1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <crypto/skcipher.h> 22 #include <linux/key-type.h> 23 #include <linux/random.h> 24 #include <linux/seq_file.h> 25 26 #include "fscrypt_private.h" 27 28 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 29 { 30 fscrypt_destroy_hkdf(&secret->hkdf); 31 memzero_explicit(secret, sizeof(*secret)); 32 } 33 34 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 35 struct fscrypt_master_key_secret *src) 36 { 37 memcpy(dst, src, sizeof(*dst)); 38 memzero_explicit(src, sizeof(*src)); 39 } 40 41 static void free_master_key(struct fscrypt_master_key *mk) 42 { 43 size_t i; 44 45 wipe_master_key_secret(&mk->mk_secret); 46 47 for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) { 48 crypto_free_skcipher(mk->mk_direct_keys[i]); 49 crypto_free_skcipher(mk->mk_iv_ino_lblk_64_keys[i]); 50 crypto_free_skcipher(mk->mk_iv_ino_lblk_32_keys[i]); 51 } 52 53 key_put(mk->mk_users); 54 kzfree(mk); 55 } 56 57 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 58 { 59 if (spec->__reserved) 60 return false; 61 return master_key_spec_len(spec) != 0; 62 } 63 64 static int fscrypt_key_instantiate(struct key *key, 65 struct key_preparsed_payload *prep) 66 { 67 key->payload.data[0] = (struct fscrypt_master_key *)prep->data; 68 return 0; 69 } 70 71 static void fscrypt_key_destroy(struct key *key) 72 { 73 free_master_key(key->payload.data[0]); 74 } 75 76 static void fscrypt_key_describe(const struct key *key, struct seq_file *m) 77 { 78 seq_puts(m, key->description); 79 80 if (key_is_positive(key)) { 81 const struct fscrypt_master_key *mk = key->payload.data[0]; 82 83 if (!is_master_key_secret_present(&mk->mk_secret)) 84 seq_puts(m, ": secret removed"); 85 } 86 } 87 88 /* 89 * Type of key in ->s_master_keys. Each key of this type represents a master 90 * key which has been added to the filesystem. Its payload is a 91 * 'struct fscrypt_master_key'. The "." prefix in the key type name prevents 92 * users from adding keys of this type via the keyrings syscalls rather than via 93 * the intended method of FS_IOC_ADD_ENCRYPTION_KEY. 94 */ 95 static struct key_type key_type_fscrypt = { 96 .name = "._fscrypt", 97 .instantiate = fscrypt_key_instantiate, 98 .destroy = fscrypt_key_destroy, 99 .describe = fscrypt_key_describe, 100 }; 101 102 static int fscrypt_user_key_instantiate(struct key *key, 103 struct key_preparsed_payload *prep) 104 { 105 /* 106 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 107 * each key, regardless of the exact key size. The amount of memory 108 * actually used is greater than the size of the raw key anyway. 109 */ 110 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 111 } 112 113 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 114 { 115 seq_puts(m, key->description); 116 } 117 118 /* 119 * Type of key in ->mk_users. Each key of this type represents a particular 120 * user who has added a particular master key. 121 * 122 * Note that the name of this key type really should be something like 123 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 124 * mainly for simplicity of presentation in /proc/keys when read by a non-root 125 * user. And it is expected to be rare that a key is actually added by multiple 126 * users, since users should keep their encryption keys confidential. 127 */ 128 static struct key_type key_type_fscrypt_user = { 129 .name = ".fscrypt", 130 .instantiate = fscrypt_user_key_instantiate, 131 .describe = fscrypt_user_key_describe, 132 }; 133 134 /* Search ->s_master_keys or ->mk_users */ 135 static struct key *search_fscrypt_keyring(struct key *keyring, 136 struct key_type *type, 137 const char *description) 138 { 139 /* 140 * We need to mark the keyring reference as "possessed" so that we 141 * acquire permission to search it, via the KEY_POS_SEARCH permission. 