1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <asm/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/seq_file.h> 26 27 #include "fscrypt_private.h" 28 29 /* The master encryption keys for a filesystem (->s_master_keys) */ 30 struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39 }; 40 41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42 { 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45 } 46 47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49 { 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52 } 53 54 static void fscrypt_free_master_key(struct rcu_head *head) 55 { 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65 } 66 67 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68 { 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON(refcount_read(&mk->mk_active_refs) != 0); 77 key_put(mk->mk_users); 78 mk->mk_users = NULL; 79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 80 } 81 82 void fscrypt_put_master_key_activeref(struct super_block *sb, 83 struct fscrypt_master_key *mk) 84 { 85 size_t i; 86 87 if (!refcount_dec_and_test(&mk->mk_active_refs)) 88 return; 89 /* 90 * No active references left, so complete the full removal of this 91 * fscrypt_master_key struct by removing it from the keyring and 92 * destroying any subkeys embedded in it. 93 */ 94 95 spin_lock(&sb->s_master_keys->lock); 96 hlist_del_rcu(&mk->mk_node); 97 spin_unlock(&sb->s_master_keys->lock); 98 99 /* 100 * ->mk_active_refs == 0 implies that ->mk_secret is not present and 101 * that ->mk_decrypted_inodes is empty. 102 */ 103 WARN_ON(is_master_key_secret_present(&mk->mk_secret)); 104 WARN_ON(!list_empty(&mk->mk_decrypted_inodes)); 105 106 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 107 fscrypt_destroy_prepared_key( 108 sb, &mk->mk_direct_keys[i]); 109 fscrypt_destroy_prepared_key( 110 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 111 fscrypt_destroy_prepared_key( 112 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 113 } 114 memzero_explicit(&mk->mk_ino_hash_key, 115 sizeof(mk->mk_ino_hash_key)); 116 mk->mk_ino_hash_key_initialized = false; 117 118 /* Drop the structural ref associated with the active refs. */ 119 fscrypt_put_master_key(mk); 120 } 121 122 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 123 { 124 if (spec->__reserved) 125 return false; 126 return master_key_spec_len(spec) != 0; 127 } 128 129 static int fscrypt_user_key_instantiate(struct key *key, 130 struct key_preparsed_payload *prep) 131 { 132 /* 133 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 134 * each key, regardless of the exact key size. The amount of memory 135 * actually used is greater than the size of the raw key anyway. 136 */ 137 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 138 } 139 140 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 141 { 142 seq_puts(m, key->description); 143 } 144 145 /* 146 * Type of key in ->mk_users. Each key of this type represents a particular 147 * user who has added a particular master key. 148 * 149 * Note that the name of this key type really should be something like 150 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 151 * mainly for simplicity of presentation in /proc/keys when read by a non-root 152 * user. And it is expected to be rare that a key is actually added by multiple 153 * users, since users should keep their encryption keys confidential. 154 */ 155 static struct key_type key_type_fscrypt_user = { 156 .name = ".fscrypt", 157 .instantiate = fscrypt_user_key_instantiate, 158 .describe = fscrypt_user_key_describe, 159 }; 160 161 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 162 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 163 CONST_STRLEN("-users") + 1) 164 165 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 166 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 167 168 static void format_mk_users_keyring_description( 169 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 170 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 171 { 172 sprintf(description, "fscrypt-%*phN-users", 173 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 174 } 175 176 static void format_mk_user_description( 177 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 178 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 179 { 180 181 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 