xref: /openbmc/linux/fs/crypto/keysetup.c (revision 305c8388)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup facility for FS encryption support.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #include <crypto/skcipher.h>
12 #include <linux/key.h>
13 
14 #include "fscrypt_private.h"
15 
16 struct fscrypt_mode fscrypt_modes[] = {
17 	[FSCRYPT_MODE_AES_256_XTS] = {
18 		.friendly_name = "AES-256-XTS",
19 		.cipher_str = "xts(aes)",
20 		.keysize = 64,
21 		.ivsize = 16,
22 	},
23 	[FSCRYPT_MODE_AES_256_CTS] = {
24 		.friendly_name = "AES-256-CTS-CBC",
25 		.cipher_str = "cts(cbc(aes))",
26 		.keysize = 32,
27 		.ivsize = 16,
28 	},
29 	[FSCRYPT_MODE_AES_128_CBC] = {
30 		.friendly_name = "AES-128-CBC-ESSIV",
31 		.cipher_str = "essiv(cbc(aes),sha256)",
32 		.keysize = 16,
33 		.ivsize = 16,
34 	},
35 	[FSCRYPT_MODE_AES_128_CTS] = {
36 		.friendly_name = "AES-128-CTS-CBC",
37 		.cipher_str = "cts(cbc(aes))",
38 		.keysize = 16,
39 		.ivsize = 16,
40 	},
41 	[FSCRYPT_MODE_ADIANTUM] = {
42 		.friendly_name = "Adiantum",
43 		.cipher_str = "adiantum(xchacha12,aes)",
44 		.keysize = 32,
45 		.ivsize = 32,
46 	},
47 };
48 
49 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
50 
51 static struct fscrypt_mode *
52 select_encryption_mode(const union fscrypt_policy *policy,
53 		       const struct inode *inode)
54 {
55 	if (S_ISREG(inode->i_mode))
56 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
57 
58 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
59 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
60 
61 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
62 		  inode->i_ino, (inode->i_mode & S_IFMT));
63 	return ERR_PTR(-EINVAL);
64 }
65 
66 /* Create a symmetric cipher object for the given encryption mode and key */
67 struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode,
68 						  const u8 *raw_key,
69 						  const struct inode *inode)
70 {
71 	struct crypto_skcipher *tfm;
72 	int err;
73 
74 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
75 	if (IS_ERR(tfm)) {
76 		if (PTR_ERR(tfm) == -ENOENT) {
77 			fscrypt_warn(inode,
78 				     "Missing crypto API support for %s (API name: \"%s\")",
79 				     mode->friendly_name, mode->cipher_str);
80 			return ERR_PTR(-ENOPKG);
81 		}
82 		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
83 			    mode->cipher_str, PTR_ERR(tfm));
84 		return tfm;
85 	}
86 	if (!xchg(&mode->logged_impl_name, 1)) {
87 		/*
88 		 * fscrypt performance can vary greatly depending on which
89 		 * crypto algorithm implementation is used.  Help people debug
90 		 * performance problems by logging the ->cra_driver_name the
91 		 * first time a mode is used.