142 */ 143 key_ref_t keyref = make_key_ref(keyring, true /* possessed */); 144 145 keyref = keyring_search(keyref, type, description, false); 146 if (IS_ERR(keyref)) { 147 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 148 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 149 keyref = ERR_PTR(-ENOKEY); 150 return ERR_CAST(keyref); 151 } 152 return key_ref_to_ptr(keyref); 153 } 154 155 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \ 156 (CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id)) 157 158 #define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1) 159 160 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 161 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 162 CONST_STRLEN("-users") + 1) 163 164 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 165 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 166 167 static void format_fs_keyring_description( 168 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE], 169 const struct super_block *sb) 170 { 171 sprintf(description, "fscrypt-%s", sb->s_id); 172 } 173 174 static void format_mk_description( 175 char description[FSCRYPT_MK_DESCRIPTION_SIZE], 176 const struct fscrypt_key_specifier *mk_spec) 177 { 178 sprintf(description, "%*phN", 179 master_key_spec_len(mk_spec), (u8 *)&mk_spec->u); 180 } 181 182 static void format_mk_users_keyring_description( 183 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 184 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 185 { 186 sprintf(description, "fscrypt-%*phN-users", 187 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 188 } 189 190 static void format_mk_user_description( 191 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 192 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 193 { 194 195 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 196 mk_identifier, __kuid_val(current_fsuid())); 197 } 198 199 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 200 static int allocate_filesystem_keyring(struct super_block *sb) 201 { 202 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE]; 203 struct key *keyring; 204 205 if (sb->s_master_keys) 206 return 0; 207 208 format_fs_keyring_description(description, sb); 209 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 210 current_cred(), KEY_POS_SEARCH | 211 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 212 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 213 if (IS_ERR(keyring)) 214 return PTR_ERR(keyring); 215 216 /* Pairs with READ_ONCE() in fscrypt_find_master_key() */ 217 smp_store_release(&sb->s_master_keys, keyring); 218 return 0; 219 } 220 221 void fscrypt_sb_free(struct super_block *sb) 222 { 223 key_put(sb->s_master_keys); 224 sb->s_master_keys = NULL; 225 } 226 227 /* 228 * Find the specified master key in ->s_master_keys. 229 * Returns ERR_PTR(-ENOKEY) if not found. 230 */ 231 struct key *fscrypt_find_master_key(struct super_block *sb, 232 const struct fscrypt_key_specifier *mk_spec) 233 { 234 struct key *keyring; 235 char description[FSCRYPT_MK_DESCRIPTION_SIZE]; 236 237 /* pairs with smp_store_release() in allocate_filesystem_keyring() */ 238 keyring = READ_ONCE(sb->s_master_keys); 239 if (keyring == NULL) 240 return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */ 241 242 format_mk_description(description, mk_spec); 243 return search_fscrypt_keyring(keyring, &key_type_fscrypt, description); 244 } 245 246 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 247 { 248 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 249 struct key *keyring; 250 251 format_mk_users_keyring_description(description, 252 mk->mk_spec.u.identifier); 253 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 254 current_cred(), KEY_POS_SEARCH | 255 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 256 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 257 if (IS_ERR(keyring)) 258 return PTR_ERR(keyring); 259 260 mk->mk_users = keyring; 261 return 0; 262 } 263 264 /* 265 * Find the current user's "key" in the master key's ->mk_users. 266 * Returns ERR_PTR(-ENOKEY) if not found. 267 */ 268 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 269 { 270 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 271 272 format_mk_user_description(description, mk->mk_spec.u.identifier); 273 return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user, 274 description); 275 } 276 277 /* 278 * Give the current user a "key" in ->mk_users. This charges the user's quota 279 * and marks the master key as added by the current user, so that it cannot be 280 * removed by another user with the key. Either the master key's key->sem must 281 * be held for write, or the master key must be still undergoing initialization. 