182 mk_identifier, __kuid_val(current_fsuid())); 183 } 184 185 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 186 static int allocate_filesystem_keyring(struct super_block *sb) 187 { 188 struct fscrypt_keyring *keyring; 189 190 if (sb->s_master_keys) 191 return 0; 192 193 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 194 if (!keyring) 195 return -ENOMEM; 196 spin_lock_init(&keyring->lock); 197 /* 198 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 199 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 200 * concurrent tasks can ACQUIRE it. 201 */ 202 smp_store_release(&sb->s_master_keys, keyring); 203 return 0; 204 } 205 206 /* 207 * Release all encryption keys that have been added to the filesystem, along 208 * with the keyring that contains them. 209 * 210 * This is called at unmount time. The filesystem's underlying block device(s) 211 * are still available at this time; this is important because after user file 212 * accesses have been allowed, this function may need to evict keys from the 213 * keyslots of an inline crypto engine, which requires the block device(s). 214 * 215 * This is also called when the super_block is being freed. This is needed to 216 * avoid a memory leak if mounting fails after the "test_dummy_encryption" 217 * option was processed, as in that case the unmount-time call isn't made. 218 */ 219 void fscrypt_destroy_keyring(struct super_block *sb) 220 { 221 struct fscrypt_keyring *keyring = sb->s_master_keys; 222 size_t i; 223 224 if (!keyring) 225 return; 226 227 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 228 struct hlist_head *bucket = &keyring->key_hashtable[i]; 229 struct fscrypt_master_key *mk; 230 struct hlist_node *tmp; 231 232 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 233 /* 234 * Since all inodes were already evicted, every key 235 * remaining in the keyring should have an empty inode 236 * list, and should only still be in the keyring due to 237 * the single active ref associated with ->mk_secret. 238 * There should be no structural refs beyond the one 239 * associated with the active ref. 240 */ 241 WARN_ON(refcount_read(&mk->mk_active_refs) != 1); 242 WARN_ON(refcount_read(&mk->mk_struct_refs) != 1); 243 WARN_ON(!is_master_key_secret_present(&mk->mk_secret)); 244 wipe_master_key_secret(&mk->mk_secret); 245 fscrypt_put_master_key_activeref(sb, mk); 246 } 247 } 248 kfree_sensitive(keyring); 249 sb->s_master_keys = NULL; 250 } 251 252 static struct hlist_head * 253 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 254 const struct fscrypt_key_specifier *mk_spec) 255 { 256 /* 257 * Since key specifiers should be "random" values, it is sufficient to 258 * use a trivial hash function that just takes the first several bits of 259 * the key specifier. 260 */ 261 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 262 263 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 264 } 265 266 /* 267 * Find the specified master key struct in ->s_master_keys and take a structural 268 * ref to it. The structural ref guarantees that the key struct continues to 269 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 270 * the key struct. The structural ref needs to be dropped by 271 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 272 */ 273 struct fscrypt_master_key * 274 fscrypt_find_master_key(struct super_block *sb, 275 const struct fscrypt_key_specifier *mk_spec) 276 { 277 struct fscrypt_keyring *keyring; 278 struct hlist_head *bucket; 279 struct fscrypt_master_key *mk; 280 281 /* 282 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 283 * I.e., another task can publish ->s_master_keys concurrently, 284 * executing a RELEASE barrier. We need to use smp_load_acquire() here 285 * to safely ACQUIRE the memory the other task published. 