1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #include <crypto/skcipher.h> 12 #include <linux/key.h> 13 #include <linux/random.h> 14 15 #include "fscrypt_private.h" 16 17 struct fscrypt_mode fscrypt_modes[] = { 18 [FSCRYPT_MODE_AES_256_XTS] = { 19 .friendly_name = "AES-256-XTS", 20 .cipher_str = "xts(aes)", 21 .keysize = 64, 22 .security_strength = 32, 23 .ivsize = 16, 24 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 25 }, 26 [FSCRYPT_MODE_AES_256_CTS] = { 27 .friendly_name = "AES-256-CTS-CBC", 28 .cipher_str = "cts(cbc(aes))", 29 .keysize = 32, 30 .security_strength = 32, 31 .ivsize = 16, 32 }, 33 [FSCRYPT_MODE_AES_128_CBC] = { 34 .friendly_name = "AES-128-CBC-ESSIV", 35 .cipher_str = "essiv(cbc(aes),sha256)", 36 .keysize = 16, 37 .security_strength = 16, 38 .ivsize = 16, 39 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 40 }, 41 [FSCRYPT_MODE_AES_128_CTS] = { 42 .friendly_name = "AES-128-CTS-CBC", 43 .cipher_str = "cts(cbc(aes))", 44 .keysize = 16, 45 .security_strength = 16, 46 .ivsize = 16, 47 }, 48 [FSCRYPT_MODE_ADIANTUM] = { 49 .friendly_name = "Adiantum", 50 .cipher_str = "adiantum(xchacha12,aes)", 51 .keysize = 32, 52 .security_strength = 32, 53 .ivsize = 32, 54 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 55 }, 56 [FSCRYPT_MODE_AES_256_HCTR2] = { 57 .friendly_name = "AES-256-HCTR2", 58 .cipher_str = "hctr2(aes)", 59 .keysize = 32, 60 .security_strength = 32, 61 .ivsize = 32, 62 }, 63 }; 64 65 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 66 67 static struct fscrypt_mode * 68 select_encryption_mode(const union fscrypt_policy *policy, 69 const struct inode *inode) 70 { 71 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); 72 73 if (S_ISREG(inode->i_mode)) 74 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 75 76 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 77 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 78 79 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 80 inode->i_ino, (inode->i_mode & S_IFMT)); 81 return ERR_PTR(-EINVAL); 82 } 83 84 /* Create a symmetric cipher object for the given encryption mode and key */ 85 static struct crypto_skcipher * 86 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 87 const struct inode *inode) 88 { 89 struct crypto_skcipher *tfm; 90 int err; 91 92 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 93 if (IS_ERR(tfm)) { 94 if (PTR_ERR(tfm) == -ENOENT) { 95 fscrypt_warn(inode, 96 "Missing crypto API support for %s (API name: \"%s\")", 97 mode->friendly_name, mode->cipher_str); 98 return ERR_PTR(-ENOPKG); 99 } 100 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 101 mode->cipher_str, PTR_ERR(tfm)); 102 return tfm; 103 } 104 if (!xchg(&mode->logged_cryptoapi_impl, 1)) { 105 /* 106 * fscrypt performance can vary greatly depending on which 107 * crypto algorithm implementation is used. Help people debug 108 * performance problems by logging the ->cra_driver_name the 109 * first time a mode is used. 110 */ 111 pr_info("fscrypt: %s using implementation \"%s\"\n", 112 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 113 } 114 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 115 err = -EINVAL; 116 goto err_free_tfm; 117 } 118 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 119 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 120 if (err) 121 goto err_free_tfm; 122 123 return tfm; 124 125 err_free_tfm: 126 crypto_free_skcipher(tfm); 127 return ERR_PTR(err); 128 } 129 130 /* 131 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 132 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption 133 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt), 134 * and IV generation method (@ci->ci_policy.flags). 