282 */ 283 static int add_master_key_user(struct fscrypt_master_key *mk) 284 { 285 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 286 struct key *mk_user; 287 int err; 288 289 format_mk_user_description(description, mk->mk_spec.u.identifier); 290 mk_user = key_alloc(&key_type_fscrypt_user, description, 291 current_fsuid(), current_gid(), current_cred(), 292 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 293 if (IS_ERR(mk_user)) 294 return PTR_ERR(mk_user); 295 296 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 297 key_put(mk_user); 298 return err; 299 } 300 301 /* 302 * Remove the current user's "key" from ->mk_users. 303 * The master key's key->sem must be held for write. 304 * 305 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 306 */ 307 static int remove_master_key_user(struct fscrypt_master_key *mk) 308 { 309 struct key *mk_user; 310 int err; 311 312 mk_user = find_master_key_user(mk); 313 if (IS_ERR(mk_user)) 314 return PTR_ERR(mk_user); 315 err = key_unlink(mk->mk_users, mk_user); 316 key_put(mk_user); 317 return err; 318 } 319 320 /* 321 * Allocate a new fscrypt_master_key which contains the given secret, set it as 322 * the payload of a new 'struct key' of type fscrypt, and link the 'struct key' 323 * into the given keyring. Synchronized by fscrypt_add_key_mutex. 324 */ 325 static int add_new_master_key(struct fscrypt_master_key_secret *secret, 326 const struct fscrypt_key_specifier *mk_spec, 327 struct key *keyring) 328 { 329 struct fscrypt_master_key *mk; 330 char description[FSCRYPT_MK_DESCRIPTION_SIZE]; 331 struct key *key; 332 int err; 333 334 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 335 if (!mk) 336 return -ENOMEM; 337 338 mk->mk_spec = *mk_spec; 339 340 move_master_key_secret(&mk->mk_secret, secret); 341 init_rwsem(&mk->mk_secret_sem); 342 343 refcount_set(&mk->mk_refcount, 1); /* secret is present */ 344 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 345 spin_lock_init(&mk->mk_decrypted_inodes_lock); 346 347 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 348 err = allocate_master_key_users_keyring(mk); 349 if (err) 350 goto out_free_mk; 351 err = add_master_key_user(mk); 352 if (err) 353 goto out_free_mk; 354 } 355 356 /* 357 * Note that we don't charge this key to anyone's quota, since when 358 * ->mk_users is in use those keys are charged instead, and otherwise 359 * (when ->mk_users isn't in use) only root can add these keys. 360 */ 361 format_mk_description(description, mk_spec); 362 key = key_alloc(&key_type_fscrypt, description, 363 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(), 364 KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW, 365 KEY_ALLOC_NOT_IN_QUOTA, NULL); 366 if (IS_ERR(key)) { 367 err = PTR_ERR(key); 368 goto out_free_mk; 369 } 370 err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL); 371 key_put(key); 372 if (err) 373 goto out_free_mk; 374 375 return 0; 376 377 out_free_mk: 378 free_master_key(mk); 379 return err; 380 } 381 382 #define KEY_DEAD 1 383 384 static int add_existing_master_key(struct fscrypt_master_key *mk, 385 struct fscrypt_master_key_secret *secret) 386 { 387 struct key *mk_user; 388 bool rekey; 389 int err; 390 391 /* 392 * If the current user is already in ->mk_users, then there's nothing to 393 * do. (Not applicable for v1 policy keys, which have NULL ->mk_users.) 394 */ 395 if (mk->mk_users) { 396 mk_user = find_master_key_user(mk); 397 if (mk_user != ERR_PTR(-ENOKEY)) { 398 if (IS_ERR(mk_user)) 399 return PTR_ERR(mk_user); 400 key_put(mk_user); 401 return 0; 402 } 403 } 404 405 /* If we'll be re-adding ->mk_secret, try to take the reference. */ 406 rekey = !is_master_key_secret_present(&mk->mk_secret); 407 if (rekey && !refcount_inc_not_zero(&mk->mk_refcount)) 408 return KEY_DEAD; 409 410 /* Add the current user to ->mk_users, if applicable. */ 411 if (mk->mk_users) { 412 err = add_master_key_user(mk); 413 if (err) { 414 if (rekey && refcount_dec_and_test(&mk->mk_refcount)) 415 return KEY_DEAD; 416 return err; 417 } 418 } 419 420 /* Re-add the secret if needed. */ 421 if (rekey) { 422 down_write(&mk->mk_secret_sem); 423 move_master_key_secret(&mk->mk_secret, secret); 424 up_write(&mk->mk_secret_sem); 425 } 426 return 0; 427 } 428 429 static int do_add_master_key(struct super_block *sb, 430 struct fscrypt_master_key_secret *secret, 431 const struct fscrypt_key_specifier *mk_spec) 432 { 433 static DEFINE_MUTEX(fscrypt_add_key_mutex); 434 struct key *key; 435 int err; 436 437 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 438 retry: 439 key = fscrypt_find_master_key(sb, mk_spec); 440 if (IS_ERR(key)) { 441 err = PTR_ERR(key); 442 if (err != -ENOKEY) 443 goto out_unlock; 444 /* Didn't find the key in ->s_master_keys. Add it. */ 445 err = allocate_filesystem_keyring(sb); 446 if (err) 447 goto out_unlock; 448 err = add_new_master_key(secret, mk_spec, sb->s_master_keys); 449 } else { 450 /* 451 * Found the key in ->s_master_keys. Re-add the secret if 452 * needed, and add the user to ->mk_users if needed. 