1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #include <crypto/skcipher.h> 12 #include <linux/key.h> 13 14 #include "fscrypt_private.h" 15 16 struct fscrypt_mode fscrypt_modes[] = { 17 [FSCRYPT_MODE_AES_256_XTS] = { 18 .friendly_name = "AES-256-XTS", 19 .cipher_str = "xts(aes)", 20 .keysize = 64, 21 .ivsize = 16, 22 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 23 }, 24 [FSCRYPT_MODE_AES_256_CTS] = { 25 .friendly_name = "AES-256-CTS-CBC", 26 .cipher_str = "cts(cbc(aes))", 27 .keysize = 32, 28 .ivsize = 16, 29 }, 30 [FSCRYPT_MODE_AES_128_CBC] = { 31 .friendly_name = "AES-128-CBC-ESSIV", 32 .cipher_str = "essiv(cbc(aes),sha256)", 33 .keysize = 16, 34 .ivsize = 16, 35 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 36 }, 37 [FSCRYPT_MODE_AES_128_CTS] = { 38 .friendly_name = "AES-128-CTS-CBC", 39 .cipher_str = "cts(cbc(aes))", 40 .keysize = 16, 41 .ivsize = 16, 42 }, 43 [FSCRYPT_MODE_ADIANTUM] = { 44 .friendly_name = "Adiantum", 45 .cipher_str = "adiantum(xchacha12,aes)", 46 .keysize = 32, 47 .ivsize = 32, 48 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 49 }, 50 }; 51 52 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 53 54 static struct fscrypt_mode * 55 select_encryption_mode(const union fscrypt_policy *policy, 56 const struct inode *inode) 57 { 58 if (S_ISREG(inode->i_mode)) 59 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 60 61 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 62 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 63 64 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 65 inode->i_ino, (inode->i_mode & S_IFMT)); 66 return ERR_PTR(-EINVAL); 67 } 68 69 /* Create a symmetric cipher object for the given encryption mode and key */ 70 static struct crypto_skcipher * 71 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 72 const struct inode *inode) 73 { 74 struct crypto_skcipher *tfm; 75 int err; 76 77 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 78 if (IS_ERR(tfm)) { 79 if (PTR_ERR(tfm) == -ENOENT) { 80 fscrypt_warn(inode, 81 "Missing crypto API support for %s (API name: \"%s\")", 82 mode->friendly_name, mode->cipher_str); 83 return ERR_PTR(-ENOPKG); 84 } 85 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 86 mode->cipher_str, PTR_ERR(tfm)); 87 return tfm; 88 } 89 if (!xchg(&mode->logged_impl_name, 1)) { 90 /* 91 * fscrypt performance can vary greatly depending on which 92 * crypto algorithm implementation is used. Help people debug 93 * performance problems by logging the ->cra_driver_name the 94 * first time a mode is used. 95 */ 96 pr_info("fscrypt: %s using implementation \"%s\"\n", 97 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 98 } 99 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 100 err = -EINVAL; 101 goto err_free_tfm; 102 } 103 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 104 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 105 if (err) 106 goto err_free_tfm; 107 108 return tfm; 109 110 err_free_tfm: 111 crypto_free_skcipher(tfm); 112 return ERR_PTR(err); 113 } 114 115 /* 116 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 117 * raw key, encryption mode, and flag indicating which encryption implementation 118 * (fs-layer or blk-crypto) will be used. 119 */ 120 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 121 const u8 *raw_key, const struct fscrypt_info *ci) 122 { 123 struct crypto_skcipher *tfm; 124 125 if (fscrypt_using_inline_encryption(ci)) 126 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 127 128 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 129 if (IS_ERR(tfm)) 130 return PTR_ERR(tfm); 131 /* 132 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 133 * I.e., here we publish ->tfm with a RELEASE barrier so that 134 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 135 * possible for per-mode keys, not for per-file keys. 136 */ 137 smp_store_release(&prep_key->tfm, tfm); 