135 */ 136 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 137 const u8 *raw_key, const struct fscrypt_info *ci) 138 { 139 struct crypto_skcipher *tfm; 140 141 if (fscrypt_using_inline_encryption(ci)) 142 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 143 144 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 145 if (IS_ERR(tfm)) 146 return PTR_ERR(tfm); 147 /* 148 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 149 * I.e., here we publish ->tfm with a RELEASE barrier so that 150 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 151 * possible for per-mode keys, not for per-file keys. 152 */ 153 smp_store_release(&prep_key->tfm, tfm); 154 return 0; 155 } 156 157 /* Destroy a crypto transform object and/or blk-crypto key. */ 158 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) 159 { 160 crypto_free_skcipher(prep_key->tfm); 161 fscrypt_destroy_inline_crypt_key(prep_key); 162 } 163 164 /* Given a per-file encryption key, set up the file's crypto transform object */ 165 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 166 { 167 ci->ci_owns_key = true; 168 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 169 } 170 171 static int setup_per_mode_enc_key(struct fscrypt_info *ci, 172 struct fscrypt_master_key *mk, 173 struct fscrypt_prepared_key *keys, 174 u8 hkdf_context, bool include_fs_uuid) 175 { 176 const struct inode *inode = ci->ci_inode; 177 const struct super_block *sb = inode->i_sb; 178 struct fscrypt_mode *mode = ci->ci_mode; 179 const u8 mode_num = mode - fscrypt_modes; 180 struct fscrypt_prepared_key *prep_key; 181 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 182 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 183 unsigned int hkdf_infolen = 0; 184 int err; 185 186 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) 187 return -EINVAL; 188 189 prep_key = &keys[mode_num]; 190 if (fscrypt_is_key_prepared(prep_key, ci)) { 191 ci->ci_enc_key = *prep_key; 192 return 0; 193 } 194 195 mutex_lock(&fscrypt_mode_key_setup_mutex); 196 197 if (fscrypt_is_key_prepared(prep_key, ci)) 198 goto done_unlock; 199 200 BUILD_BUG_ON(sizeof(mode_num) != 1); 201 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 202 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 203 hkdf_info[hkdf_infolen++] = mode_num; 204 if (include_fs_uuid) { 205 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 206 sizeof(sb->s_uuid)); 207 hkdf_infolen += sizeof(sb->s_uuid); 208 } 209 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 210 hkdf_context, hkdf_info, hkdf_infolen, 211 mode_key, mode->keysize); 212 if (err) 213 goto out_unlock; 214 err = fscrypt_prepare_key(prep_key, mode_key, ci); 215 memzero_explicit(mode_key, mode->keysize); 216 if (err) 217 goto out_unlock; 218 done_unlock: 219 ci->ci_enc_key = *prep_key; 220 err = 0; 221 out_unlock: 222 mutex_unlock(&fscrypt_mode_key_setup_mutex); 223 return err; 224 } 225 226 /* 227 * Derive a SipHash key from the given fscrypt master key and the given 228 * application-specific information string. 229 * 230 * Note that the KDF produces a byte array, but the SipHash APIs expect the key 231 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an 232 * endianness swap in order to get the same results as on little endian CPUs. 233 */ 234 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk, 235 u8 context, const u8 *info, 236 unsigned int infolen, siphash_key_t *key) 237 { 238 int err; 239 240 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen, 241 (u8 *)key, sizeof(*key)); 242 if (err) 243 return err; 244 245 BUILD_BUG_ON(sizeof(*key) != 16); 246 BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2); 247 le64_to_cpus(&key->key[0]); 248 le64_to_cpus(&key->key[1]); 249 return 0; 250 } 251 252 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 253 const struct fscrypt_master_key *mk) 254 { 255 int err; 256 257 err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY, 258 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 259 &ci->ci_dirhash_key); 260 if (err) 261 return err; 262 ci->ci_dirhash_key_initialized = true; 263 return 0; 264 } 265 266 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 267 const struct fscrypt_master_key *mk) 268 { 269 WARN_ON(ci->ci_inode->i_ino == 0); 270 WARN_ON(!mk->mk_ino_hash_key_initialized); 271 272 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 273 &mk->mk_ino_hash_key); 274 } 275 276 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 277 struct fscrypt_master_key *mk) 278 { 279 int err; 280 281 