286 */ 287 keyring = smp_load_acquire(&sb->s_master_keys); 288 if (keyring == NULL) 289 return NULL; /* No keyring yet, so no keys yet. */ 290 291 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 292 rcu_read_lock(); 293 switch (mk_spec->type) { 294 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 295 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 296 if (mk->mk_spec.type == 297 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 298 memcmp(mk->mk_spec.u.descriptor, 299 mk_spec->u.descriptor, 300 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 301 refcount_inc_not_zero(&mk->mk_struct_refs)) 302 goto out; 303 } 304 break; 305 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 306 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 307 if (mk->mk_spec.type == 308 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 309 memcmp(mk->mk_spec.u.identifier, 310 mk_spec->u.identifier, 311 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 312 refcount_inc_not_zero(&mk->mk_struct_refs)) 313 goto out; 314 } 315 break; 316 } 317 mk = NULL; 318 out: 319 rcu_read_unlock(); 320 return mk; 321 } 322 323 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 324 { 325 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 326 struct key *keyring; 327 328 format_mk_users_keyring_description(description, 329 mk->mk_spec.u.identifier); 330 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 331 current_cred(), KEY_POS_SEARCH | 332 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 333 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 334 if (IS_ERR(keyring)) 335 return PTR_ERR(keyring); 336 337 mk->mk_users = keyring; 338 return 0; 339 } 340 341 /* 342 * Find the current user's "key" in the master key's ->mk_users. 343 * Returns ERR_PTR(-ENOKEY) if not found. 344 */ 345 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 346 { 347 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 348 key_ref_t keyref; 349 350 format_mk_user_description(description, mk->mk_spec.u.identifier); 351 352 /* 353 * We need to mark the keyring reference as "possessed" so that we 354 * acquire permission to search it, via the KEY_POS_SEARCH permission. 355 */ 356 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 357 &key_type_fscrypt_user, description, false); 358 if (IS_ERR(keyref)) { 359 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 360 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 361 keyref = ERR_PTR(-ENOKEY); 362 return ERR_CAST(keyref); 363 } 364 return key_ref_to_ptr(keyref); 365 } 366 367 /* 368 * Give the current user a "key" in ->mk_users. This charges the user's quota 369 * and marks the master key as added by the current user, so that it cannot be 370 * removed by another user with the key. Either ->mk_sem must be held for 371 * write, or the master key must be still undergoing initialization. 372 */ 373 static int add_master_key_user(struct fscrypt_master_key *mk) 374 { 375 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 376 struct key *mk_user; 377 int err; 378 379 format_mk_user_description(description, mk->mk_spec.u.identifier); 380 mk_user = key_alloc(&key_type_fscrypt_user, description, 381 current_fsuid(), current_gid(), current_cred(), 382 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 383 if (IS_ERR(mk_user)) 384 return PTR_ERR(mk_user); 385 386 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 387 key_put(mk_user); 388 return err; 389 } 390 391 /* 392 * Remove the current user's "key" from ->mk_users. 393 * ->mk_sem must be held for write. 394 * 395 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 396 */ 397 static int remove_master_key_user(struct fscrypt_master_key *mk) 398 { 399 struct key *mk_user; 400 int err; 401 402 mk_user = find_master_key_user(mk); 403 if (IS_ERR(mk_user)) 404 return PTR_ERR(mk_user); 405 err = key_unlink(mk->mk_users, mk_user); 406 key_put(mk_user); 407 return err; 408 } 409 410 /* 411 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 412 * insert it into sb->s_master_keys. 413 */ 414 static int add_new_master_key(struct super_block *sb, 415 struct fscrypt_master_key_secret *secret, 416 const struct fscrypt_key_specifier *mk_spec) 417 { 418 struct fscrypt_keyring *keyring = sb->s_master_keys; 419 struct fscrypt_master_key *mk; 420 int err; 421 422 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 423 if (!mk) 424 return -ENOMEM; 425 426 init_rwsem(&mk->mk_sem); 427 refcount_set(&mk->mk_struct_refs, 1); 428 mk->mk_spec = *mk_spec; 429 430 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 431 spin_lock_init(&mk->mk_decrypted_inodes_lock); 432 433 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 434 err = allocate_master_key_users_keyring(mk); 435 if (err) 436 goto out_put; 437 err = add_master_key_user(mk); 438 if (err) 439 goto out_put; 440 } 441 442 move_master_key_secret(&mk->mk_secret, secret); 443 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */ 444 445 spin_lock(&keyring->lock); 446 hlist_add_head_rcu(&mk->mk_node, 447 fscrypt_mk_hash_bucket(keyring, mk_spec)); 448 spin_unlock(&keyring->lock); 449 return 0; 450 451 out_put: 452 fscrypt_put_master_key(mk); 453 return err; 454 } 455 456 #define KEY_DEAD 1 457 458 static int add_existing_master_key(struct fscrypt_master_key *mk, 459 struct fscrypt_master_key_secret *secret) 460 { 461 int err; 462 463 /* 464 * If the current user is already in ->mk_users, then there's nothing to 465 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 466 * applicable for v1 policy keys, which have NULL ->mk_users.) 