 685 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 686 kfree(inode->i_link); 687 inode->i_link = NULL; 688 } 689 } 690 EXPORT_SYMBOL(fscrypt_free_inode); 691 692 /** 693 * fscrypt_drop_inode() - check whether the inode's master key has been removed 694 * @inode: an inode being considered for eviction 695 * 696 * Filesystems supporting fscrypt must call this from their ->drop_inode() 697 * method so that encrypted inodes are evicted as soon as they're no longer in 698 * use and their master key has been removed. 699 * 700 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 701 */ 702 int fscrypt_drop_inode(struct inode *inode) 703 { 704 const struct fscrypt_info *ci = fscrypt_get_info(inode); 705 const struct fscrypt_master_key *mk; 706 707 /* 708 * If ci is NULL, then the inode doesn't have an encryption key set up 709 * so it's irrelevant. If ci_master_key is NULL, then the master key 710 * was provided via the legacy mechanism of the process-subscribed 711 * keyrings, so we don't know whether it's been removed or not. 712 */ 713 if (!ci || !ci->ci_master_key) 714 return 0; 715 mk = ci->ci_master_key->payload.data[0]; 716 717 /* 718 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 719 * protected by the key were cleaned by sync_filesystem(). But if 720 * userspace is still using the files, inodes can be dirtied between 721 * then and now. We mustn't lose any writes, so skip dirty inodes here. 722 */ 723 if (inode->i_state & I_DIRTY_ALL) 724 return 0; 725 726 /* 727 * Note: since we aren't holding the key semaphore, the result here can 728 * immediately become outdated. But there's no correctness problem with 729 * unnecessarily evicting. Nor is there a correctness problem with not 730 * evicting while iput() is racing with the key being removed, since 731 * then the thread removing the key will either evict the inode itself 732 * or will correctly detect that it wasn't evicted due to the race. 733 */ 734 return !is_master_key_secret_present(&mk->mk_secret); 735 } 736 EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 737