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 282 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 283 if (err) 284 return err; 285 286 /* pairs with smp_store_release() below */ 287 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 288 289 mutex_lock(&fscrypt_mode_key_setup_mutex); 290 291 if (mk->mk_ino_hash_key_initialized) 292 goto unlock; 293 294 err = fscrypt_derive_siphash_key(mk, 295 HKDF_CONTEXT_INODE_HASH_KEY, 296 NULL, 0, &mk->mk_ino_hash_key); 297 if (err) 298 goto unlock; 299 /* pairs with smp_load_acquire() above */ 300 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 301 unlock: 302 mutex_unlock(&fscrypt_mode_key_setup_mutex); 303 if (err) 304 return err; 305 } 306 307 /* 308 * New inodes may not have an inode number assigned yet. 309 * Hashing their inode number is delayed until later. 310 */ 311 if (ci->ci_inode->i_ino) 312 fscrypt_hash_inode_number(ci, mk); 313 return 0; 314 } 315 316 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 317 struct fscrypt_master_key *mk, 318 bool need_dirhash_key) 319 { 320 int err; 321 322 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 323 /* 324 * DIRECT_KEY: instead of deriving per-file encryption keys, the 325 * per-file nonce will be included in all the IVs. But unlike 326 * v1 policies, for v2 policies in this case we don't encrypt 327 * with the master key directly but rather derive a per-mode 328 * encryption key. This ensures that the master key is 329 * consistently used only for HKDF, avoiding key reuse issues. 330 */ 331 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 332 HKDF_CONTEXT_DIRECT_KEY, false); 333 } else if (ci->ci_policy.v2.flags & 334 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 335 /* 336 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 337 * mode_num, filesystem_uuid), and inode number is included in 338 * the IVs. This format is optimized for use with inline 339 * encryption hardware compliant with the UFS standard. 340 */ 341 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 342 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 343 true); 344 } else if (ci->ci_policy.v2.flags & 345 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 346 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 347 } else { 348 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 349 350 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 351 HKDF_CONTEXT_PER_FILE_ENC_KEY, 352 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 353 derived_key, ci->ci_mode->keysize); 354 if (err) 355 return err; 356 357 err = fscrypt_set_per_file_enc_key(ci, derived_key); 358 memzero_explicit(derived_key, ci->ci_mode->keysize); 359 } 360 if (err) 361 return err; 362 363 /* Derive a secret dirhash key for directories that need it. */ 364 if (need_dirhash_key) { 365 err = fscrypt_derive_dirhash_key(ci, mk); 366 if (err) 367 return err; 368 } 369 370 return 0; 371 } 372 373 /* 374 * Check whether the size of the given master key (@mk) is appropriate for the 375 * encryption settings which a particular file will use (@ci). 376 * 377 * If the file uses a v1 encryption policy, then the master key must be at least 378 * as long as the derived key, as this is a requirement of the v1 KDF. 379 * 380 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser 381 * requirement: we require that the size of the master key be at least the 382 * maximum security strength of any algorithm whose key will be derived from it 383 * (but in practice we only need to consider @ci->ci_mode, since any other 384 * possible subkeys such as DIRHASH and INODE_HASH will never increase the 385 * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be 386 * derived from a 256-bit master key, which is cryptographically sufficient, 387 * rather than requiring a 512-bit master key which is unnecessarily long. (We 388 * still allow 512-bit master keys if the user chooses to use them, though.) 