92 		 */
93 		pr_info("fscrypt: %s using implementation \"%s\"\n",
94 			mode->friendly_name, crypto_skcipher_driver_name(tfm));
95 	}
96 	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
97 		err = -EINVAL;
98 		goto err_free_tfm;
99 	}
100 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
101 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
102 	if (err)
103 		goto err_free_tfm;
104 
105 	return tfm;
106 
107 err_free_tfm:
108 	crypto_free_skcipher(tfm);
109 	return ERR_PTR(err);
110 }
111 
112 /* Given a per-file encryption key, set up the file's crypto transform object */
113 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
114 {
115 	struct crypto_skcipher *tfm;
116 
117 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
118 	if (IS_ERR(tfm))
119 		return PTR_ERR(tfm);
120 
121 	ci->ci_ctfm = tfm;
122 	ci->ci_owns_key = true;
123 	return 0;
124 }
125 
126 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
127 				  struct fscrypt_master_key *mk,
128 				  struct crypto_skcipher **tfms,
129 				  u8 hkdf_context, bool include_fs_uuid)
130 {
131 	const struct inode *inode = ci->ci_inode;
132 	const struct super_block *sb = inode->i_sb;
133 	struct fscrypt_mode *mode = ci->ci_mode;
134 	const u8 mode_num = mode - fscrypt_modes;
135 	struct crypto_skcipher *tfm;
136 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
137 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
138 	unsigned int hkdf_infolen = 0;
139 	int err;
140 
141 	if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX))
142 		return -EINVAL;
143 
144 	/* pairs with smp_store_release() below */
145 	tfm = READ_ONCE(tfms[mode_num]);
146 	if (likely(tfm != NULL)) {
147 		ci->ci_ctfm = tfm;
148 		return 0;
149 	}
150 
151 	mutex_lock(&fscrypt_mode_key_setup_mutex);
152 
153 	if (tfms[mode_num])
154 		goto done_unlock;
155 
156 	BUILD_BUG_ON(sizeof(mode_num) != 1);
157 	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
158 	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
159 	hkdf_info[hkdf_infolen++] = mode_num;
160 	if (include_fs_uuid) {
161 		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
162 		       sizeof(sb->s_uuid));
163 		hkdf_infolen += sizeof(sb->s_uuid);
164 	}
165 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
166 				  hkdf_context, hkdf_info, hkdf_infolen,
167 				  mode_key, mode->keysize);
168 	if (err)
169 		goto out_unlock;
170 	tfm = fscrypt_allocate_skcipher(mode, mode_key, inode);
171 	memzero_explicit(mode_key, mode->keysize);
172 	if (IS_ERR(tfm)) {
173 		err = PTR_ERR(tfm);
174 		goto out_unlock;
175 	}
176 	/* pairs with READ_ONCE() above */
177 	smp_store_release(&tfms[mode_num], tfm);
178 done_unlock:
179 	ci->ci_ctfm = tfm;
180 	err = 0;
181 out_unlock:
182 	mutex_unlock(&fscrypt_mode_key_setup_mutex);
183 	return err;
184 }
185 
186 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
187 			       const struct fscrypt_master_key *mk)
188 {
189 	int err;
190 
191 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY,
192 				  ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
193 				  (u8 *)&ci->ci_dirhash_key,
194 				  sizeof(ci->ci_dirhash_key));
195 	if (err)
196 		return err;
197 	ci->ci_dirhash_key_initialized = true;
198 	return 0;
199 }
200 
201 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
202 					    struct fscrypt_master_key *mk)
203 {
204 	int err;
205 
206 	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
207 				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
208 	if (err)
209 		return err;
210 
211 	/* pairs with smp_store_release() below */
212 	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
213 
214 		mutex_lock(&fscrypt_mode_key_setup_mutex);
215 
216 		if (mk->mk_ino_hash_key_initialized)
217 			goto unlock;
218 
219 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
220 					  HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0,
221 					  (u8 *)&mk->mk_ino_hash_key,
222 					  sizeof(mk->mk_ino_hash_key));
223 		if (err)
224 			goto unlock;
225 		/* pairs with smp_load_acquire() above */
226 		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
227 unlock:
228 		mutex_unlock(&fscrypt_mode_key_setup_mutex);
229 		if (err)
230 			return err;
231 	}
232 
233 	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
234 					      &mk->mk_ino_hash_key);
235 	return 0;
236 }
237 
238 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
239 				     struct fscrypt_master_key *mk)
240 {
241 	int err;
242 
243 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
244 		/*
245 		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
246 		 * per-file nonce will be included in all the IVs.  But unlike
247 		 * v1 policies, for v2 policies in this case we don't encrypt
248 		 * with the master key directly but rather derive a per-mode
249 		 * encryption key.  This ensures that the master key is
250 		 * consistently used only for HKDF, avoiding key reuse issues.