453 */ 454 down_write(&key->sem); 455 err = add_existing_master_key(key->payload.data[0], secret); 456 up_write(&key->sem); 457 if (err == KEY_DEAD) { 458 /* Key being removed or needs to be removed */ 459 key_invalidate(key); 460 key_put(key); 461 goto retry; 462 } 463 key_put(key); 464 } 465 out_unlock: 466 mutex_unlock(&fscrypt_add_key_mutex); 467 return err; 468 } 469 470 static int add_master_key(struct super_block *sb, 471 struct fscrypt_master_key_secret *secret, 472 struct fscrypt_key_specifier *key_spec) 473 { 474 int err; 475 476 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 477 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 478 secret->size); 479 if (err) 480 return err; 481 482 /* 483 * Now that the HKDF context is initialized, the raw key is no 484 * longer needed. 485 */ 486 memzero_explicit(secret->raw, secret->size); 487 488 /* Calculate the key identifier */ 489 err = fscrypt_hkdf_expand(&secret->hkdf, 490 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 491 key_spec->u.identifier, 492 FSCRYPT_KEY_IDENTIFIER_SIZE); 493 if (err) 494 return err; 495 } 496 return do_add_master_key(sb, secret, key_spec); 497 } 498 499 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 500 { 501 const struct fscrypt_provisioning_key_payload *payload = prep->data; 502 503 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 504 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 505 return -EINVAL; 506 507 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 508 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 509 return -EINVAL; 510 511 if (payload->__reserved) 512 return -EINVAL; 513 514 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 515 if (!prep->payload.data[0]) 516 return -ENOMEM; 517 518 prep->quotalen = prep->datalen; 519 return 0; 520 } 521 522 static void fscrypt_provisioning_key_free_preparse( 523 struct key_preparsed_payload *prep) 524 { 525 kzfree(prep->payload.data[0]); 526 } 527 528 static void fscrypt_provisioning_key_describe(const struct key *key, 529 struct seq_file *m) 530 { 531 seq_puts(m, key->description); 532 if (key_is_positive(key)) { 533 const struct fscrypt_provisioning_key_payload *payload = 534 key->payload.data[0]; 535 536 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 537 } 538 } 539 540 static void fscrypt_provisioning_key_destroy(struct key *key) 541 { 542 kzfree(key->payload.data[0]); 543 } 544 545 static struct key_type key_type_fscrypt_provisioning = { 546 .name = "fscrypt-provisioning", 547 .preparse = fscrypt_provisioning_key_preparse, 548 .free_preparse = fscrypt_provisioning_key_free_preparse, 549 .instantiate = generic_key_instantiate, 550 .describe = fscrypt_provisioning_key_describe, 551 .destroy = fscrypt_provisioning_key_destroy, 552 }; 553 554 /* 555 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 556 * store it into 'secret'. 557 * 558 * The key must be of type "fscrypt-provisioning" and must have the field 559 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 560 * only usable with fscrypt with the particular KDF version identified by 561 * 'type'. We don't use the "logon" key type because there's no way to 562 * completely restrict the use of such keys; they can be used by any kernel API 563 * that accepts "logon" keys and doesn't require a specific service prefix. 564 * 565 * The ability to specify the key via Linux keyring key is intended for cases 566 * where userspace needs to re-add keys after the filesystem is unmounted and 567 * re-mounted. Most users should just provide the raw key directly instead. 568 */ 569 static int get_keyring_key(u32 key_id, u32 type, 570 struct fscrypt_master_key_secret *secret) 571 { 572 key_ref_t ref; 573 struct key *key; 574 const struct fscrypt_provisioning_key_payload *payload; 575 int err; 576 577 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 578 if (IS_ERR(ref)) 579 return PTR_ERR(ref); 580 key = key_ref_to_ptr(ref); 581 582 if (key->type != &key_type_fscrypt_provisioning) 583 goto bad_key; 584 payload = key->payload.data[0]; 585 586 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 587 if (payload->type != type) 588 goto bad_key; 589 590 secret->size = key->datalen - sizeof(*payload); 591 memcpy(secret->raw, payload->raw, secret->size); 592 err = 0; 593 goto out_put; 594 595 bad_key: 596 err = -EKEYREJECTED; 597 out_put: 598 key_ref_put(ref); 599 return err; 600 } 601 602 /* 603 * Add a master encryption key to the filesystem, causing all files which were 604 * encrypted with it to appear "unlocked" (decrypted) when accessed. 