389 */ 390 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk, 391 const struct fscrypt_info *ci) 392 { 393 unsigned int min_keysize; 394 395 if (ci->ci_policy.version == FSCRYPT_POLICY_V1) 396 min_keysize = ci->ci_mode->keysize; 397 else 398 min_keysize = ci->ci_mode->security_strength; 399 400 if (mk->mk_secret.size < min_keysize) { 401 fscrypt_warn(NULL, 402 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 403 master_key_spec_type(&mk->mk_spec), 404 master_key_spec_len(&mk->mk_spec), 405 (u8 *)&mk->mk_spec.u, 406 mk->mk_secret.size, min_keysize); 407 return false; 408 } 409 return true; 410 } 411 412 /* 413 * Find the master key, then set up the inode's actual encryption key. 414 * 415 * If the master key is found in the filesystem-level keyring, then the 416 * corresponding 'struct key' is returned in *master_key_ret with its semaphore 417 * read-locked. This is needed to ensure that only one task links the 418 * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create 419 * an fscrypt_info for the same inode), and to synchronize the master key being 420 * removed with a new inode starting to use it. 421 */ 422 static int setup_file_encryption_key(struct fscrypt_info *ci, 423 bool need_dirhash_key, 424 struct key **master_key_ret) 425 { 426 struct key *key; 427 struct fscrypt_master_key *mk = NULL; 428 struct fscrypt_key_specifier mk_spec; 429 int err; 430 431 err = fscrypt_select_encryption_impl(ci); 432 if (err) 433 return err; 434 435 err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec); 436 if (err) 437 return err; 438 439 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 440 if (IS_ERR(key)) { 441 if (key != ERR_PTR(-ENOKEY) || 442 ci->ci_policy.version != FSCRYPT_POLICY_V1) 443 return PTR_ERR(key); 444 445 /* 446 * As a legacy fallback for v1 policies, search for the key in 447 * the current task's subscribed keyrings too. Don't move this 448 * to before the search of ->s_master_keys, since users 449 * shouldn't be able to override filesystem-level keys. 450 */ 451 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 452 } 453 454 mk = key->payload.data[0]; 455 down_read(&key->sem); 456 457 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 458 if (!is_master_key_secret_present(&mk->mk_secret)) { 459 err = -ENOKEY; 460 goto out_release_key; 461 } 462 463 if (!fscrypt_valid_master_key_size(mk, ci)) { 464 err = -ENOKEY; 465 goto out_release_key; 466 } 467 468 switch (ci->ci_policy.version) { 469 case FSCRYPT_POLICY_V1: 470 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 471 break; 472 case FSCRYPT_POLICY_V2: 473 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); 474 break; 475 default: 476 WARN_ON(1); 477 err = -EINVAL; 478 break; 479 } 480 if (err) 481 goto out_release_key; 482 483 *master_key_ret = key; 484 return 0; 485 486 out_release_key: 487 up_read(&key->sem); 488 key_put(key); 489 return err; 490 } 491 492 static void put_crypt_info(struct fscrypt_info *ci) 493 { 494 struct key *key; 495 496 if (!ci) 497 return; 498 499 if (ci->ci_direct_key) 500 fscrypt_put_direct_key(ci->ci_direct_key); 501 else if (ci->ci_owns_key) 502 fscrypt_destroy_prepared_key(&ci->ci_enc_key); 503 504 key = ci->ci_master_key; 505 if (key) { 506 struct fscrypt_master_key *mk = key->payload.data[0]; 507 508 /* 509 * Remove this inode from the list of inodes that were unlocked 510 * with the master key. 511 * 512 * In addition, if we're removing the last inode from a key that 513 * already had its secret removed, invalidate the key so that it 514 * gets removed from ->s_master_keys. 515 */ 516 spin_lock(&mk->mk_decrypted_inodes_lock); 517 list_del(&ci->ci_master_key_link); 518 spin_unlock(&mk->mk_decrypted_inodes_lock); 519 if (refcount_dec_and_test(&mk->mk_refcount)) 520 key_invalidate(key); 521 key_put(key); 522 } 523 memzero_explicit(ci, sizeof(*ci)); 524 kmem_cache_free(fscrypt_info_cachep, ci); 525 } 526 527 static int 528 fscrypt_setup_encryption_info(struct inode *inode, 529 const union fscrypt_policy *policy, 530 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], 531 bool need_dirhash_key) 532 { 533 struct fscrypt_info *crypt_info; 534 struct fscrypt_mode *mode; 535 struct key *master_key = NULL; 536 int res; 537 538 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 539 if (res) 540 return res; 541 542 