467 */ 468 if (mk->mk_users) { 469 struct key *mk_user = find_master_key_user(mk); 470 471 if (mk_user != ERR_PTR(-ENOKEY)) { 472 if (IS_ERR(mk_user)) 473 return PTR_ERR(mk_user); 474 key_put(mk_user); 475 return 0; 476 } 477 err = add_master_key_user(mk); 478 if (err) 479 return err; 480 } 481 482 /* Re-add the secret if needed. */ 483 if (!is_master_key_secret_present(&mk->mk_secret)) { 484 if (!refcount_inc_not_zero(&mk->mk_active_refs)) 485 return KEY_DEAD; 486 move_master_key_secret(&mk->mk_secret, secret); 487 } 488 489 return 0; 490 } 491 492 static int do_add_master_key(struct super_block *sb, 493 struct fscrypt_master_key_secret *secret, 494 const struct fscrypt_key_specifier *mk_spec) 495 { 496 static DEFINE_MUTEX(fscrypt_add_key_mutex); 497 struct fscrypt_master_key *mk; 498 int err; 499 500 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 501 502 mk = fscrypt_find_master_key(sb, mk_spec); 503 if (!mk) { 504 /* Didn't find the key in ->s_master_keys. Add it. */ 505 err = allocate_filesystem_keyring(sb); 506 if (!err) 507 err = add_new_master_key(sb, secret, mk_spec); 508 } else { 509 /* 510 * Found the key in ->s_master_keys. Re-add the secret if 511 * needed, and add the user to ->mk_users if needed. 512 */ 513 down_write(&mk->mk_sem); 514 err = add_existing_master_key(mk, secret); 515 up_write(&mk->mk_sem); 516 if (err == KEY_DEAD) { 517 /* 518 * We found a key struct, but it's already been fully 519 * removed. Ignore the old struct and add a new one. 520 * fscrypt_add_key_mutex means we don't need to worry 521 * about concurrent adds. 522 */ 523 err = add_new_master_key(sb, secret, mk_spec); 524 } 525 fscrypt_put_master_key(mk); 526 } 527 mutex_unlock(&fscrypt_add_key_mutex); 528 return err; 529 } 530 531 static int add_master_key(struct super_block *sb, 532 struct fscrypt_master_key_secret *secret, 533 struct fscrypt_key_specifier *key_spec) 534 { 535 int err; 536 537 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 538 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 539 secret->size); 540 if (err) 541 return err; 542 543 /* 544 * Now that the HKDF context is initialized, the raw key is no 545 * longer needed. 546 */ 547 memzero_explicit(secret->raw, secret->size); 548 549 /* Calculate the key identifier */ 550 err = fscrypt_hkdf_expand(&secret->hkdf, 551 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 552 key_spec->u.identifier, 553 FSCRYPT_KEY_IDENTIFIER_SIZE); 554 if (err) 555 return err; 556 } 557 return do_add_master_key(sb, secret, key_spec); 558 } 559 560 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 561 { 562 const struct fscrypt_provisioning_key_payload *payload = prep->data; 563 564 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 565 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 566 return -EINVAL; 567 568 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 569 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 570 return -EINVAL; 571 572 if (payload->__reserved) 573 return -EINVAL; 574 575 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 576 if (!prep->payload.data[0]) 577 return -ENOMEM; 578 579 prep->quotalen = prep->datalen; 580 return 0; 581 } 582 583 static void fscrypt_provisioning_key_free_preparse( 584 struct key_preparsed_payload *prep) 585 { 586 kfree_sensitive(prep->payload.data[0]); 587 } 588 589 static void fscrypt_provisioning_key_describe(const struct key *key, 590 struct seq_file *m) 591 { 592 seq_puts(m, key->description); 593 if (key_is_positive(key)) { 594 const struct fscrypt_provisioning_key_payload *payload = 595 key->payload.data[0]; 596 597 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 598 } 599 } 600 601 static void fscrypt_provisioning_key_destroy(struct key *key) 602 { 603 kfree_sensitive(key->payload.data[0]); 604 } 605 606 static struct key_type key_type_fscrypt_provisioning = { 607 .name = "fscrypt-provisioning", 608 .preparse = fscrypt_provisioning_key_preparse, 609 .free_preparse = fscrypt_provisioning_key_free_preparse, 610 .instantiate = generic_key_instantiate, 611 .describe = fscrypt_provisioning_key_describe, 612 .destroy = fscrypt_provisioning_key_destroy, 613 }; 614 615 /* 616 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 617 * store it into 'secret'. 