1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #include <crypto/skcipher.h> 12 #include <linux/random.h> 13 14 #include "fscrypt_private.h" 15 16 struct fscrypt_mode fscrypt_modes[] = { 17 [FSCRYPT_MODE_AES_256_XTS] = { 18 .friendly_name = "AES-256-XTS", 19 .cipher_str = "xts(aes)", 20 .keysize = 64, 21 .security_strength = 32, 22 .ivsize = 16, 23 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 24 }, 25 [FSCRYPT_MODE_AES_256_CTS] = { 26 .friendly_name = "AES-256-CTS-CBC", 27 .cipher_str = "cts(cbc(aes))", 28 .keysize = 32, 29 .security_strength = 32, 30 .ivsize = 16, 31 }, 32 [FSCRYPT_MODE_AES_128_CBC] = { 33 .friendly_name = "AES-128-CBC-ESSIV", 34 .cipher_str = "essiv(cbc(aes),sha256)", 35 .keysize = 16, 36 .security_strength = 16, 37 .ivsize = 16, 38 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 39 }, 40 [FSCRYPT_MODE_AES_128_CTS] = { 41 .friendly_name = "AES-128-CTS-CBC", 42 .cipher_str = "cts(cbc(aes))", 43 .keysize = 16, 44 .security_strength = 16, 45 .ivsize = 16, 46 }, 47 [FSCRYPT_MODE_ADIANTUM] = { 48 .friendly_name = "Adiantum", 49 .cipher_str = "adiantum(xchacha12,aes)", 50 .keysize = 32, 51 .security_strength = 32, 52 .ivsize = 32, 53 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 54 }, 55 [FSCRYPT_MODE_AES_256_HCTR2] = { 56 .friendly_name = "AES-256-HCTR2", 57 .cipher_str = "hctr2(aes)", 58 .keysize = 32, 59 .security_strength = 32, 60 .ivsize = 32, 61 }, 62 }; 63 64 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 65 66 static struct fscrypt_mode * 67 select_encryption_mode(const union fscrypt_policy *policy, 68 const struct inode *inode) 69 { 70 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); 71 72 if (S_ISREG(inode->i_mode)) 73 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 74 75 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 76 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 77 78 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 79 inode->i_ino, (inode->i_mode & S_IFMT)); 80 return ERR_PTR(-EINVAL); 81 } 82 83 /* Create a symmetric cipher object for the given encryption mode and key */ 84 static struct crypto_skcipher * 85 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 86 const struct inode *inode) 87 { 88 struct crypto_skcipher *tfm; 89 int err; 90 91 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 92 if (IS_ERR(tfm)) { 93 if (PTR_ERR(tfm) == -ENOENT) { 94 fscrypt_warn(inode, 95 "Missing crypto API support for %s (API name: \"%s\")", 96 mode->friendly_name, mode->cipher_str); 97 return ERR_PTR(-ENOPKG); 98 } 99 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 100 mode->cipher_str, PTR_ERR(tfm)); 101 return tfm; 102 } 103 if (!xchg(&mode->logged_cryptoapi_impl, 1)) { 104 /* 105 * fscrypt performance can vary greatly depending on which 106 * crypto algorithm implementation is used. Help people debug 107 * performance problems by logging the ->cra_driver_name the 108 * first time a mode is used. 109 */ 110 pr_info("fscrypt: %s using implementation \"%s\"\n", 111 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 112 } 113 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 114 err = -EINVAL; 115 goto err_free_tfm; 116 } 117 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 118 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 119 if (err) 120 goto err_free_tfm; 121 122 return tfm; 123 124 err_free_tfm: 125 crypto_free_skcipher(tfm); 126 return ERR_PTR(err); 127 } 128 129 /* 130 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 131 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption 132 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt), 133 * and IV generation method (@ci->ci_policy.flags). 