xref: /openbmc/linux/fs/crypto/keysetup.c (revision 09b35b41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup facility for FS encryption support.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #include <crypto/aes.h>
12 #include <crypto/sha.h>
13 #include <crypto/skcipher.h>
14 #include <linux/key.h>
15 
16 #include "fscrypt_private.h"
17 
18 static struct crypto_shash *essiv_hash_tfm;
19 
20 static struct fscrypt_mode available_modes[] = {
21 	[FSCRYPT_MODE_AES_256_XTS] = {
22 		.friendly_name = "AES-256-XTS",
23 		.cipher_str = "xts(aes)",
24 		.keysize = 64,
25 		.ivsize = 16,
26 	},
27 	[FSCRYPT_MODE_AES_256_CTS] = {
28 		.friendly_name = "AES-256-CTS-CBC",
29 		.cipher_str = "cts(cbc(aes))",
30 		.keysize = 32,
31 		.ivsize = 16,
32 	},
33 	[FSCRYPT_MODE_AES_128_CBC] = {
34 		.friendly_name = "AES-128-CBC",
35 		.cipher_str = "cbc(aes)",
36 		.keysize = 16,
37 		.ivsize = 16,
38 		.needs_essiv = true,
39 	},
40 	[FSCRYPT_MODE_AES_128_CTS] = {
41 		.friendly_name = "AES-128-CTS-CBC",
42 		.cipher_str = "cts(cbc(aes))",
43 		.keysize = 16,
44 		.ivsize = 16,
45 	},
46 	[FSCRYPT_MODE_ADIANTUM] = {
47 		.friendly_name = "Adiantum",
48 		.cipher_str = "adiantum(xchacha12,aes)",
49 		.keysize = 32,
50 		.ivsize = 32,
51 	},
52 };
53 
54 static struct fscrypt_mode *
55 select_encryption_mode(const union fscrypt_policy *policy,
56 		       const struct inode *inode)
57 {
58 	if (S_ISREG(inode->i_mode))
59 		return &available_modes[fscrypt_policy_contents_mode(policy)];
60 
61 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
62 		return &available_modes[fscrypt_policy_fnames_mode(policy)];
63 
64 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
65 		  inode->i_ino, (inode->i_mode & S_IFMT));
66 	return ERR_PTR(-EINVAL);
67 }
68 
69 /* Create a symmetric cipher object for the given encryption mode and key */
70 struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode,
71 						  const u8 *raw_key,
72 						  const struct inode *inode)
73 {
74 	struct crypto_skcipher *tfm;
75 	int err;
76 
77 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
78 	if (IS_ERR(tfm)) {
79 		if (PTR_ERR(tfm) == -ENOENT) {
80 			fscrypt_warn(inode,
81 				     "Missing crypto API support for %s (API name: \"%s\")",
82 				     mode->friendly_name, mode->cipher_str);
83 			return ERR_PTR(-ENOPKG);
84 		}
85 		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
86 			    mode->cipher_str, PTR_ERR(tfm));
87 		return tfm;
88 	}
89 	if (unlikely(!mode->logged_impl_name)) {
90 		/*
91 		 * fscrypt performance can vary greatly depending on which
92 		 * crypto algorithm implementation is used.  Help people debug
93 		 * performance problems by logging the ->cra_driver_name the
94 		 * first time a mode is used.  Note that multiple threads can
95 		 * race here, but it doesn't really matter.