138 return 0; 139 } 140 141 /* Destroy a crypto transform object and/or blk-crypto key. */ 142 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) 143 { 144 crypto_free_skcipher(prep_key->tfm); 145 fscrypt_destroy_inline_crypt_key(prep_key); 146 } 147 148 /* Given a per-file encryption key, set up the file's crypto transform object */ 149 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 150 { 151 ci->ci_owns_key = true; 152 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 153 } 154 155 static int setup_per_mode_enc_key(struct fscrypt_info *ci, 156 struct fscrypt_master_key *mk, 157 struct fscrypt_prepared_key *keys, 158 u8 hkdf_context, bool include_fs_uuid) 159 { 160 const struct inode *inode = ci->ci_inode; 161 const struct super_block *sb = inode->i_sb; 162 struct fscrypt_mode *mode = ci->ci_mode; 163 const u8 mode_num = mode - fscrypt_modes; 164 struct fscrypt_prepared_key *prep_key; 165 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 166 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 167 unsigned int hkdf_infolen = 0; 168 int err; 169 170 if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX)) 171 return -EINVAL; 172 173 prep_key = &keys[mode_num]; 174 if (fscrypt_is_key_prepared(prep_key, ci)) { 175 ci->ci_enc_key = *prep_key; 176 return 0; 177 } 178 179 mutex_lock(&fscrypt_mode_key_setup_mutex); 180 181 if (fscrypt_is_key_prepared(prep_key, ci)) 182 goto done_unlock; 183 184 BUILD_BUG_ON(sizeof(mode_num) != 1); 185 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 186 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 187 hkdf_info[hkdf_infolen++] = mode_num; 188 if (include_fs_uuid) { 189 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 190 sizeof(sb->s_uuid)); 191 hkdf_infolen += sizeof(sb->s_uuid); 192 } 193 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 194 hkdf_context, hkdf_info, hkdf_infolen, 195 mode_key, mode->keysize); 196 if (err) 197 goto out_unlock; 198 err = fscrypt_prepare_key(prep_key, mode_key, ci); 199 memzero_explicit(mode_key, mode->keysize); 200 if (err) 201 goto out_unlock; 202 done_unlock: 203 ci->ci_enc_key = *prep_key; 204 err = 0; 205 out_unlock: 206 mutex_unlock(&fscrypt_mode_key_setup_mutex); 207 return err; 208 } 209 210 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 211 const struct fscrypt_master_key *mk) 212 { 213 int err; 214 215 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY, 216 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 217 (u8 *)&ci->ci_dirhash_key, 218 sizeof(ci->ci_dirhash_key)); 219 if (err) 220 return err; 221 ci->ci_dirhash_key_initialized = true; 222 return 0; 223 } 224 225 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 226 struct fscrypt_master_key *mk) 227 { 228 int err; 229 230 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 231 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 232 if (err) 233 return err; 234 235 /* pairs with smp_store_release() below */ 236 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 237 238 mutex_lock(&fscrypt_mode_key_setup_mutex); 239 240 if (mk->mk_ino_hash_key_initialized) 241 goto unlock; 242 243 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 244 HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0, 245 (u8 *)&mk->mk_ino_hash_key, 246 sizeof(mk->mk_ino_hash_key)); 247 if (err) 248 goto unlock; 249 /* pairs with smp_load_acquire() above */ 250 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 251 unlock: 252 mutex_unlock(&fscrypt_mode_key_setup_mutex); 253 if (err) 254 return err; 255 } 256 257 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 258 &mk->mk_ino_hash_key); 259 return 0; 260 } 261 262 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 263 struct fscrypt_master_key *mk) 264 { 265 int err; 266 267 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 268 /* 269 * DIRECT_KEY: instead of deriving per-file encryption keys, the 270 * per-file nonce will be included in all the IVs. But unlike 271 * v1 policies, for v2 policies in this case we don't encrypt 272 * with the master key directly but rather derive a per-mode 273 * encryption key. This ensures that the master key is 274 * consistently used only for HKDF, avoiding key reuse issues. 