134 */ 135 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 136 const u8 *raw_key, const struct fscrypt_info *ci) 137 { 138 struct crypto_skcipher *tfm; 139 140 if (fscrypt_using_inline_encryption(ci)) 141 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 142 143 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 144 if (IS_ERR(tfm)) 145 return PTR_ERR(tfm); 146 /* 147 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 148 * I.e., here we publish ->tfm with a RELEASE barrier so that 149 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 150 * possible for per-mode keys, not for per-file keys. 151 */ 152 smp_store_release(&prep_key->tfm, tfm); 153 return 0; 154 } 155 156 /* Destroy a crypto transform object and/or blk-crypto key. */ 157 void fscrypt_destroy_prepared_key(struct super_block *sb, 158 struct fscrypt_prepared_key *prep_key) 159 { 160 crypto_free_skcipher(prep_key->tfm); 161 fscrypt_destroy_inline_crypt_key(sb, prep_key); 162 memzero_explicit(prep_key, sizeof(*prep_key)); 163 } 164 165 /* Given a per-file encryption key, set up the file's crypto transform object */ 166 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 167 { 168 ci->ci_owns_key = true; 169 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 170 } 171 172 static int setup_per_mode_enc_key(struct fscrypt_info *ci, 173 struct fscrypt_master_key *mk, 174 struct fscrypt_prepared_key *keys, 175 u8 hkdf_context, bool include_fs_uuid) 176 { 177 const struct inode *inode = ci->ci_inode; 178 const struct super_block *sb = inode->i_sb; 179 struct fscrypt_mode *mode = ci->ci_mode; 180 const u8 mode_num = mode - fscrypt_modes; 181 struct fscrypt_prepared_key *prep_key; 182 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 183 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 184 unsigned int hkdf_infolen = 0; 185 int err; 186 187 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) 188 return -EINVAL; 189 190 prep_key = &keys[mode_num]; 191 if (fscrypt_is_key_prepared(prep_key, ci)) { 192 ci->ci_enc_key = *prep_key; 193 return 0; 194 } 195 196 mutex_lock(&fscrypt_mode_key_setup_mutex); 197 198 if (fscrypt_is_key_prepared(prep_key, ci)) 199 goto done_unlock; 200 201 BUILD_BUG_ON(sizeof(mode_num) != 1); 202 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 203 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 204 hkdf_info[hkdf_infolen++] = mode_num; 205 if (include_fs_uuid) { 206 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 207 sizeof(sb->s_uuid)); 208 hkdf_infolen += sizeof(sb->s_uuid); 209 } 210 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 211 hkdf_context, hkdf_info, hkdf_infolen, 212 mode_key, mode->keysize); 213 if (err) 214 goto out_unlock; 215 err = fscrypt_prepare_key(prep_key, mode_key, ci); 216 memzero_explicit(mode_key, mode->keysize); 217 if (err) 218 goto out_unlock; 219 done_unlock: 220 ci->ci_enc_key = *prep_key; 221 err = 0; 222 out_unlock: 223 mutex_unlock(&fscrypt_mode_key_setup_mutex); 224 return err; 225 } 226 227 /* 228 * Derive a SipHash key from the given fscrypt master key and the given 229 * application-specific information string. 230 * 231 * Note that the KDF produces a byte array, but the SipHash APIs expect the key 232 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an 233 * endianness swap in order to get the same results as on little endian CPUs. 234 */ 235 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk, 236 u8 context, const u8 *info, 237 unsigned int infolen, siphash_key_t *key) 238 { 239 int err; 240 241 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen, 242 (u8 *)key, sizeof(*key)); 243 if (err) 244 return err; 245 246 BUILD_BUG_ON(sizeof(*key) != 16); 247 BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2); 248 le64_to_cpus(&key->key[0]); 249 le64_to_cpus(&key->key[1]); 250 return 0; 251 } 252 253 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 254 const struct fscrypt_master_key *mk) 255 { 256 int err; 257 258 err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY, 259 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 260 &ci->ci_dirhash_key); 261 if (err) 262 return err; 263 ci->ci_dirhash_key_initialized = true; 264 return 0; 265 } 266 267 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 268 const struct fscrypt_master_key *mk) 269 { 270 WARN_ON(ci->ci_inode->i_ino == 0); 271 WARN_ON(!mk->mk_ino_hash_key_initialized); 272 273 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 