1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #include <crypto/skcipher.h> 12 #include <linux/key.h> 13 #include <linux/random.h> 14 15 #include "fscrypt_private.h" 16 17 struct fscrypt_mode fscrypt_modes[] = { 18 [FSCRYPT_MODE_AES_256_XTS] = { 19 .friendly_name = "AES-256-XTS", 20 .cipher_str = "xts(aes)", 21 .keysize = 64, 22 .ivsize = 16, 23 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 24 }, 25 [FSCRYPT_MODE_AES_256_CTS] = { 26 .friendly_name = "AES-256-CTS-CBC", 27 .cipher_str = "cts(cbc(aes))", 28 .keysize = 32, 29 .ivsize = 16, 30 }, 31 [FSCRYPT_MODE_AES_128_CBC] = { 32 .friendly_name = "AES-128-CBC-ESSIV", 33 .cipher_str = "essiv(cbc(aes),sha256)", 34 .keysize = 16, 35 .ivsize = 16, 36 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 37 }, 38 [FSCRYPT_MODE_AES_128_CTS] = { 39 .friendly_name = "AES-128-CTS-CBC", 40 .cipher_str = "cts(cbc(aes))", 41 .keysize = 16, 42 .ivsize = 16, 43 }, 44 [FSCRYPT_MODE_ADIANTUM] = { 45 .friendly_name = "Adiantum", 46 .cipher_str = "adiantum(xchacha12,aes)", 47 .keysize = 32, 48 .ivsize = 32, 49 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 50 }, 51 }; 52 53 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 54 55 static struct fscrypt_mode * 56 select_encryption_mode(const union fscrypt_policy *policy, 57 const struct inode *inode) 58 { 59 if (S_ISREG(inode->i_mode)) 60 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 61 62 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 63 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 64 65 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 66 inode->i_ino, (inode->i_mode & S_IFMT)); 67 return ERR_PTR(-EINVAL); 68 } 69 70 /* Create a symmetric cipher object for the given encryption mode and key */ 71 static struct crypto_skcipher * 72 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 73 const struct inode *inode) 74 { 75 struct crypto_skcipher *tfm; 76 int err; 77 78 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 79 if (IS_ERR(tfm)) { 80 if (PTR_ERR(tfm) == -ENOENT) { 81 fscrypt_warn(inode, 82 "Missing crypto API support for %s (API name: \"%s\")", 83 mode->friendly_name, mode->cipher_str); 84 return ERR_PTR(-ENOPKG); 85 } 86 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 87 mode->cipher_str, PTR_ERR(tfm)); 88 return tfm; 89 } 90 if (!xchg(&mode->logged_impl_name, 1)) { 91 /* 92 * fscrypt performance can vary greatly depending on which 93 * crypto algorithm implementation is used. Help people debug 94 * performance problems by logging the ->cra_driver_name the 95 * first time a mode is used. 96 */ 97 pr_info("fscrypt: %s using implementation \"%s\"\n", 98 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 99 } 100 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 101 err = -EINVAL; 102 goto err_free_tfm; 103 } 104 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 105 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 106 if (err) 107 goto err_free_tfm; 108 109 return tfm; 110 111 err_free_tfm: 112 crypto_free_skcipher(tfm); 113 return ERR_PTR(err); 114 } 115 116 /* 117 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 118 * raw key, encryption mode, and flag indicating which encryption implementation 119 * (fs-layer or blk-crypto) will be used. 120 */ 121 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 122 const u8 *raw_key, const struct fscrypt_info *ci) 123 { 124 struct crypto_skcipher *tfm; 125 126 if (fscrypt_using_inline_encryption(ci)) 127 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 128 129 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 130 if (IS_ERR(tfm)) 131 return PTR_ERR(tfm); 132 /* 133 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 134 * I.e., here we publish ->tfm with a RELEASE barrier so that 135 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 136 * possible for per-mode keys, not for per-file keys. 137 */ 138 smp_store_release(&prep_key->tfm, tfm); 139 return 0; 140 } 141 142 /* Destroy a crypto transform object and/or blk-crypto key. */ 143 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) 144 { 145 crypto_free_skcipher(prep_key->tfm); 146 fscrypt_destroy_inline_crypt_key(prep_key); 147 } 148 149 /* Given a per-file encryption key, set up the file's crypto transform object */ 150 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 151 { 152 ci->ci_owns_key = true; 153 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 154 } 155 156 static int setup_per_mode_enc_key(struct fscrypt_info *ci, 