605 * 606 * When adding a key for use by v1 encryption policies, this ioctl is 607 * privileged, and userspace must provide the 'key_descriptor'. 608 * 609 * When adding a key for use by v2+ encryption policies, this ioctl is 610 * unprivileged. This is needed, in general, to allow non-root users to use 611 * encryption without encountering the visibility problems of process-subscribed 612 * keyrings and the inability to properly remove keys. This works by having 613 * each key identified by its cryptographically secure hash --- the 614 * 'key_identifier'. The cryptographic hash ensures that a malicious user 615 * cannot add the wrong key for a given identifier. Furthermore, each added key 616 * is charged to the appropriate user's quota for the keyrings service, which 617 * prevents a malicious user from adding too many keys. Finally, we forbid a 618 * user from removing a key while other users have added it too, which prevents 619 * a user who knows another user's key from causing a denial-of-service by 620 * removing it at an inopportune time. (We tolerate that a user who knows a key 621 * can prevent other users from removing it.) 622 * 623 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 624 * Documentation/filesystems/fscrypt.rst. 625 */ 626 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 627 { 628 struct super_block *sb = file_inode(filp)->i_sb; 629 struct fscrypt_add_key_arg __user *uarg = _uarg; 630 struct fscrypt_add_key_arg arg; 631 struct fscrypt_master_key_secret secret; 632 int err; 633 634 if (copy_from_user(&arg, uarg, sizeof(arg))) 635 return -EFAULT; 636 637 if (!valid_key_spec(&arg.key_spec)) 638 return -EINVAL; 639 640 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 641 return -EINVAL; 642 643 /* 644 * Only root can add keys that are identified by an arbitrary descriptor 645 * rather than by a cryptographic hash --- since otherwise a malicious 646 * user could add the wrong key. 647 */ 648 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 649 !capable(CAP_SYS_ADMIN)) 650 return -EACCES; 651 652 memset(&secret, 0, sizeof(secret)); 653 if (arg.key_id) { 654 if (arg.raw_size != 0) 655 return -EINVAL; 656 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 657 if (err) 658 goto out_wipe_secret; 659 } else { 660 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 661 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 662 return -EINVAL; 663 secret.size = arg.raw_size; 664 err = -EFAULT; 665 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 666 goto out_wipe_secret; 667 } 668 669 err = add_master_key(sb, &secret, &arg.key_spec); 670 if (err) 671 goto out_wipe_secret; 672 673 /* Return the key identifier to userspace, if applicable */ 674 err = -EFAULT; 675 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 676 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 677 FSCRYPT_KEY_IDENTIFIER_SIZE)) 678 goto out_wipe_secret; 679 err = 0; 680 out_wipe_secret: 681 wipe_master_key_secret(&secret); 682 return err; 683 } 684 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 685 686 /* 687 * Add the key for '-o test_dummy_encryption' to the filesystem keyring. 688 * 689 * Use a per-boot random key to prevent people from misusing this option. 690 */ 691 int fscrypt_add_test_dummy_key(struct super_block *sb, 692 struct fscrypt_key_specifier *key_spec) 693 { 694 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 695 struct fscrypt_master_key_secret secret; 696 int err; 697 698 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 699 700 memset(&secret, 0, sizeof(secret)); 701 secret.size = FSCRYPT_MAX_KEY_SIZE; 702 memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE); 703 704 err = add_master_key(sb, &secret, key_spec); 705 wipe_master_key_secret(&secret); 706 return err; 707 } 708 709 /* 710 * Verify that the current user has added a master key with the given identifier 711 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 712 * their files using some other user's key which they don't actually know. 713 * Cryptographically this isn't much of a problem, but the semantics of this 714 * would be a bit weird, so it's best to just forbid it. 715 * 716 * The system administrator (CAP_FOWNER) can override this, which should be 717 * enough for any use cases where encryption policies are being set using keys 718 * that were chosen ahead of time but aren't available at the moment. 