251 		 */
252 		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
253 					     HKDF_CONTEXT_DIRECT_KEY, false);
254 	} else if (ci->ci_policy.v2.flags &
255 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
256 		/*
257 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
258 		 * mode_num, filesystem_uuid), and inode number is included in
259 		 * the IVs.  This format is optimized for use with inline
260 		 * encryption hardware compliant with the UFS standard.
261 		 */
262 		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
263 					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
264 					     true);
265 	} else if (ci->ci_policy.v2.flags &
266 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
267 		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
268 	} else {
269 		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
270 
271 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
272 					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
273 					  ci->ci_nonce,
274 					  FS_KEY_DERIVATION_NONCE_SIZE,
275 					  derived_key, ci->ci_mode->keysize);
276 		if (err)
277 			return err;
278 
279 		err = fscrypt_set_per_file_enc_key(ci, derived_key);
280 		memzero_explicit(derived_key, ci->ci_mode->keysize);
281 	}
282 	if (err)
283 		return err;
284 
285 	/* Derive a secret dirhash key for directories that need it. */
286 	if (S_ISDIR(ci->ci_inode->i_mode) && IS_CASEFOLDED(ci->ci_inode)) {
287 		err = fscrypt_derive_dirhash_key(ci, mk);
288 		if (err)
289 			return err;
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * Find the master key, then set up the inode's actual encryption key.
297  *
298  * If the master key is found in the filesystem-level keyring, then the
299  * corresponding 'struct key' is returned in *master_key_ret with
300  * ->mk_secret_sem read-locked.  This is needed to ensure that only one task
301  * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
302  * to create an fscrypt_info for the same inode), and to synchronize the master
303  * key being removed with a new inode starting to use it.
304  */
305 static int setup_file_encryption_key(struct fscrypt_info *ci,
306 				     struct key **master_key_ret)
307 {
308 	struct key *key;
309 	struct fscrypt_master_key *mk = NULL;
310 	struct fscrypt_key_specifier mk_spec;
311 	int err;
312 
313 	switch (ci->ci_policy.version) {
314 	case FSCRYPT_POLICY_V1:
315 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
316 		memcpy(mk_spec.u.descriptor,
317 		       ci->ci_policy.v1.master_key_descriptor,
318 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
319 		break;
320 	case FSCRYPT_POLICY_V2:
321 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
322 		memcpy(mk_spec.u.identifier,
323 		       ci->ci_policy.v2.master_key_identifier,
324 		       FSCRYPT_KEY_IDENTIFIER_SIZE);
325 		break;
326 	default:
327 		WARN_ON(1);
328 		return -EINVAL;
329 	}
330 
331 	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
332 	if (IS_ERR(key)) {
333 		if (key != ERR_PTR(-ENOKEY) ||
334 		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
335 			return PTR_ERR(key);
336 
337 		/*
338 		 * As a legacy fallback for v1 policies, search for the key in
339 		 * the current task's subscribed keyrings too.  Don't move this
340 		 * to before the search of ->s_master_keys, since users
341 		 * shouldn't be able to override filesystem-level keys.
342 		 */
343 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
344 	}
345 
346 	mk = key->payload.data[0];
347 	down_read(&mk->mk_secret_sem);
348 
349 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
350 	if (!is_master_key_secret_present(&mk->mk_secret)) {
351 		err = -ENOKEY;
352 		goto out_release_key;
353 	}
354 
355 	/*
356 	 * Require that the master key be at least as long as the derived key.
357 	 * Otherwise, the derived key cannot possibly contain as much entropy as
358 	 * that required by the encryption mode it will be used for.  For v1
359 	 * policies it's also required for the KDF to work at all.