274 &mk->mk_ino_hash_key); 275 } 276 277 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 278 struct fscrypt_master_key *mk) 279 { 280 int err; 281 282 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 283 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 284 if (err) 285 return err; 286 287 /* pairs with smp_store_release() below */ 288 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 289 290 mutex_lock(&fscrypt_mode_key_setup_mutex); 291 292 if (mk->mk_ino_hash_key_initialized) 293 goto unlock; 294 295 err = fscrypt_derive_siphash_key(mk, 296 HKDF_CONTEXT_INODE_HASH_KEY, 297 NULL, 0, &mk->mk_ino_hash_key); 298 if (err) 299 goto unlock; 300 /* pairs with smp_load_acquire() above */ 301 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 302 unlock: 303 mutex_unlock(&fscrypt_mode_key_setup_mutex); 304 if (err) 305 return err; 306 } 307 308 /* 309 * New inodes may not have an inode number assigned yet. 310 * Hashing their inode number is delayed until later. 311 */ 312 if (ci->ci_inode->i_ino) 313 fscrypt_hash_inode_number(ci, mk); 314 return 0; 315 } 316 317 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 318 struct fscrypt_master_key *mk, 319 bool need_dirhash_key) 320 { 321 int err; 322 323 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 324 /* 325 * DIRECT_KEY: instead of deriving per-file encryption keys, the 326 * per-file nonce will be included in all the IVs. But unlike 327 * v1 policies, for v2 policies in this case we don't encrypt 328 * with the master key directly but rather derive a per-mode 329 * encryption key. This ensures that the master key is 330 * consistently used only for HKDF, avoiding key reuse issues. 331 */ 332 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 333 HKDF_CONTEXT_DIRECT_KEY, false); 334 } else if (ci->ci_policy.v2.flags & 335 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 336 /* 337 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 338 * mode_num, filesystem_uuid), and inode number is included in 339 * the IVs. This format is optimized for use with inline 340 * encryption hardware compliant with the UFS standard. 341 */ 342 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 343 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 344 true); 345 } else if (ci->ci_policy.v2.flags & 346 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 347 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 348 } else { 349 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 350 351 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 352 HKDF_CONTEXT_PER_FILE_ENC_KEY, 353 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 354 derived_key, ci->ci_mode->keysize); 355 if (err) 356 return err; 357 358 err = fscrypt_set_per_file_enc_key(ci, derived_key); 359 memzero_explicit(derived_key, ci->ci_mode->keysize); 360 } 361 if (err) 362 return err; 363 364 /* Derive a secret dirhash key for directories that need it. */ 365 if (need_dirhash_key) { 366 err = fscrypt_derive_dirhash_key(ci, mk); 367 if (err) 368 return err; 369 } 370 371 return 0; 372 } 373 374 /* 375 * Check whether the size of the given master key (@mk) is appropriate for the 376 * encryption settings which a particular file will use (@ci). 377 * 378 * If the file uses a v1 encryption policy, then the master key must be at least 379 * as long as the derived key, as this is a requirement of the v1 KDF. 380 * 381 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser 382 * requirement: we require that the size of the master key be at least the 383 * maximum security strength of any algorithm whose key will be derived from it 384 * (but in practice we only need to consider @ci->ci_mode, since any other 385 * possible subkeys such as DIRHASH and INODE_HASH will never increase the 386 * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be 387 * derived from a 256-bit master key, which is cryptographically sufficient, 388 * rather than requiring a 512-bit master key which is unnecessarily long. (We 389 * still allow 512-bit master keys if the user chooses to use them, though.) 