719 * 720 * Note that the key may have already removed by the time this returns, but 721 * that's okay; we just care whether the key was there at some point. 722 * 723 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 724 */ 725 int fscrypt_verify_key_added(struct super_block *sb, 726 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 727 { 728 struct fscrypt_key_specifier mk_spec; 729 struct key *key, *mk_user; 730 struct fscrypt_master_key *mk; 731 int err; 732 733 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 734 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 735 736 key = fscrypt_find_master_key(sb, &mk_spec); 737 if (IS_ERR(key)) { 738 err = PTR_ERR(key); 739 goto out; 740 } 741 mk = key->payload.data[0]; 742 mk_user = find_master_key_user(mk); 743 if (IS_ERR(mk_user)) { 744 err = PTR_ERR(mk_user); 745 } else { 746 key_put(mk_user); 747 err = 0; 748 } 749 key_put(key); 750 out: 751 if (err == -ENOKEY && capable(CAP_FOWNER)) 752 err = 0; 753 return err; 754 } 755 756 /* 757 * Try to evict the inode's dentries from the dentry cache. If the inode is a 758 * directory, then it can have at most one dentry; however, that dentry may be 759 * pinned by child dentries, so first try to evict the children too. 760 */ 761 static void shrink_dcache_inode(struct inode *inode) 762 { 763 struct dentry *dentry; 764 765 if (S_ISDIR(inode->i_mode)) { 766 dentry = d_find_any_alias(inode); 767 if (dentry) { 768 shrink_dcache_parent(dentry); 769 dput(dentry); 770 } 771 } 772 d_prune_aliases(inode); 773 } 774 775 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 776 { 777 struct fscrypt_info *ci; 778 struct inode *inode; 779 struct inode *toput_inode = NULL; 780 781 spin_lock(&mk->mk_decrypted_inodes_lock); 782 783 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 784 inode = ci->ci_inode; 785 spin_lock(&inode->i_lock); 786 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 787 spin_unlock(&inode->i_lock); 788 continue; 789 } 790 __iget(inode); 791 spin_unlock(&inode->i_lock); 792 spin_unlock(&mk->mk_decrypted_inodes_lock); 793 794 shrink_dcache_inode(inode); 795 iput(toput_inode); 796 toput_inode = inode; 797 798 spin_lock(&mk->mk_decrypted_inodes_lock); 799 } 800 801 spin_unlock(&mk->mk_decrypted_inodes_lock); 802 iput(toput_inode); 803 } 804 805 static int check_for_busy_inodes(struct super_block *sb, 806 struct fscrypt_master_key *mk) 807 { 808 struct list_head *pos; 809 size_t busy_count = 0; 810 unsigned long ino; 811 812 spin_lock(&mk->mk_decrypted_inodes_lock); 813 814 list_for_each(pos, &mk->mk_decrypted_inodes) 815 busy_count++; 816 817 if (busy_count == 0) { 818 spin_unlock(&mk->mk_decrypted_inodes_lock); 819 return 0; 820 } 821 822 { 823 /* select an example file to show for debugging purposes */ 824 struct inode *inode = 825 list_first_entry(&mk->mk_decrypted_inodes, 826 struct fscrypt_info, 827 ci_master_key_link)->ci_inode; 828 ino = inode->i_ino; 829 } 830 spin_unlock(&mk->mk_decrypted_inodes_lock); 831 832 fscrypt_warn(NULL, 833 "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu", 834 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 835 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 836 ino); 837 return -EBUSY; 838 } 839 840 static int try_to_lock_encrypted_files(struct super_block *sb, 841 struct fscrypt_master_key *mk) 842 { 843 int err1; 844 int err2; 845 846 /* 847 * An inode can't be evicted while it is dirty or has dirty pages. 848 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 849 * 850 * Just do it the easy way: call sync_filesystem(). It's overkill, but 851 * it works, and it's more important to minimize the amount of caches we 852 * drop than the amount of data we sync. Also, unprivileged users can 853 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 854 */ 855 down_read(&sb->s_umount); 856 err1 = sync_filesystem(sb); 857 up_read(&sb->s_umount); 858 /* If a sync error occurs, still try to evict as much as possible. */ 859 860 /* 861 * Inodes are pinned by their dentries, so we have to evict their 862 * dentries. shrink_dcache_sb() would suffice, but would be overkill 863 * and inappropriate for use by unprivileged users. So instead go 864 * through the inodes' alias lists and try to evict each dentry. 