157 struct fscrypt_master_key *mk, 158 struct fscrypt_prepared_key *keys, 159 u8 hkdf_context, bool include_fs_uuid) 160 { 161 const struct inode *inode = ci->ci_inode; 162 const struct super_block *sb = inode->i_sb; 163 struct fscrypt_mode *mode = ci->ci_mode; 164 const u8 mode_num = mode - fscrypt_modes; 165 struct fscrypt_prepared_key *prep_key; 166 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 167 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 168 unsigned int hkdf_infolen = 0; 169 int err; 170 171 if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX)) 172 return -EINVAL; 173 174 prep_key = &keys[mode_num]; 175 if (fscrypt_is_key_prepared(prep_key, ci)) { 176 ci->ci_enc_key = *prep_key; 177 return 0; 178 } 179 180 mutex_lock(&fscrypt_mode_key_setup_mutex); 181 182 if (fscrypt_is_key_prepared(prep_key, ci)) 183 goto done_unlock; 184 185 BUILD_BUG_ON(sizeof(mode_num) != 1); 186 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 187 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 188 hkdf_info[hkdf_infolen++] = mode_num; 189 if (include_fs_uuid) { 190 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 191 sizeof(sb->s_uuid)); 192 hkdf_infolen += sizeof(sb->s_uuid); 193 } 194 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 195 hkdf_context, hkdf_info, hkdf_infolen, 196 mode_key, mode->keysize); 197 if (err) 198 goto out_unlock; 199 err = fscrypt_prepare_key(prep_key, mode_key, ci); 200 memzero_explicit(mode_key, mode->keysize); 201 if (err) 202 goto out_unlock; 203 done_unlock: 204 ci->ci_enc_key = *prep_key; 205 err = 0; 206 out_unlock: 207 mutex_unlock(&fscrypt_mode_key_setup_mutex); 208 return err; 209 } 210 211 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 212 const struct fscrypt_master_key *mk) 213 { 214 int err; 215 216 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY, 217 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 218 (u8 *)&ci->ci_dirhash_key, 219 sizeof(ci->ci_dirhash_key)); 220 if (err) 221 return err; 222 ci->ci_dirhash_key_initialized = true; 223 return 0; 224 } 225 226 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 227 const struct fscrypt_master_key *mk) 228 { 229 WARN_ON(ci->ci_inode->i_ino == 0); 230 WARN_ON(!mk->mk_ino_hash_key_initialized); 231 232 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 233 &mk->mk_ino_hash_key); 234 } 235 236 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 237 struct fscrypt_master_key *mk) 238 { 239 int err; 240 241 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 242 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 243 if (err) 244 return err; 245 246 /* pairs with smp_store_release() below */ 247 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 248 249 mutex_lock(&fscrypt_mode_key_setup_mutex); 250 251 if (mk->mk_ino_hash_key_initialized) 252 goto unlock; 253 254 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 255 HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0, 256 (u8 *)&mk->mk_ino_hash_key, 257 sizeof(mk->mk_ino_hash_key)); 258 if (err) 259 goto unlock; 260 /* pairs with smp_load_acquire() above */ 261 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 262 unlock: 263 mutex_unlock(&fscrypt_mode_key_setup_mutex); 264 if (err) 265 return err; 266 } 267 268 /* 269 * New inodes may not have an inode number assigned yet. 270 * Hashing their inode number is delayed until later. 271 */ 272 if (ci->ci_inode->i_ino) 273 fscrypt_hash_inode_number(ci, mk); 274 return 0; 275 } 276 277 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 278 struct fscrypt_master_key *mk, 279 bool need_dirhash_key) 280 { 281 int err; 282 283 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 284 /* 285 * DIRECT_KEY: instead of deriving per-file encryption keys, the 286 * per-file nonce will be included in all the IVs. But unlike 287 * v1 policies, for v2 policies in this case we don't encrypt 288 * with the master key directly but rather derive a per-mode 289 * encryption key. This ensures that the master key is 290 * consistently used only for HKDF, avoiding key reuse issues. 291 */ 292 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 293 HKDF_CONTEXT_DIRECT_KEY, false); 294 } else if (ci->ci_policy.v2.flags & 295 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 296 /* 297 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 298 * mode_num, filesystem_uuid), and inode number is included in 299 * the IVs. This format is optimized for use with inline 300 * encryption hardware compliant with the UFS standard. 