390 */ 391 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk, 392 const struct fscrypt_info *ci) 393 { 394 unsigned int min_keysize; 395 396 if (ci->ci_policy.version == FSCRYPT_POLICY_V1) 397 min_keysize = ci->ci_mode->keysize; 398 else 399 min_keysize = ci->ci_mode->security_strength; 400 401 if (mk->mk_secret.size < min_keysize) { 402 fscrypt_warn(NULL, 403 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 404 master_key_spec_type(&mk->mk_spec), 405 master_key_spec_len(&mk->mk_spec), 406 (u8 *)&mk->mk_spec.u, 407 mk->mk_secret.size, min_keysize); 408 return false; 409 } 410 return true; 411 } 412 413 /* 414 * Find the master key, then set up the inode's actual encryption key. 415 * 416 * If the master key is found in the filesystem-level keyring, then it is 417 * returned in *mk_ret with its semaphore read-locked. This is needed to ensure 418 * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as 419 * multiple tasks may race to create an fscrypt_info for the same inode), and to 420 * synchronize the master key being removed with a new inode starting to use it. 421 */ 422 static int setup_file_encryption_key(struct fscrypt_info *ci, 423 bool need_dirhash_key, 424 struct fscrypt_master_key **mk_ret) 425 { 426 struct fscrypt_key_specifier mk_spec; 427 struct fscrypt_master_key *mk; 428 int err; 429 430 err = fscrypt_select_encryption_impl(ci); 431 if (err) 432 return err; 433 434 err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec); 435 if (err) 436 return err; 437 438 mk = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 439 if (!mk) { 440 if (ci->ci_policy.version != FSCRYPT_POLICY_V1) 441 return -ENOKEY; 442 443 /* 444 * As a legacy fallback for v1 policies, search for the key in 445 * the current task's subscribed keyrings too. Don't move this 446 * to before the search of ->s_master_keys, since users 447 * shouldn't be able to override filesystem-level keys. 448 */ 449 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 450 } 451 down_read(&mk->mk_sem); 452 453 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 454 if (!is_master_key_secret_present(&mk->mk_secret)) { 455 err = -ENOKEY; 456 goto out_release_key; 457 } 458 459 if (!fscrypt_valid_master_key_size(mk, ci)) { 460 err = -ENOKEY; 461 goto out_release_key; 462 } 463 464 switch (ci->ci_policy.version) { 465 case FSCRYPT_POLICY_V1: 466 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 467 break; 468 case FSCRYPT_POLICY_V2: 469 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); 470 break; 471 default: 472 WARN_ON(1); 473 err = -EINVAL; 474 break; 475 } 476 if (err) 477 goto out_release_key; 478 479 *mk_ret = mk; 480 return 0; 481 482 out_release_key: 483 up_read(&mk->mk_sem); 484 fscrypt_put_master_key(mk); 485 return err; 486 } 487 488 static void put_crypt_info(struct fscrypt_info *ci) 489 { 490 struct fscrypt_master_key *mk; 491 492 if (!ci) 493 return; 494 495 if (ci->ci_direct_key) 496 fscrypt_put_direct_key(ci->ci_direct_key); 497 else if (ci->ci_owns_key) 498 fscrypt_destroy_prepared_key(ci->ci_inode->i_sb, 499 &ci->ci_enc_key); 500 501 mk = ci->ci_master_key; 502 if (mk) { 503 /* 504 * Remove this inode from the list of inodes that were unlocked 505 * with the master key. In addition, if we're removing the last 506 * inode from a master key struct that already had its secret 507 * removed, then complete the full removal of the struct. 508 */ 509 spin_lock(&mk->mk_decrypted_inodes_lock); 510 list_del(&ci->ci_master_key_link); 511 spin_unlock(&mk->mk_decrypted_inodes_lock); 512 fscrypt_put_master_key_activeref(mk); 513 } 514 memzero_explicit(ci, sizeof(*ci)); 515 kmem_cache_free(fscrypt_info_cachep, ci); 516 } 517 518 static int 519 fscrypt_setup_encryption_info(struct inode *inode, 520 const union fscrypt_policy *policy, 521 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], 522 bool need_dirhash_key) 523 { 524 struct fscrypt_info *crypt_info; 525 struct fscrypt_mode *mode; 526 struct fscrypt_master_key *mk = NULL; 527 int res; 528 529 