865 */ 866 evict_dentries_for_decrypted_inodes(mk); 867 868 /* 869 * evict_dentries_for_decrypted_inodes() already iput() each inode in 870 * the list; any inodes for which that dropped the last reference will 871 * have been evicted due to fscrypt_drop_inode() detecting the key 872 * removal and telling the VFS to evict the inode. So to finish, we 873 * just need to check whether any inodes couldn't be evicted. 874 */ 875 err2 = check_for_busy_inodes(sb, mk); 876 877 return err1 ?: err2; 878 } 879 880 /* 881 * Try to remove an fscrypt master encryption key. 882 * 883 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 884 * claim to the key, then removes the key itself if no other users have claims. 885 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 886 * key itself. 887 * 888 * To "remove the key itself", first we wipe the actual master key secret, so 889 * that no more inodes can be unlocked with it. Then we try to evict all cached 890 * inodes that had been unlocked with the key. 891 * 892 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 893 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 894 * state (without the actual secret key) where it tracks the list of remaining 895 * inodes. Userspace can execute the ioctl again later to retry eviction, or 896 * alternatively can re-add the secret key again. 897 * 898 * For more details, see the "Removing keys" section of 899 * Documentation/filesystems/fscrypt.rst. 900 */ 901 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 902 { 903 struct super_block *sb = file_inode(filp)->i_sb; 904 struct fscrypt_remove_key_arg __user *uarg = _uarg; 905 struct fscrypt_remove_key_arg arg; 906 struct key *key; 907 struct fscrypt_master_key *mk; 908 u32 status_flags = 0; 909 int err; 910 bool dead; 911 912 if (copy_from_user(&arg, uarg, sizeof(arg))) 913 return -EFAULT; 914 915 if (!valid_key_spec(&arg.key_spec)) 916 return -EINVAL; 917 918 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 919 return -EINVAL; 920 921 /* 922 * Only root can add and remove keys that are identified by an arbitrary 923 * descriptor rather than by a cryptographic hash. 924 */ 925 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 926 !capable(CAP_SYS_ADMIN)) 927 return -EACCES; 928 929 /* Find the key being removed. */ 930 key = fscrypt_find_master_key(sb, &arg.key_spec); 931 if (IS_ERR(key)) 932 return PTR_ERR(key); 933 mk = key->payload.data[0]; 934 935 down_write(&key->sem); 936 937 /* If relevant, remove current user's (or all users) claim to the key */ 938 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 939 if (all_users) 940 err = keyring_clear(mk->mk_users); 941 else 942 err = remove_master_key_user(mk); 943 if (err) { 944 up_write(&key->sem); 945 goto out_put_key; 946 } 947 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 948 /* 949 * Other users have still added the key too. We removed 950 * the current user's claim to the key, but we still 951 * can't remove the key itself. 952 */ 953 status_flags |= 954 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 955 err = 0; 956 up_write(&key->sem); 957 goto out_put_key; 958 } 959 } 960 961 /* No user claims remaining. Go ahead and wipe the secret. */ 962 dead = false; 963 if (is_master_key_secret_present(&mk->mk_secret)) { 964 down_write(&mk->mk_secret_sem); 965 wipe_master_key_secret(&mk->mk_secret); 966 dead = refcount_dec_and_test(&mk->mk_refcount); 967 up_write(&mk->mk_secret_sem); 968 } 969 up_write(&key->sem); 970 if (dead) { 971 /* 972 * No inodes reference the key, and we wiped the secret, so the 973 * key object is free to be removed from the keyring. 974 */ 975 key_invalidate(key); 976 err = 0; 977 } else { 978 /* Some inodes still reference this key; try to evict them. */ 979 err = try_to_lock_encrypted_files(sb, mk); 980 if (err == -EBUSY) { 981 status_flags |= 982 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 983 err = 0; 984 } 985 } 986 /* 987 * We return 0 if we successfully did something: removed a claim to the 988 * key, wiped the secret, or tried locking the files again. Users need 989 * to check the informational status flags if they care whether the key 990 * has been fully removed including all files locked. 