96 		 */
97 		mode->logged_impl_name = true;
98 		pr_info("fscrypt: %s using implementation \"%s\"\n",
99 			mode->friendly_name,
100 			crypto_skcipher_alg(tfm)->base.cra_driver_name);
101 	}
102 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
103 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
104 	if (err)
105 		goto err_free_tfm;
106 
107 	return tfm;
108 
109 err_free_tfm:
110 	crypto_free_skcipher(tfm);
111 	return ERR_PTR(err);
112 }
113 
114 static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
115 {
116 	struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);
117 
118 	/* init hash transform on demand */
119 	if (unlikely(!tfm)) {
120 		struct crypto_shash *prev_tfm;
121 
122 		tfm = crypto_alloc_shash("sha256", 0, 0);
123 		if (IS_ERR(tfm)) {
124 			if (PTR_ERR(tfm) == -ENOENT) {
125 				fscrypt_warn(NULL,
126 					     "Missing crypto API support for SHA-256");
127 				return -ENOPKG;
128 			}
129 			fscrypt_err(NULL,
130 				    "Error allocating SHA-256 transform: %ld",
131 				    PTR_ERR(tfm));
132 			return PTR_ERR(tfm);
133 		}
134 		prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
135 		if (prev_tfm) {
136 			crypto_free_shash(tfm);
137 			tfm = prev_tfm;
138 		}
139 	}
140 
141 	{
142 		SHASH_DESC_ON_STACK(desc, tfm);
143 		desc->tfm = tfm;
144 
145 		return crypto_shash_digest(desc, key, keysize, salt);
146 	}
147 }
148 
149 static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
150 				int keysize)
151 {
152 	int err;
153 	struct crypto_cipher *essiv_tfm;
154 	u8 salt[SHA256_DIGEST_SIZE];
155 
156 	if (WARN_ON(ci->ci_mode->ivsize != AES_BLOCK_SIZE))
157 		return -EINVAL;
158 
159 	essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
160 	if (IS_ERR(essiv_tfm))
161 		return PTR_ERR(essiv_tfm);
162 
163 	ci->ci_essiv_tfm = essiv_tfm;
164 
165 	err = derive_essiv_salt(raw_key, keysize, salt);
166 	if (err)
167 		goto out;
168 
169 	/*
170 	 * Using SHA256 to derive the salt/key will result in AES-256 being
171 	 * used for IV generation. File contents encryption will still use the
172 	 * configured keysize (AES-128) nevertheless.
173 	 */
174 	err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
175 	if (err)
176 		goto out;
177 
178 out:
179 	memzero_explicit(salt, sizeof(salt));
180 	return err;
181 }
182 
183 /* Given the per-file key, set up the file's crypto transform object(s) */
184 int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
185 {
186 	struct fscrypt_mode *mode = ci->ci_mode;
187 	struct crypto_skcipher *ctfm;
188 	int err;
189 
190 	ctfm = fscrypt_allocate_skcipher(mode, derived_key, ci->ci_inode);
191 	if (IS_ERR(ctfm))
192 		return PTR_ERR(ctfm);
193 
194 	ci->ci_ctfm = ctfm;
195 
196 	if (mode->needs_essiv) {
197 		err = init_essiv_generator(ci, derived_key, mode->keysize);
198 		if (err) {
199 			fscrypt_warn(ci->ci_inode,
200 				     "Error initializing ESSIV generator: %d",
201 				     err);
202 			return err;
203 		}
204 	}
205 	return 0;
206 }
207 
208 static int setup_per_mode_key(struct fscrypt_info *ci,
209 			      struct fscrypt_master_key *mk)
210 {
211 	struct fscrypt_mode *mode = ci->ci_mode;
212 	u8 mode_num = mode - available_modes;
213 	struct crypto_skcipher *tfm, *prev_tfm;
214 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
215 	int err;
216 
217 	if (WARN_ON(mode_num >= ARRAY_SIZE(mk->mk_mode_keys)))
218 		return -EINVAL;
219 
220 	/* pairs with cmpxchg() below */
221 	tfm = READ_ONCE(mk->mk_mode_keys[mode_num]);
222 	if (likely(tfm != NULL))
223 		goto done;
224 
225 	BUILD_BUG_ON(sizeof(mode_num) != 1);
226 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
227 				  HKDF_CONTEXT_PER_MODE_KEY,
228 				  &mode_num, sizeof(mode_num),
229 				  mode_key, mode->keysize);
230 	if (err)
231 		return err;
232 	tfm = fscrypt_allocate_skcipher(mode, mode_key, ci->ci_inode);
233 	memzero_explicit(mode_key, mode->keysize);
234 	if (IS_ERR(tfm))
235 		return PTR_ERR(tfm);
236 
237 	/* pairs with READ_ONCE() above */
238 	prev_tfm = cmpxchg(&mk->mk_mode_keys[mode_num], NULL, tfm);
239 	if (prev_tfm != NULL) {
240 		crypto_free_skcipher(tfm);
241 		tfm = prev_tfm;
242 	}
243 done:
244 	ci->ci_ctfm = tfm;
245 	return 0;
246 }
247 
248 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
249 				     struct fscrypt_master_key *mk)
250 {
251 	u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
252 	int err;
253 
254 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
255 		/*
256 		 * DIRECT_KEY: instead of deriving per-file keys, the per-file
257 		 * nonce will be included in all the IVs.  But unlike v1
258 		 * policies, for v2 policies in this case we don't encrypt with
259 		 * the master key directly but rather derive a per-mode key.