360 	 */
361 	if (mk->mk_secret.size < ci->ci_mode->keysize) {
362 		fscrypt_warn(NULL,
363 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
364 			     master_key_spec_type(&mk_spec),
365 			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
366 			     mk->mk_secret.size, ci->ci_mode->keysize);
367 		err = -ENOKEY;
368 		goto out_release_key;
369 	}
370 
371 	switch (ci->ci_policy.version) {
372 	case FSCRYPT_POLICY_V1:
373 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
374 		break;
375 	case FSCRYPT_POLICY_V2:
376 		err = fscrypt_setup_v2_file_key(ci, mk);
377 		break;
378 	default:
379 		WARN_ON(1);
380 		err = -EINVAL;
381 		break;
382 	}
383 	if (err)
384 		goto out_release_key;
385 
386 	*master_key_ret = key;
387 	return 0;
388 
389 out_release_key:
390 	up_read(&mk->mk_secret_sem);
391 	key_put(key);
392 	return err;
393 }
394 
395 static void put_crypt_info(struct fscrypt_info *ci)
396 {
397 	struct key *key;
398 
399 	if (!ci)
400 		return;
401 
402 	if (ci->ci_direct_key)
403 		fscrypt_put_direct_key(ci->ci_direct_key);
404 	else if (ci->ci_owns_key)
405 		crypto_free_skcipher(ci->ci_ctfm);
406 
407 	key = ci->ci_master_key;
408 	if (key) {
409 		struct fscrypt_master_key *mk = key->payload.data[0];
410 
411 		/*
412 		 * Remove this inode from the list of inodes that were unlocked
413 		 * with the master key.
414 		 *
415 		 * In addition, if we're removing the last inode from a key that
416 		 * already had its secret removed, invalidate the key so that it
417 		 * gets removed from ->s_master_keys.
418 		 */
419 		spin_lock(&mk->mk_decrypted_inodes_lock);
420 		list_del(&ci->ci_master_key_link);
421 		spin_unlock(&mk->mk_decrypted_inodes_lock);
422 		if (refcount_dec_and_test(&mk->mk_refcount))
423 			key_invalidate(key);
424 		key_put(key);
425 	}
426 	memzero_explicit(ci, sizeof(*ci));
427 	kmem_cache_free(fscrypt_info_cachep, ci);
428 }
429 
430 int fscrypt_get_encryption_info(struct inode *inode)
431 {
432 	struct fscrypt_info *crypt_info;
433 	union fscrypt_context ctx;
434 	struct fscrypt_mode *mode;
435 	struct key *master_key = NULL;
436 	int res;
437 
438 	if (fscrypt_has_encryption_key(inode))
439 		return 0;
440 
441 	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
442 	if (res)
443 		return res;
444 
445 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
446 	if (res < 0) {
447 		const union fscrypt_context *dummy_ctx =
448 			fscrypt_get_dummy_context(inode->i_sb);
449 
450 		if (IS_ENCRYPTED(inode) || !dummy_ctx) {
451 			fscrypt_warn(inode,
452 				     "Error %d getting encryption context",
453 				     res);
454 			return res;
455 		}
456 		/* Fake up a context for an unencrypted directory */
457 		res = fscrypt_context_size(dummy_ctx);
458 		memcpy(&ctx, dummy_ctx, res);
459 	}
460 
461 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
462 	if (!crypt_info)
463 		return -ENOMEM;
464 
465 	crypt_info->ci_inode = inode;
466 
467 	res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
468 	if (res) {
469 		fscrypt_warn(inode,
470 			     "Unrecognized or corrupt encryption context");
471 		goto out;
472 	}
473 
474 	memcpy(crypt_info->ci_nonce, fscrypt_context_nonce(&ctx),
475 	       FS_KEY_DERIVATION_NONCE_SIZE);
476 
477 	if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
478 		res = -EINVAL;
479 		goto out;
480 	}
481 
482 	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
483 	if (IS_ERR(mode)) {
484 		res = PTR_ERR(mode);
485 		goto out;
486 	}
487 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
488 	crypt_info->ci_mode = mode;
489 
490 	res = setup_file_encryption_key(crypt_info, &master_key);
491 	if (res)
492 		goto out;
493 