618 * 619 * The key must be of type "fscrypt-provisioning" and must have the field 620 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 621 * only usable with fscrypt with the particular KDF version identified by 622 * 'type'. We don't use the "logon" key type because there's no way to 623 * completely restrict the use of such keys; they can be used by any kernel API 624 * that accepts "logon" keys and doesn't require a specific service prefix. 625 * 626 * The ability to specify the key via Linux keyring key is intended for cases 627 * where userspace needs to re-add keys after the filesystem is unmounted and 628 * re-mounted. Most users should just provide the raw key directly instead. 629 */ 630 static int get_keyring_key(u32 key_id, u32 type, 631 struct fscrypt_master_key_secret *secret) 632 { 633 key_ref_t ref; 634 struct key *key; 635 const struct fscrypt_provisioning_key_payload *payload; 636 int err; 637 638 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 639 if (IS_ERR(ref)) 640 return PTR_ERR(ref); 641 key = key_ref_to_ptr(ref); 642 643 if (key->type != &key_type_fscrypt_provisioning) 644 goto bad_key; 645 payload = key->payload.data[0]; 646 647 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 648 if (payload->type != type) 649 goto bad_key; 650 651 secret->size = key->datalen - sizeof(*payload); 652 memcpy(secret->raw, payload->raw, secret->size); 653 err = 0; 654 goto out_put; 655 656 bad_key: 657 err = -EKEYREJECTED; 658 out_put: 659 key_ref_put(ref); 660 return err; 661 } 662 663 /* 664 * Add a master encryption key to the filesystem, causing all files which were 665 * encrypted with it to appear "unlocked" (decrypted) when accessed. 666 * 667 * When adding a key for use by v1 encryption policies, this ioctl is 668 * privileged, and userspace must provide the 'key_descriptor'. 669 * 670 * When adding a key for use by v2+ encryption policies, this ioctl is 671 * unprivileged. This is needed, in general, to allow non-root users to use 672 * encryption without encountering the visibility problems of process-subscribed 673 * keyrings and the inability to properly remove keys. This works by having 674 * each key identified by its cryptographically secure hash --- the 675 * 'key_identifier'. The cryptographic hash ensures that a malicious user 676 * cannot add the wrong key for a given identifier. Furthermore, each added key 677 * is charged to the appropriate user's quota for the keyrings service, which 678 * prevents a malicious user from adding too many keys. Finally, we forbid a 679 * user from removing a key while other users have added it too, which prevents 680 * a user who knows another user's key from causing a denial-of-service by 681 * removing it at an inopportune time. (We tolerate that a user who knows a key 682 * can prevent other users from removing it.) 683 * 684 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 685 * Documentation/filesystems/fscrypt.rst. 686 */ 687 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 688 { 689 struct super_block *sb = file_inode(filp)->i_sb; 690 struct fscrypt_add_key_arg __user *uarg = _uarg; 691 struct fscrypt_add_key_arg arg; 692 struct fscrypt_master_key_secret secret; 693 int err; 694 695 if (copy_from_user(&arg, uarg, sizeof(arg))) 696 return -EFAULT; 697 698 if (!valid_key_spec(&arg.key_spec)) 699 return -EINVAL; 700 701 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 702 return -EINVAL; 703 704 /* 705 * Only root can add keys that are identified by an arbitrary descriptor 706 * rather than by a cryptographic hash --- since otherwise a malicious 707 * user could add the wrong key. 708 */ 709 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 710 !capable(CAP_SYS_ADMIN)) 711 return -EACCES; 712 713 memset(&secret, 0, sizeof(secret)); 714 if (arg.key_id) { 715 if (arg.raw_size != 0) 716 return -EINVAL; 717 