275 */ 276 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 277 HKDF_CONTEXT_DIRECT_KEY, false); 278 } else if (ci->ci_policy.v2.flags & 279 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 280 /* 281 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 282 * mode_num, filesystem_uuid), and inode number is included in 283 * the IVs. This format is optimized for use with inline 284 * encryption hardware compliant with the UFS standard. 285 */ 286 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 287 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 288 true); 289 } else if (ci->ci_policy.v2.flags & 290 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 291 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 292 } else { 293 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 294 295 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 296 HKDF_CONTEXT_PER_FILE_ENC_KEY, 297 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 298 derived_key, ci->ci_mode->keysize); 299 if (err) 300 return err; 301 302 err = fscrypt_set_per_file_enc_key(ci, derived_key); 303 memzero_explicit(derived_key, ci->ci_mode->keysize); 304 } 305 if (err) 306 return err; 307 308 /* Derive a secret dirhash key for directories that need it. */ 309 if (S_ISDIR(ci->ci_inode->i_mode) && IS_CASEFOLDED(ci->ci_inode)) { 310 err = fscrypt_derive_dirhash_key(ci, mk); 311 if (err) 312 return err; 313 } 314 315 return 0; 316 } 317 318 /* 319 * Find the master key, then set up the inode's actual encryption key. 320 * 321 * If the master key is found in the filesystem-level keyring, then the 322 * corresponding 'struct key' is returned in *master_key_ret with 323 * ->mk_secret_sem read-locked. This is needed to ensure that only one task 324 * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race 325 * to create an fscrypt_info for the same inode), and to synchronize the master 326 * key being removed with a new inode starting to use it. 327 */ 328 static int setup_file_encryption_key(struct fscrypt_info *ci, 329 struct key **master_key_ret) 330 { 331 struct key *key; 332 struct fscrypt_master_key *mk = NULL; 333 struct fscrypt_key_specifier mk_spec; 334 int err; 335 336 err = fscrypt_select_encryption_impl(ci); 337 if (err) 338 return err; 339 340 switch (ci->ci_policy.version) { 341 case FSCRYPT_POLICY_V1: 342 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; 343 memcpy(mk_spec.u.descriptor, 344 ci->ci_policy.v1.master_key_descriptor, 345 FSCRYPT_KEY_DESCRIPTOR_SIZE); 346 break; 347 case FSCRYPT_POLICY_V2: 348 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 349 memcpy(mk_spec.u.identifier, 350 ci->ci_policy.v2.master_key_identifier, 351 FSCRYPT_KEY_IDENTIFIER_SIZE); 352 break; 353 default: 354 WARN_ON(1); 355 return -EINVAL; 356 } 357 358 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 359 if (IS_ERR(key)) { 360 if (key != ERR_PTR(-ENOKEY) || 361 ci->ci_policy.version != FSCRYPT_POLICY_V1) 362 return PTR_ERR(key); 363 364 /* 365 * As a legacy fallback for v1 policies, search for the key in 366 * the current task's subscribed keyrings too. Don't move this 367 * to before the search of ->s_master_keys, since users 368 * shouldn't be able to override filesystem-level keys. 369 */ 370 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 371 } 372 373 mk = key->payload.data[0]; 374 down_read(&mk->mk_secret_sem); 375 376 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 377 if (!is_master_key_secret_present(&mk->mk_secret)) { 378 err = -ENOKEY; 379 goto out_release_key; 