260 		 * This ensures that the master key is consistently used only
261 		 * for HKDF, avoiding key reuse issues.
262 		 */
263 		if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) {
264 			fscrypt_warn(ci->ci_inode,
265 				     "Direct key flag not allowed with %s",
266 				     ci->ci_mode->friendly_name);
267 			return -EINVAL;
268 		}
269 		return setup_per_mode_key(ci, mk);
270 	}
271 
272 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
273 				  HKDF_CONTEXT_PER_FILE_KEY,
274 				  ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
275 				  derived_key, ci->ci_mode->keysize);
276 	if (err)
277 		return err;
278 
279 	err = fscrypt_set_derived_key(ci, derived_key);
280 	memzero_explicit(derived_key, ci->ci_mode->keysize);
281 	return err;
282 }
283 
284 /*
285  * Find the master key, then set up the inode's actual encryption key.
286  *
287  * If the master key is found in the filesystem-level keyring, then the
288  * corresponding 'struct key' is returned in *master_key_ret with
289  * ->mk_secret_sem read-locked.  This is needed to ensure that only one task
290  * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
291  * to create an fscrypt_info for the same inode), and to synchronize the master
292  * key being removed with a new inode starting to use it.
293  */
294 static int setup_file_encryption_key(struct fscrypt_info *ci,
295 				     struct key **master_key_ret)
296 {
297 	struct key *key;
298 	struct fscrypt_master_key *mk = NULL;
299 	struct fscrypt_key_specifier mk_spec;
300 	int err;
301 
302 	switch (ci->ci_policy.version) {
303 	case FSCRYPT_POLICY_V1:
304 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
305 		memcpy(mk_spec.u.descriptor,
306 		       ci->ci_policy.v1.master_key_descriptor,
307 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
308 		break;
309 	case FSCRYPT_POLICY_V2:
310 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
311 		memcpy(mk_spec.u.identifier,
312 		       ci->ci_policy.v2.master_key_identifier,
313 		       FSCRYPT_KEY_IDENTIFIER_SIZE);
314 		break;
315 	default:
316 		WARN_ON(1);
317 		return -EINVAL;
318 	}
319 
320 	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
321 	if (IS_ERR(key)) {
322 		if (key != ERR_PTR(-ENOKEY) ||
323 		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
324 			return PTR_ERR(key);
325 
326 		/*
327 		 * As a legacy fallback for v1 policies, search for the key in
328 		 * the current task's subscribed keyrings too.  Don't move this
329 		 * to before the search of ->s_master_keys, since users
330 		 * shouldn't be able to override filesystem-level keys.
331 		 */
332 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
333 	}
334 
335 	mk = key->payload.data[0];
336 	down_read(&mk->mk_secret_sem);
337 
338 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
339 	if (!is_master_key_secret_present(&mk->mk_secret)) {
340 		err = -ENOKEY;
341 		goto out_release_key;
342 	}
343 
344 	/*
345 	 * Require that the master key be at least as long as the derived key.
346 	 * Otherwise, the derived key cannot possibly contain as much entropy as
347 	 * that required by the encryption mode it will be used for.  For v1
348 	 * policies it's also required for the KDF to work at all.