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 530 if (res) 531 return res; 532 533 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); 534 if (!crypt_info) 535 return -ENOMEM; 536 537 crypt_info->ci_inode = inode; 538 crypt_info->ci_policy = *policy; 539 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); 540 541 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 542 if (IS_ERR(mode)) { 543 res = PTR_ERR(mode); 544 goto out; 545 } 546 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 547 crypt_info->ci_mode = mode; 548 549 res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk); 550 if (res) 551 goto out; 552 553 /* 554 * For existing inodes, multiple tasks may race to set ->i_crypt_info. 555 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in 556 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 557 * RELEASE barrier so that other tasks can ACQUIRE it. 558 */ 559 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 560 /* 561 * We won the race and set ->i_crypt_info to our crypt_info. 562 * Now link it into the master key's inode list. 563 */ 564 if (mk) { 565 crypt_info->ci_master_key = mk; 566 refcount_inc(&mk->mk_active_refs); 567 spin_lock(&mk->mk_decrypted_inodes_lock); 568 list_add(&crypt_info->ci_master_key_link, 569 &mk->mk_decrypted_inodes); 570 spin_unlock(&mk->mk_decrypted_inodes_lock); 571 } 572 crypt_info = NULL; 573 } 574 res = 0; 575 out: 576 if (mk) { 577 up_read(&mk->mk_sem); 578 fscrypt_put_master_key(mk); 579 } 580 put_crypt_info(crypt_info); 581 return res; 582 } 583 584 /** 585 * fscrypt_get_encryption_info() - set up an inode's encryption key 586 * @inode: the inode to set up the key for. Must be encrypted. 587 * @allow_unsupported: if %true, treat an unsupported encryption policy (or 588 * unrecognized encryption context) the same way as the key 589 * being unavailable, instead of returning an error. Use 590 * %false unless the operation being performed is needed in 591 * order for files (or directories) to be deleted. 592 * 593 * Set up ->i_crypt_info, if it hasn't already been done. 594 * 595 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So 596 * generally this shouldn't be called from within a filesystem transaction. 597 * 598 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the 599 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to 600 * distinguish these cases.) Also can return another -errno code. 601 */ 602 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) 603 { 604 int res; 605 union fscrypt_context ctx; 606 union fscrypt_policy policy; 607 608 if (fscrypt_has_encryption_key(inode)) 609 return 0; 610 611 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 612 if (res < 0) { 613 if (res == -ERANGE && allow_unsupported) 614 return 0; 615 fscrypt_warn(inode, "Error %d getting encryption context", res); 616 return res; 617 } 618 619 res = fscrypt_policy_from_context(&policy, &ctx, res); 620 if (res) { 621 if (allow_unsupported) 622 return 0; 623 fscrypt_warn(inode, 624 "Unrecognized or corrupt encryption context"); 625 return res; 626 } 627 628 if (!fscrypt_supported_policy(&policy, inode)) { 629 if (allow_unsupported) 630 return 0; 631 return -EINVAL; 632 } 633 634 res = fscrypt_setup_encryption_info(inode, &policy, 635 fscrypt_context_nonce(&ctx), 636 IS_CASEFOLDED(inode) && 637 S_ISDIR(inode->i_mode)); 638 639 if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ 640 res = 0; 641 if (res == -ENOKEY) 642 res = 0; 643 return res; 644 } 645 646 /** 647 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory 648 * @dir: a possibly-encrypted directory 649 * @inode: the new inode. ->i_mode must be set already. 650 * ->i_ino doesn't need to be set yet. 651 * @encrypt_ret: (output) set to %true if the new inode will be encrypted 652 * 653 * If the directory is encrypted, set up its ->i_crypt_info in preparation for 654 * encrypting the name of the new file. Also, if the new inode will be 655 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. 