380 } 381 382 /* 383 * Require that the master key be at least as long as the derived key. 384 * Otherwise, the derived key cannot possibly contain as much entropy as 385 * that required by the encryption mode it will be used for. For v1 386 * policies it's also required for the KDF to work at all. 387 */ 388 if (mk->mk_secret.size < ci->ci_mode->keysize) { 389 fscrypt_warn(NULL, 390 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 391 master_key_spec_type(&mk_spec), 392 master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u, 393 mk->mk_secret.size, ci->ci_mode->keysize); 394 err = -ENOKEY; 395 goto out_release_key; 396 } 397 398 switch (ci->ci_policy.version) { 399 case FSCRYPT_POLICY_V1: 400 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 401 break; 402 case FSCRYPT_POLICY_V2: 403 err = fscrypt_setup_v2_file_key(ci, mk); 404 break; 405 default: 406 WARN_ON(1); 407 err = -EINVAL; 408 break; 409 } 410 if (err) 411 goto out_release_key; 412 413 *master_key_ret = key; 414 return 0; 415 416 out_release_key: 417 up_read(&mk->mk_secret_sem); 418 key_put(key); 419 return err; 420 } 421 422 static void put_crypt_info(struct fscrypt_info *ci) 423 { 424 struct key *key; 425 426 if (!ci) 427 return; 428 429 if (ci->ci_direct_key) 430 fscrypt_put_direct_key(ci->ci_direct_key); 431 else if (ci->ci_owns_key) 432 fscrypt_destroy_prepared_key(&ci->ci_enc_key); 433 434 key = ci->ci_master_key; 435 if (key) { 436 struct fscrypt_master_key *mk = key->payload.data[0]; 437 438 /* 439 * Remove this inode from the list of inodes that were unlocked 440 * with the master key. 441 * 442 * In addition, if we're removing the last inode from a key that 443 * already had its secret removed, invalidate the key so that it 444 * gets removed from ->s_master_keys. 445 */ 446 spin_lock(&mk->mk_decrypted_inodes_lock); 447 list_del(&ci->ci_master_key_link); 448 spin_unlock(&mk->mk_decrypted_inodes_lock); 449 if (refcount_dec_and_test(&mk->mk_refcount)) 450 key_invalidate(key); 451 key_put(key); 452 } 453 memzero_explicit(ci, sizeof(*ci)); 454 kmem_cache_free(fscrypt_info_cachep, ci); 455 } 456 457 int fscrypt_get_encryption_info(struct inode *inode) 458 { 459 struct fscrypt_info *crypt_info; 460 union fscrypt_context ctx; 461 struct fscrypt_mode *mode; 462 struct key *master_key = NULL; 463 int res; 464 465 if (fscrypt_has_encryption_key(inode)) 466 return 0; 467 468 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 469 if (res) 470 return res; 471 472 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 473 if (res < 0) { 474 const union fscrypt_context *dummy_ctx = 475 fscrypt_get_dummy_context(inode->i_sb); 476 477 if (IS_ENCRYPTED(inode) || !dummy_ctx) { 478 fscrypt_warn(inode, 479 "Error %d getting encryption context", 480 res); 481 return res; 482 } 483 /* Fake up a context for an unencrypted directory */ 484 res = fscrypt_context_size(dummy_ctx); 485 memcpy(&ctx, dummy_ctx, res); 486 } 487 488 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS); 489 if (!crypt_info) 490 return -ENOMEM; 491 492 crypt_info->ci_inode = inode; 493 494 res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res); 495 if (res) { 496 fscrypt_warn(inode, 497 "Unrecognized or corrupt encryption context"); 498 goto out; 499 } 500 501 memcpy(crypt_info->ci_nonce, fscrypt_context_nonce(&ctx), 502 FSCRYPT_FILE_NONCE_SIZE); 503 504 if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) { 505 res = -EINVAL; 506 goto out; 507 } 508 509 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 510 if (IS_ERR(mode)) { 511 res = PTR_ERR(mode); 512 goto out; 513 } 514 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 515 crypt_info->ci_mode = mode; 516 517 res = setup_file_encryption_key(crypt_info, &master_key); 518 if (res) 519 goto out; 520 521 /* 522 * Multiple tasks may race to set ->i_crypt_info, so use 523 * cmpxchg_release(). This pairs