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); 543 if (!crypt_info) 544 return -ENOMEM; 545 546 crypt_info->ci_inode = inode; 547 crypt_info->ci_policy = *policy; 548 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); 549 550 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 551 if (IS_ERR(mode)) { 552 res = PTR_ERR(mode); 553 goto out; 554 } 555 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 556 crypt_info->ci_mode = mode; 557 558 res = setup_file_encryption_key(crypt_info, need_dirhash_key, 559 &master_key); 560 if (res) 561 goto out; 562 563 /* 564 * For existing inodes, multiple tasks may race to set ->i_crypt_info. 565 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in 566 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 567 * RELEASE barrier so that other tasks can ACQUIRE it. 568 */ 569 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 570 /* 571 * We won the race and set ->i_crypt_info to our crypt_info. 572 * Now link it into the master key's inode list. 573 */ 574 if (master_key) { 575 struct fscrypt_master_key *mk = 576 master_key->payload.data[0]; 577 578 refcount_inc(&mk->mk_refcount); 579 crypt_info->ci_master_key = key_get(master_key); 580 spin_lock(&mk->mk_decrypted_inodes_lock); 581 list_add(&crypt_info->ci_master_key_link, 582 &mk->mk_decrypted_inodes); 583 spin_unlock(&mk->mk_decrypted_inodes_lock); 584 } 585 crypt_info = NULL; 586 } 587 res = 0; 588 out: 589 if (master_key) { 590 up_read(&master_key->sem); 591 key_put(master_key); 592 } 593 put_crypt_info(crypt_info); 594 return res; 595 } 596 597 /** 598 * fscrypt_get_encryption_info() - set up an inode's encryption key 599 * @inode: the inode to set up the key for. Must be encrypted. 600 * @allow_unsupported: if %true, treat an unsupported encryption policy (or 601 * unrecognized encryption context) the same way as the key 602 * being unavailable, instead of returning an error. Use 603 * %false unless the operation being performed is needed in 604 * order for files (or directories) to be deleted. 605 * 606 * Set up ->i_crypt_info, if it hasn't already been done. 607 * 608 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So 609 * generally this shouldn't be called from within a filesystem transaction. 610 * 611 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the 612 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to 613 * distinguish these cases.) Also can return another -errno code. 614 */ 615 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) 616 { 617 int res; 618 union fscrypt_context ctx; 619 union fscrypt_policy policy; 620 621 if (fscrypt_has_encryption_key(inode)) 622 return 0; 623 624 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 625 if (res < 0) { 626 if (res == -ERANGE && allow_unsupported) 627 return 0; 628 fscrypt_warn(inode, "Error %d getting encryption context", res); 629 return res; 630 } 631 632 res = fscrypt_policy_from_context(&policy, &ctx, res); 633 if (res) { 634 if (allow_unsupported) 635 return 0; 636 fscrypt_warn(inode, 637 "Unrecognized or corrupt encryption context"); 638 return res; 639 } 640 641 if (!fscrypt_supported_policy(&policy, inode)) { 642 if (allow_unsupported) 643 return 0; 644 return -EINVAL; 645 } 646 647 res = fscrypt_setup_encryption_info(inode, &policy, 648 fscrypt_context_nonce(&ctx), 649 IS_CASEFOLDED(inode) && 650 S_ISDIR(inode->i_mode)); 651 652 if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ 653 res = 0; 654 if (res == -ENOKEY) 655 res = 0; 656 return res; 657 } 658 659 /** 660 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory 661 * @dir: a possibly-encrypted directory 662 * @inode: the new inode. ->i_mode must be set already. 663 * ->i_ino doesn't need to be set yet. 664 * @encrypt_ret: (output) set to %true if the new inode will be encrypted 665 * 666 * If the directory is encrypted, set up its ->i_crypt_info in preparation for 667 * encrypting the name of the new file. Also, if the new inode will be 668 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. 