301 */ 302 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 303 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 304 true); 305 } else if (ci->ci_policy.v2.flags & 306 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 307 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 308 } else { 309 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 310 311 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 312 HKDF_CONTEXT_PER_FILE_ENC_KEY, 313 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 314 derived_key, ci->ci_mode->keysize); 315 if (err) 316 return err; 317 318 err = fscrypt_set_per_file_enc_key(ci, derived_key); 319 memzero_explicit(derived_key, ci->ci_mode->keysize); 320 } 321 if (err) 322 return err; 323 324 /* Derive a secret dirhash key for directories that need it. */ 325 if (need_dirhash_key) { 326 err = fscrypt_derive_dirhash_key(ci, mk); 327 if (err) 328 return err; 329 } 330 331 return 0; 332 } 333 334 /* 335 * Find the master key, then set up the inode's actual encryption key. 336 * 337 * If the master key is found in the filesystem-level keyring, then the 338 * corresponding 'struct key' is returned in *master_key_ret with 339 * ->mk_secret_sem read-locked. This is needed to ensure that only one task 340 * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race 341 * to create an fscrypt_info for the same inode), and to synchronize the master 342 * key being removed with a new inode starting to use it. 343 */ 344 static int setup_file_encryption_key(struct fscrypt_info *ci, 345 bool need_dirhash_key, 346 struct key **master_key_ret) 347 { 348 struct key *key; 349 struct fscrypt_master_key *mk = NULL; 350 struct fscrypt_key_specifier mk_spec; 351 int err; 352 353 err = fscrypt_select_encryption_impl(ci); 354 if (err) 355 return err; 356 357 switch (ci->ci_policy.version) { 358 case FSCRYPT_POLICY_V1: 359 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; 360 memcpy(mk_spec.u.descriptor, 361 ci->ci_policy.v1.master_key_descriptor, 362 FSCRYPT_KEY_DESCRIPTOR_SIZE); 363 break; 364 case FSCRYPT_POLICY_V2: 365 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 366 memcpy(mk_spec.u.identifier, 367 ci->ci_policy.v2.master_key_identifier, 368 FSCRYPT_KEY_IDENTIFIER_SIZE); 369 break; 370 default: 371 WARN_ON(1); 372 return -EINVAL; 373 } 374 375 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 376 if (IS_ERR(key)) { 377 if (key != ERR_PTR(-ENOKEY) || 378 ci->ci_policy.version != FSCRYPT_POLICY_V1) 379 return PTR_ERR(key); 380 381 /* 382 * As a legacy fallback for v1 policies, search for the key in 383 * the current task's subscribed keyrings too. Don't move this 384 * to before the search of ->s_master_keys, since users 385 * shouldn't be able to override filesystem-level keys. 386 */ 387 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 388 } 389 390 mk = key->payload.data[0]; 391 down_read(&mk->mk_secret_sem); 392 393 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 394 if (!is_master_key_secret_present(&mk->mk_secret)) { 395 err = -ENOKEY; 396 goto out_release_key; 397 } 398 399 /* 400 * Require that the master key be at least as long as the derived key. 401 * Otherwise, the derived key cannot possibly contain as much entropy as 402 * that required by the encryption mode it will be used for. For v1 403 * policies it's also required for the KDF to work at all. 404 */ 405 if (mk->mk_secret.size < ci->ci_mode->keysize) { 406 fscrypt_warn(NULL, 407 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 408 master_key_spec_type(&mk_spec), 409 master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u, 410 mk->mk_secret.size, ci->ci_mode->keysize); 411 err = -ENOKEY; 412 goto out_release_key; 413 } 414 415 switch (ci->ci_policy.version) { 416 case FSCRYPT_POLICY_V1: 417 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 418 break; 419 case FSCRYPT_POLICY_V2: 420 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); 421 break; 422 default: 423 WARN_ON(1); 424 err = -EINVAL; 425 break; 426 } 427 if (err) 428 goto out_release_key; 429 430 *master_key_ret = key; 431 return 0; 432 433 out_release_key: 434 up_read(&mk->mk_secret_sem); 435 key_put(key); 436 return err; 437 } 438 439 static void put_crypt_info(struct fscrypt_info *ci) 440 { 441 struct key *key; 442 443 if (!ci) 444 return; 445 446 if (ci->ci_direct_key) 447 fscrypt_put_direct_key(ci->ci_direct_key); 448 else if (ci->ci_owns_key) 449 fscrypt_destroy_prepared_key(&ci->ci_enc_key); 