656 * 657 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting 658 * any filesystem transaction to create the inode. For this reason, ->i_ino 659 * isn't required to be set yet, as the filesystem may not have set it yet. 660 * 661 * This doesn't persist the new inode's encryption context. That still needs to 662 * be done later by calling fscrypt_set_context(). 663 * 664 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another 665 * -errno code 666 */ 667 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 668 bool *encrypt_ret) 669 { 670 const union fscrypt_policy *policy; 671 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 672 673 policy = fscrypt_policy_to_inherit(dir); 674 if (policy == NULL) 675 return 0; 676 if (IS_ERR(policy)) 677 return PTR_ERR(policy); 678 679 if (WARN_ON_ONCE(inode->i_mode == 0)) 680 return -EINVAL; 681 682 /* 683 * Only regular files, directories, and symlinks are encrypted. 684 * Special files like device nodes and named pipes aren't. 685 */ 686 if (!S_ISREG(inode->i_mode) && 687 !S_ISDIR(inode->i_mode) && 688 !S_ISLNK(inode->i_mode)) 689 return 0; 690 691 *encrypt_ret = true; 692 693 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); 694 return fscrypt_setup_encryption_info(inode, policy, nonce, 695 IS_CASEFOLDED(dir) && 696 S_ISDIR(inode->i_mode)); 697 } 698 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); 699 700 /** 701 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 702 * @inode: an inode being evicted 703 * 704 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 705 * being evicted. An RCU grace period need not have elapsed yet. 706 */ 707 void fscrypt_put_encryption_info(struct inode *inode) 708 { 709 put_crypt_info(inode->i_crypt_info); 710 inode->i_crypt_info = NULL; 711 } 712 EXPORT_SYMBOL(fscrypt_put_encryption_info); 713 714 /** 715 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 716 * @inode: an inode being freed 717 * 718 * Free the inode's cached decrypted symlink target, if any. Filesystems must 719 * call this after an RCU grace period, just before they free the inode. 720 */ 721 void fscrypt_free_inode(struct inode *inode) 722 { 723 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 724 kfree(inode->i_link); 725 inode->i_link = NULL; 726 } 727 } 728 EXPORT_SYMBOL(fscrypt_free_inode); 729 730 /** 731 * fscrypt_drop_inode() - check whether the inode's master key has been removed 732 * @inode: an inode being considered for eviction 733 * 734 * Filesystems supporting fscrypt must call this from their ->drop_inode() 735 * method so that encrypted inodes are evicted as soon as they're no longer in 736 * use and their master key has been removed. 737 * 738 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 739 */ 740 int fscrypt_drop_inode(struct inode *inode) 741 { 742 const struct fscrypt_info *ci = fscrypt_get_info(inode); 743 744 /* 745 * If ci is NULL, then the inode doesn't have an encryption key set up 746 * so it's irrelevant. If ci_master_key is NULL, then the master key 747 * was provided via the legacy mechanism of the process-subscribed 748 * keyrings, so we don't know whether it's been removed or not. 749 */ 750 if (!ci || !ci->ci_master_key) 751 return 0; 752 753 /* 754 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 755 * protected by the key were cleaned by sync_filesystem(). But if 756 * userspace is still using the files, inodes can be dirtied between 757 * then and now. We mustn't lose any writes, so skip dirty inodes here. 758 */ 759 if (inode->i_state & I_DIRTY_ALL) 760 return 0; 761 762 /* 763 * Note: since we aren't holding the key semaphore, the result here can 764 * immediately become outdated. But there's no correctness problem with 765 * unnecessarily evicting. Nor is there a correctness problem with not 766 * evicting while iput() is racing with the key being removed, since 767 * then the thread removing the key will either evict the inode itself 768 * or will correctly detect that it wasn't evicted due to the race. 769 */ 770 return !is_master_key_secret_present(&ci->ci_master_key->mk_secret); 771 } 772 EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 773