with the smp_load_acquire() in 524 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 525 * RELEASE barrier so that other tasks can ACQUIRE it. 526 */ 527 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 528 /* 529 * We won the race and set ->i_crypt_info to our crypt_info. 530 * Now link it into the master key's inode list. 531 */ 532 if (master_key) { 533 struct fscrypt_master_key *mk = 534 master_key->payload.data[0]; 535 536 refcount_inc(&mk->mk_refcount); 537 crypt_info->ci_master_key = key_get(master_key); 538 spin_lock(&mk->mk_decrypted_inodes_lock); 539 list_add(&crypt_info->ci_master_key_link, 540 &mk->mk_decrypted_inodes); 541 spin_unlock(&mk->mk_decrypted_inodes_lock); 542 } 543 crypt_info = NULL; 544 } 545 res = 0; 546 out: 547 if (master_key) { 548 struct fscrypt_master_key *mk = master_key->payload.data[0]; 549 550 up_read(&mk->mk_secret_sem); 551 key_put(master_key); 552 } 553 if (res == -ENOKEY) 554 res = 0; 555 put_crypt_info(crypt_info); 556 return res; 557 } 558 EXPORT_SYMBOL(fscrypt_get_encryption_info); 559 560 /** 561 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 562 * @inode: an inode being evicted 563 * 564 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 565 * being evicted. An RCU grace period need not have elapsed yet. 566 */ 567 void fscrypt_put_encryption_info(struct inode *inode) 568 { 569 put_crypt_info(inode->i_crypt_info); 570 inode->i_crypt_info = NULL; 571 } 572 EXPORT_SYMBOL(fscrypt_put_encryption_info); 573 574 /** 575 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 576 * @inode: an inode being freed 577 * 578 * Free the inode's cached decrypted symlink target, if any. Filesystems must 579 * call this after an RCU grace period, just before they free the inode. 580 */ 581 void fscrypt_free_inode(struct inode *inode) 582 { 583 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 584 kfree(inode->i_link); 585 inode->i_link = NULL; 586 } 587 } 588 EXPORT_SYMBOL(fscrypt_free_inode); 589 590 /** 591 * fscrypt_drop_inode() - check whether the inode's master key has been removed 592 * @inode: an inode being considered for eviction 593 * 594 * Filesystems supporting fscrypt must call this from their ->drop_inode() 595 * method so that encrypted inodes are evicted as soon as they're no longer in 596 * use and their master key has been removed. 597 * 598 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 599 */ 600 int fscrypt_drop_inode(struct inode *inode) 601 { 602 const struct fscrypt_info *ci = fscrypt_get_info(inode); 603 const struct fscrypt_master_key *mk; 604 605 /* 606 * If ci is NULL, then the inode doesn't have an encryption key set up 607 * so it's irrelevant. If ci_master_key is NULL, then the master key 608 * was provided via the legacy mechanism of the process-subscribed 609 * keyrings, so we don't know whether it's been removed or not. 610 */ 611 if (!ci || !ci->ci_master_key) 612 return 0; 613 mk = ci->ci_master_key->payload.data[0]; 614 615 /* 616 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 617 * protected by the key were cleaned by sync_filesystem(). But if 618 * userspace is still using the files, inodes can be dirtied between 619 * then and now. We mustn't lose any writes, so skip dirty inodes here. 620 */ 621 if (inode->i_state & I_DIRTY_ALL) 622 return 0; 623 624 /* 625 * Note: since we aren't holding ->mk_secret_sem, the result here can 626 * immediately become outdated. But there's no correctness problem with 627 * unnecessarily evicting. Nor is there a correctness problem with not 628 * evicting while iput() is racing with the key being removed, since 629 * then the thread removing the key will either evict the inode itself 630 * or will correctly detect that it wasn't evicted due to the race. 631 */ 632 return !is_master_key_secret_present(&mk->mk_secret); 633 } 634 EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 635