450 451 key = ci->ci_master_key; 452 if (key) { 453 struct fscrypt_master_key *mk = key->payload.data[0]; 454 455 /* 456 * Remove this inode from the list of inodes that were unlocked 457 * with the master key. 458 * 459 * In addition, if we're removing the last inode from a key that 460 * already had its secret removed, invalidate the key so that it 461 * gets removed from ->s_master_keys. 462 */ 463 spin_lock(&mk->mk_decrypted_inodes_lock); 464 list_del(&ci->ci_master_key_link); 465 spin_unlock(&mk->mk_decrypted_inodes_lock); 466 if (refcount_dec_and_test(&mk->mk_refcount)) 467 key_invalidate(key); 468 key_put(key); 469 } 470 memzero_explicit(ci, sizeof(*ci)); 471 kmem_cache_free(fscrypt_info_cachep, ci); 472 } 473 474 static int 475 fscrypt_setup_encryption_info(struct inode *inode, 476 const union fscrypt_policy *policy, 477 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], 478 bool need_dirhash_key) 479 { 480 struct fscrypt_info *crypt_info; 481 struct fscrypt_mode *mode; 482 struct key *master_key = NULL; 483 int res; 484 485 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 486 if (res) 487 return res; 488 489 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); 490 if (!crypt_info) 491 return -ENOMEM; 492 493 crypt_info->ci_inode = inode; 494 crypt_info->ci_policy = *policy; 495 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); 496 497 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 498 if (IS_ERR(mode)) { 499 res = PTR_ERR(mode); 500 goto out; 501 } 502 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 503 crypt_info->ci_mode = mode; 504 505 res = setup_file_encryption_key(crypt_info, need_dirhash_key, 506 &master_key); 507 if (res) 508 goto out; 509 510 /* 511 * For existing inodes, multiple tasks may race to set ->i_crypt_info. 512 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in 513 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 514 * RELEASE barrier so that other tasks can ACQUIRE it. 515 */ 516 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 517 /* 518 * We won the race and set ->i_crypt_info to our crypt_info. 519 * Now link it into the master key's inode list. 520 */ 521 if (master_key) { 522 struct fscrypt_master_key *mk = 523 master_key->payload.data[0]; 524 525 refcount_inc(&mk->mk_refcount); 526 crypt_info->ci_master_key = key_get(master_key); 527 spin_lock(&mk->mk_decrypted_inodes_lock); 528 list_add(&crypt_info->ci_master_key_link, 529 &mk->mk_decrypted_inodes); 530 spin_unlock(&mk->mk_decrypted_inodes_lock); 531 } 532 crypt_info = NULL; 533 } 534 res = 0; 535 out: 536 if (master_key) { 537 struct fscrypt_master_key *mk = master_key->payload.data[0]; 538 539 up_read(&mk->mk_secret_sem); 540 key_put(master_key); 541 } 542 put_crypt_info(crypt_info); 543 return res; 544 } 545 546 /** 547 * fscrypt_get_encryption_info() - set up an inode's encryption key 548 * @inode: the inode to set up the key for. Must be encrypted. 549 * 550 * Set up ->i_crypt_info, if it hasn't already been done. 551 * 552 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So 553 * generally this shouldn't be called from within a filesystem transaction. 554 * 555 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the 556 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to 557 * distinguish these cases.) Also can return another -errno code. 558 */ 559 int fscrypt_get_encryption_info(struct inode *inode) 560 { 561 int res; 562 union fscrypt_context ctx; 563 union fscrypt_policy policy; 564 565 if (fscrypt_has_encryption_key(inode)) 566 return 0; 567 568 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 569 if (res < 0) { 570 fscrypt_warn(inode, "Error %d getting encryption context", res); 571 return res; 572 } 573 574 res = fscrypt_policy_from_context(&policy, &ctx, res); 575 if (res) { 576 fscrypt_warn(inode, 577 "Unrecognized or corrupt encryption context"); 578 return res; 579 } 580 581 if (!fscrypt_supported_policy(&policy, inode)) 582 return -EINVAL; 583 584 res = fscrypt_setup_encryption_info(inode, &policy, 585 fscrypt_context_nonce(&ctx), 586 IS_CASEFOLDED(inode) && 587 S_ISDIR(inode->i_mode)); 588 if (res == -ENOKEY) 589 res = 0; 590 return res; 591 } 592 EXPORT_SYMBOL(fscrypt_get_encryption_info); 593 594 /** 595 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory 596 * @dir: a possibly-encrypted directory 597 * @inode: the new inode. ->i_mode must be set already. 