494 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
495 		if (master_key) {
496 			struct fscrypt_master_key *mk =
497 				master_key->payload.data[0];
498 
499 			refcount_inc(&mk->mk_refcount);
500 			crypt_info->ci_master_key = key_get(master_key);
501 			spin_lock(&mk->mk_decrypted_inodes_lock);
502 			list_add(&crypt_info->ci_master_key_link,
503 				 &mk->mk_decrypted_inodes);
504 			spin_unlock(&mk->mk_decrypted_inodes_lock);
505 		}
506 		crypt_info = NULL;
507 	}
508 	res = 0;
509 out:
510 	if (master_key) {
511 		struct fscrypt_master_key *mk = master_key->payload.data[0];
512 
513 		up_read(&mk->mk_secret_sem);
514 		key_put(master_key);
515 	}
516 	if (res == -ENOKEY)
517 		res = 0;
518 	put_crypt_info(crypt_info);
519 	return res;
520 }
521 EXPORT_SYMBOL(fscrypt_get_encryption_info);
522 
523 /**
524  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
525  * @inode: an inode being evicted
526  *
527  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
528  * being evicted.  An RCU grace period need not have elapsed yet.
529  */
530 void fscrypt_put_encryption_info(struct inode *inode)
531 {
532 	put_crypt_info(inode->i_crypt_info);
533 	inode->i_crypt_info = NULL;
534 }
535 EXPORT_SYMBOL(fscrypt_put_encryption_info);
536 
537 /**
538  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
539  * @inode: an inode being freed
540  *
541  * Free the inode's cached decrypted symlink target, if any.  Filesystems must
542  * call this after an RCU grace period, just before they free the inode.
543  */
544 void fscrypt_free_inode(struct inode *inode)
545 {
546 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
547 		kfree(inode->i_link);
548 		inode->i_link = NULL;
549 	}
550 }
551 EXPORT_SYMBOL(fscrypt_free_inode);
552 
553 /**
554  * fscrypt_drop_inode() - check whether the inode's master key has been removed
555  * @inode: an inode being considered for eviction
556  *
557  * Filesystems supporting fscrypt must call this from their ->drop_inode()
558  * method so that encrypted inodes are evicted as soon as they're no longer in
559  * use and their master key has been removed.
560  *
561  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
562  */
563 int fscrypt_drop_inode(struct inode *inode)
564 {
565 	const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
566 	const struct fscrypt_master_key *mk;
567 
568 	/*
569 	 * If ci is NULL, then the inode doesn't have an encryption key set up
570 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
571 	 * was provided via the legacy mechanism of the process-subscribed
572 	 * keyrings, so we don't know whether it's been removed or not.
573 	 */
574 	if (!ci || !ci->ci_master_key)
575 		return 0;
576 	mk = ci->ci_master_key->payload.data[0];
577 
578 	/*
579 	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
580 	 * protected by the key were cleaned by sync_filesystem().  But if
581 	 * userspace is still using the files, inodes can be dirtied between
582 	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
583 	 */
584 	if (inode->i_state & I_DIRTY_ALL)
585 		return 0;
586 
587 	/*
588 	 * Note: since we aren't holding ->mk_secret_sem, the result here can
589 	 * immediately become outdated.  But there's no correctness problem with
590 	 * unnecessarily evicting.  Nor is there a correctness problem with not
591 	 * evicting while iput() is racing with the key being removed, since
592 	 * then the thread removing the key will either evict the inode itself
593 	 * or will correctly detect that it wasn't evicted due to the race.
594 	 */
595 	return !is_master_key_secret_present(&mk->mk_secret);
596 }
597 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
598