991 */ 992 out_put_key: 993 key_put(key); 994 if (err == 0) 995 err = put_user(status_flags, &uarg->removal_status_flags); 996 return err; 997 } 998 999 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1000 { 1001 return do_remove_key(filp, uarg, false); 1002 } 1003 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1004 1005 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1006 { 1007 if (!capable(CAP_SYS_ADMIN)) 1008 return -EACCES; 1009 return do_remove_key(filp, uarg, true); 1010 } 1011 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1012 1013 /* 1014 * Retrieve the status of an fscrypt master encryption key. 1015 * 1016 * We set ->status to indicate whether the key is absent, present, or 1017 * incompletely removed. "Incompletely removed" means that the master key 1018 * secret has been removed, but some files which had been unlocked with it are 1019 * still in use. This field allows applications to easily determine the state 1020 * of an encrypted directory without using a hack such as trying to open a 1021 * regular file in it (which can confuse the "incompletely removed" state with 1022 * absent or present). 1023 * 1024 * In addition, for v2 policy keys we allow applications to determine, via 1025 * ->status_flags and ->user_count, whether the key has been added by the 1026 * current user, by other users, or by both. Most applications should not need 1027 * this, since ordinarily only one user should know a given key. However, if a 1028 * secret key is shared by multiple users, applications may wish to add an 1029 * already-present key to prevent other users from removing it. This ioctl can 1030 * be used to check whether that really is the case before the work is done to 1031 * add the key --- which might e.g. require prompting the user for a passphrase. 1032 * 1033 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1034 * Documentation/filesystems/fscrypt.rst. 1035 */ 1036 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1037 { 1038 struct super_block *sb = file_inode(filp)->i_sb; 1039 struct fscrypt_get_key_status_arg arg; 1040 struct key *key; 1041 struct fscrypt_master_key *mk; 1042 int err; 1043 1044 if (copy_from_user(&arg, uarg, sizeof(arg))) 1045 return -EFAULT; 1046 1047 if (!valid_key_spec(&arg.key_spec)) 1048 return -EINVAL; 1049 1050 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1051 return -EINVAL; 1052 1053 arg.status_flags = 0; 1054 arg.user_count = 0; 1055 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1056 1057 key = fscrypt_find_master_key(sb, &arg.key_spec); 1058 if (IS_ERR(key)) { 1059 if (key != ERR_PTR(-ENOKEY)) 1060 return PTR_ERR(key); 1061 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1062 err = 0; 1063 goto out; 1064 } 1065 mk = key->payload.data[0]; 1066 down_read(&key->sem); 1067 1068 if (!is_master_key_secret_present(&mk->mk_secret)) { 1069 arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED; 1070 err = 0; 1071 goto out_release_key; 1072 } 1073 1074 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1075 if (mk->mk_users) { 1076 struct key *mk_user; 1077 1078 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1079 mk_user = find_master_key_user(mk); 1080 if (!IS_ERR(mk_user)) { 1081 arg.status_flags |= 1082 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1083 key_put(mk_user); 1084 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1085 err = PTR_ERR(mk_user); 1086 goto out_release_key; 1087 } 1088 } 1089 err = 0; 1090 out_release_key: 1091 up_read(&key->sem); 1092 key_put(key); 1093 out: 1094 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1095 err = -EFAULT; 1096 return err; 1097 } 1098 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1099 1100 int __init fscrypt_init_keyring(void) 1101 { 1102 int err; 1103 1104 err = register_key_type(&key_type_fscrypt); 1105 if (err) 1106 return err; 1107 1108 err = register_key_type(&key_type_fscrypt_user); 1109 if (err) 1110 goto err_unregister_fscrypt; 1111 1112 err = register_key_type(&key_type_fscrypt_provisioning); 1113 if (err) 1114 goto err_unregister_fscrypt_user; 1115 1116 return 0; 1117 1118 err_unregister_fscrypt_user: 1119 unregister_key_type(&key_type_fscrypt_user); 1120 err_unregister_fscrypt: 1121 unregister_key_type(&key_type_fscrypt); 1122 return err; 1123 } 1124