598 * ->i_ino doesn't need to be set yet. 599 * @encrypt_ret: (output) set to %true if the new inode will be encrypted 600 * 601 * If the directory is encrypted, set up its ->i_crypt_info in preparation for 602 * encrypting the name of the new file. Also, if the new inode will be 603 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. 604 * 605 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting 606 * any filesystem transaction to create the inode. For this reason, ->i_ino 607 * isn't required to be set yet, as the filesystem may not have set it yet. 608 * 609 * This doesn't persist the new inode's encryption context. That still needs to 610 * be done later by calling fscrypt_set_context(). 611 * 612 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another 613 * -errno code 614 */ 615 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 616 bool *encrypt_ret) 617 { 618 const union fscrypt_policy *policy; 619 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 620 621 policy = fscrypt_policy_to_inherit(dir); 622 if (policy == NULL) 623 return 0; 624 if (IS_ERR(policy)) 625 return PTR_ERR(policy); 626 627 if (WARN_ON_ONCE(inode->i_mode == 0)) 628 return -EINVAL; 629 630 /* 631 * Only regular files, directories, and symlinks are encrypted. 632 * Special files like device nodes and named pipes aren't. 633 */ 634 if (!S_ISREG(inode->i_mode) && 635 !S_ISDIR(inode->i_mode) && 636 !S_ISLNK(inode->i_mode)) 637 return 0; 638 639 *encrypt_ret = true; 640 641 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); 642 return fscrypt_setup_encryption_info(inode, policy, nonce, 643 IS_CASEFOLDED(dir) && 644 S_ISDIR(inode->i_mode)); 645 } 646 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); 647 648 /** 649 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 650 * @inode: an inode being evicted 651 * 652 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 653 * being evicted. An RCU grace period need not have elapsed yet. 654 */ 655 void fscrypt_put_encryption_info(struct inode *inode) 656 { 657 put_crypt_info(inode->i_crypt_info); 658 inode->i_crypt_info = NULL; 659 } 660 EXPORT_SYMBOL(fscrypt_put_encryption_info); 661 662 /** 663 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 664 * @inode: an inode being freed 665 * 666 * Free the inode's cached decrypted symlink target, if any. Filesystems must 667 * call this after an RCU grace period, just before they free the inode. 668 */ 669 void fscrypt_free_inode(struct inode *inode) 670 { 671 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 672 kfree(inode->i_link); 673 inode->i_link = NULL; 674 } 675 } 676 EXPORT_SYMBOL(fscrypt_free_inode); 677 678 /** 679 * fscrypt_drop_inode() - check whether the inode's master key has been removed 680 * @inode: an inode being considered for eviction 681 * 682 * Filesystems supporting fscrypt must call this from their ->drop_inode() 683 * method so that encrypted inodes are evicted as soon as they're no longer in 684 * use and their master key has been removed. 685 * 686 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 687 */ 688 int fscrypt_drop_inode(struct inode *inode) 689 { 690 const struct fscrypt_info *ci = fscrypt_get_info(inode); 691 const struct fscrypt_master_key *mk; 692 693 /* 694 * If ci is NULL, then the inode doesn't have an encryption key set up 695 * so it's irrelevant. If ci_master_key is NULL, then the master key 696 * was provided via the legacy mechanism of the process-subscribed 697 * keyrings, so we don't know whether it's been removed or not. 698 */ 699 if (!ci || !ci->ci_master_key) 700 return 0; 701 mk = ci->ci_master_key->payload.data[0]; 702 703 /* 704 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 705 * protected by the key were cleaned by sync_filesystem(). But if 706 * userspace is still using the files, inodes can be dirtied between 707 * then and now. We mustn't lose any writes, so skip dirty inodes here. 708 */ 709 if (inode->i_state & I_DIRTY_ALL) 710 return 0; 711 712 /* 713 * Note: since we aren't holding ->mk_secret_sem, the result here can 714 * immediately become outdated. But there's no correctness problem with 715 * unnecessarily evicting. Nor is there a correctness problem with not 716 * evicting while iput() is racing with the key being removed, since 717 * then the thread removing the key will either evict the inode itself 718 * or will correctly detect that it wasn't evicted due to the race. 719 */ 720 return !is_master_key_secret_present(&mk->mk_secret); 721 } 722 EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 723