349 	 */
350 	if (mk->mk_secret.size < ci->ci_mode->keysize) {
351 		fscrypt_warn(NULL,
352 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
353 			     master_key_spec_type(&mk_spec),
354 			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
355 			     mk->mk_secret.size, ci->ci_mode->keysize);
356 		err = -ENOKEY;
357 		goto out_release_key;
358 	}
359 
360 	switch (ci->ci_policy.version) {
361 	case FSCRYPT_POLICY_V1:
362 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
363 		break;
364 	case FSCRYPT_POLICY_V2:
365 		err = fscrypt_setup_v2_file_key(ci, mk);
366 		break;
367 	default:
368 		WARN_ON(1);
369 		err = -EINVAL;
370 		break;
371 	}
372 	if (err)
373 		goto out_release_key;
374 
375 	*master_key_ret = key;
376 	return 0;
377 
378 out_release_key:
379 	up_read(&mk->mk_secret_sem);
380 	key_put(key);
381 	return err;
382 }
383 
384 static void put_crypt_info(struct fscrypt_info *ci)
385 {
386 	struct key *key;
387 
388 	if (!ci)
389 		return;
390 
391 	if (ci->ci_direct_key) {
392 		fscrypt_put_direct_key(ci->ci_direct_key);
393 	} else if ((ci->ci_ctfm != NULL || ci->ci_essiv_tfm != NULL) &&
394 		   !fscrypt_is_direct_key_policy(&ci->ci_policy)) {
395 		crypto_free_skcipher(ci->ci_ctfm);
396 		crypto_free_cipher(ci->ci_essiv_tfm);
397 	}
398 
399 	key = ci->ci_master_key;
400 	if (key) {
401 		struct fscrypt_master_key *mk = key->payload.data[0];
402 
403 		/*
404 		 * Remove this inode from the list of inodes that were unlocked
405 		 * with the master key.
406 		 *
407 		 * In addition, if we're removing the last inode from a key that
408 		 * already had its secret removed, invalidate the key so that it
409 		 * gets removed from ->s_master_keys.
410 		 */
411 		spin_lock(&mk->mk_decrypted_inodes_lock);
412 		list_del(&ci->ci_master_key_link);
413 		spin_unlock(&mk->mk_decrypted_inodes_lock);
414 		if (refcount_dec_and_test(&mk->mk_refcount))
415 			key_invalidate(key);
416 		key_put(key);
417 	}
418 	kmem_cache_free(fscrypt_info_cachep, ci);
419 }
420 
421 int fscrypt_get_encryption_info(struct inode *inode)
422 {
423 	struct fscrypt_info *crypt_info;
424 	union fscrypt_context ctx;
425 	struct fscrypt_mode *mode;
426 	struct key *master_key = NULL;
427 	int res;
428 
429 	if (fscrypt_has_encryption_key(inode))
430 		return 0;
431 
432 	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
433 	if (res)
434 		return res;
435 
436 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
437 	if (res < 0) {
438 		if (!fscrypt_dummy_context_enabled(inode) ||
439 		    IS_ENCRYPTED(inode)) {
440 			fscrypt_warn(inode,
441 				     "Error %d getting encryption context",
442 				     res);
443 			return res;
444 		}
445 		/* Fake up a context for an unencrypted directory */
446 		memset(&ctx, 0, sizeof(ctx));
447 		ctx.version = FSCRYPT_CONTEXT_V1;
448 		ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
449 		ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
450 		memset(ctx.v1.master_key_descriptor, 0x42,
451 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
452 		res = sizeof(ctx.v1);
453 	}
454 
455 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
456 	if (!crypt_info)
457 		return -ENOMEM;
458 
459 	crypt_info->ci_inode = inode;
460 
461 	res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
462 	if (res) {
463 		fscrypt_warn(inode,
464 			     "Unrecognized or corrupt encryption context");
465 		goto out;
466 	}
467 
468 	switch (ctx.version) {
469 	case FSCRYPT_CONTEXT_V1:
470 		memcpy(crypt_info->ci_nonce, ctx.v1.nonce,
471 		       FS_KEY_DERIVATION_NONCE_SIZE);
472 		break;
473 	case FSCRYPT_CONTEXT_V2:
474 		memcpy(crypt_info->ci_nonce, ctx.v2.nonce,
475 		       FS_KEY_DERIVATION_NONCE_SIZE);
476 		break;
477 	default:
478 		WARN_ON(1);