669 * 670 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting 671 * any filesystem transaction to create the inode. For this reason, ->i_ino 672 * isn't required to be set yet, as the filesystem may not have set it yet. 673 * 674 * This doesn't persist the new inode's encryption context. That still needs to 675 * be done later by calling fscrypt_set_context(). 676 * 677 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another 678 * -errno code 679 */ 680 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 681 bool *encrypt_ret) 682 { 683 const union fscrypt_policy *policy; 684 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 685 686 policy = fscrypt_policy_to_inherit(dir); 687 if (policy == NULL) 688 return 0; 689 if (IS_ERR(policy)) 690 return PTR_ERR(policy); 691 692 if (WARN_ON_ONCE(inode->i_mode == 0)) 693 return -EINVAL; 694 695 /* 696 * Only regular files, directories, and symlinks are encrypted. 697 * Special files like device nodes and named pipes aren't. 698 */ 699 if (!S_ISREG(inode->i_mode) && 700 !S_ISDIR(inode->i_mode) && 701 !S_ISLNK(inode->i_mode)) 702 return 0; 703 704 *encrypt_ret = true; 705 706 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); 707 return fscrypt_setup_encryption_info(inode, policy, nonce, 708 IS_CASEFOLDED(dir) && 709 S_ISDIR(inode->i_mode)); 710 } 711 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); 712 713 /** 714 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 715 * @inode: an inode being evicted 716 * 717 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 718 * being evicted. An RCU grace period need not have elapsed yet. 719 */ 720 void fscrypt_put_encryption_info(struct inode *inode) 721 { 722 put_crypt_info(inode->i_crypt_info); 723 inode->i_crypt_info = NULL; 724 } 725 EXPORT_SYMBOL(fscrypt_put_encryption_info); 726 727 /** 728 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 729 * @inode: an inode being freed 730 * 731 * Free the inode's cached decrypted symlink target, if any. Filesystems must 732 * call this after an RCU grace period, just before they free the inode. 733 */ 734 void fscrypt_free_inode(struct inode *inode) 735 { 736 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 737 kfree(inode->i_link); 738 inode->i_link = NULL; 739 } 740 } 741 EXPORT_SYMBOL(fscrypt_free_inode); 742 743 /** 744 * fscrypt_drop_inode() - check whether the inode's master key has been removed 745 * @inode: an inode being considered for eviction 746 * 747 * Filesystems supporting fscrypt must call this from their ->drop_inode() 748 * method so that encrypted inodes are evicted as soon as they're no longer in 749 * use and their master key has been removed. 750 * 751 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 752 */ 753 int fscrypt_drop_inode(struct inode *inode) 754 { 755 const struct fscrypt_info *ci = fscrypt_get_info(inode); 756 const struct fscrypt_master_key *mk; 757 758 /* 759 * If ci is NULL, then the inode doesn't have an encryption key set up 760 * so it's irrelevant. If ci_master_key is NULL, then the master key 761 * was provided via the legacy mechanism of the process-subscribed 762 * keyrings, so we don't know whether it's been removed or not. 763 */ 764 if (!ci || !ci->ci_master_key) 765 return 0; 766 mk = ci->ci_master_key->payload.data[0]; 767 768 /* 769 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 770 * protected by the key were cleaned by sync_filesystem(). But if 771 * userspace is still using the files, inodes can be dirtied between 772 * then and now. We mustn't lose any writes, so skip dirty inodes here. 773 */ 774 if (inode->i_state & I_DIRTY_ALL) 775 return 0; 776 777 /* 778 * Note: since we aren't holding the key semaphore, the result here can 779 * immediately become outdated. But there's no correctness problem with 780 * unnecessarily evicting. Nor is there a correctness problem with not 781 * evicting while iput() is racing with the key being removed, since 782 * then the thread removing the key will either evict the inode itself 783 * or will correctly detect that it wasn't evicted due to the race. 784 */ 785 return !is_master_key_secret_present(&mk->mk_secret); 786 } 787 EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 788