479 		res = -EINVAL;
480 		goto out;
481 	}
482 
483 	if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
484 		res = -EINVAL;
485 		goto out;
486 	}
487 
488 	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
489 	if (IS_ERR(mode)) {
490 		res = PTR_ERR(mode);
491 		goto out;
492 	}
493 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
494 	crypt_info->ci_mode = mode;
495 
496 	res = setup_file_encryption_key(crypt_info, &master_key);
497 	if (res)
498 		goto out;
499 
500 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
501 		if (master_key) {
502 			struct fscrypt_master_key *mk =
503 				master_key->payload.data[0];
504 
505 			refcount_inc(&mk->mk_refcount);
506 			crypt_info->ci_master_key = key_get(master_key);
507 			spin_lock(&mk->mk_decrypted_inodes_lock);
508 			list_add(&crypt_info->ci_master_key_link,
509 				 &mk->mk_decrypted_inodes);
510 			spin_unlock(&mk->mk_decrypted_inodes_lock);
511 		}
512 		crypt_info = NULL;
513 	}
514 	res = 0;
515 out:
516 	if (master_key) {
517 		struct fscrypt_master_key *mk = master_key->payload.data[0];
518 
519 		up_read(&mk->mk_secret_sem);
520 		key_put(master_key);
521 	}
522 	if (res == -ENOKEY)
523 		res = 0;
524 	put_crypt_info(crypt_info);
525 	return res;
526 }
527 EXPORT_SYMBOL(fscrypt_get_encryption_info);
528 
529 /**
530  * fscrypt_put_encryption_info - free most of an inode's fscrypt data
531  *
532  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
533  * being evicted.  An RCU grace period need not have elapsed yet.
534  */
535 void fscrypt_put_encryption_info(struct inode *inode)
536 {
537 	put_crypt_info(inode->i_crypt_info);
538 	inode->i_crypt_info = NULL;
539 }
540 EXPORT_SYMBOL(fscrypt_put_encryption_info);
541 
542 /**
543  * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay
544  *
545  * Free the inode's cached decrypted symlink target, if any.  Filesystems must
546  * call this after an RCU grace period, just before they free the inode.
547  */
548 void fscrypt_free_inode(struct inode *inode)
549 {
550 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
551 		kfree(inode->i_link);
552 		inode->i_link = NULL;
553 	}
554 }
555 EXPORT_SYMBOL(fscrypt_free_inode);
556 
557 /**
558  * fscrypt_drop_inode - check whether the inode's master key has been removed
559  *
560  * Filesystems supporting fscrypt must call this from their ->drop_inode()
561  * method so that encrypted inodes are evicted as soon as they're no longer in
562  * use and their master key has been removed.
563  *
564  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
565  */
566 int fscrypt_drop_inode(struct inode *inode)
567 {
568 	const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
569 	const struct fscrypt_master_key *mk;
570 
571 	/*
572 	 * If ci is NULL, then the inode doesn't have an encryption key set up
573 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
574 	 * was provided via the legacy mechanism of the process-subscribed
575 	 * keyrings, so we don't know whether it's been removed or not.
576 	 */
577 	if (!ci || !ci->ci_master_key)
578 		return 0;
579 	mk = ci->ci_master_key->payload.data[0];
580 
581 	/*
582 	 * Note: since we aren't holding ->mk_secret_sem, the result here can
583 	 * immediately become outdated.  But there's no correctness problem with
584 	 * unnecessarily evicting.  Nor is there a correctness problem with not
585 	 * evicting while iput() is racing with the key being removed, since
586 	 * then the thread removing the key will either evict the inode itself
587 	 * or will correctly detect that it wasn't evicted due to the race.
588 	 */
589 	return !is_master_key_secret_present(&mk->mk_secret);
590 }
591 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
592