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 718 if (err) 719 goto out_wipe_secret; 720 } else { 721 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 722 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 723 return -EINVAL; 724 secret.size = arg.raw_size; 725 err = -EFAULT; 726 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 727 goto out_wipe_secret; 728 } 729 730 err = add_master_key(sb, &secret, &arg.key_spec); 731 if (err) 732 goto out_wipe_secret; 733 734 /* Return the key identifier to userspace, if applicable */ 735 err = -EFAULT; 736 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 737 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 738 FSCRYPT_KEY_IDENTIFIER_SIZE)) 739 goto out_wipe_secret; 740 err = 0; 741 out_wipe_secret: 742 wipe_master_key_secret(&secret); 743 return err; 744 } 745 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 746 747 static void 748 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 749 { 750 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 751 752 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 753 754 memset(secret, 0, sizeof(*secret)); 755 secret->size = FSCRYPT_MAX_KEY_SIZE; 756 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 757 } 758 759 int fscrypt_get_test_dummy_key_identifier( 760 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 761 { 762 struct fscrypt_master_key_secret secret; 763 int err; 764 765 fscrypt_get_test_dummy_secret(&secret); 766 767 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 768 if (err) 769 goto out; 770 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 771 NULL, 0, key_identifier, 772 FSCRYPT_KEY_IDENTIFIER_SIZE); 773 out: 774 wipe_master_key_secret(&secret); 775 return err; 776 } 777 778 /** 779 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 780 * @sb: the filesystem instance to add the key to 781 * @dummy_policy: the encryption policy for test_dummy_encryption 782 * 783 * If needed, add the key for the test_dummy_encryption mount option to the 784 * filesystem. To prevent misuse of this mount option, a per-boot random key is 785 * used instead of a hardcoded one. This makes it so that any encrypted files 786 * created using this option won't be accessible after a reboot. 787 * 788 * Return: 0 on success, -errno on failure 789 */ 790 int fscrypt_add_test_dummy_key(struct super_block *sb, 791 const struct fscrypt_dummy_policy *dummy_policy) 792 { 793 const union fscrypt_policy *policy = dummy_policy->policy; 794 struct fscrypt_key_specifier key_spec; 795 struct fscrypt_master_key_secret secret; 796 int err; 797 798 if (!policy) 799 return 0; 800 err = fscrypt_policy_to_key_spec(policy, &key_spec); 801 if (err) 802 return err; 803 fscrypt_get_test_dummy_secret(&secret); 804 err = add_master_key(sb, &secret, &key_spec); 805 wipe_master_key_secret(&secret); 806 return err; 807 } 808 EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key); 809 810 /* 811 * Verify that the current user has added a master key with the given identifier 812 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 813 * their files using some other user's key which they don't actually know. 814 * Cryptographically this isn't much of a problem, but the semantics of this 815 * would be a bit weird, so it's best to just forbid it. 816 * 817 * The system administrator (CAP_FOWNER) can override this, which should be 818 * enough for any use cases where encryption policies are being set using keys 819 * that were chosen ahead of time but aren't available at the moment. 820 * 821 * Note that the key may have already removed by the time this returns, but 822 * that's okay; we just care whether the key was there at some point. 823 * 824 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 825 */ 826 int fscrypt_verify_key_added(struct super_block *sb, 827 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 828 { 829 struct fscrypt_key_specifier mk_spec; 830 struct fscrypt_master_key *mk; 831 struct key *mk_user; 832 int err; 833 834 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 835 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 836 837 mk = fscrypt_find_master_key(sb, &mk_spec); 838 if (!mk) { 839 err = -ENOKEY; 840 goto out; 841 } 842 down_read(&mk->mk_sem); 843 mk_user = find_master_key_user(mk); 844 if (IS_ERR(mk_user)) { 845 err = PTR_ERR(mk_user); 846 } else { 847 key_put(mk_user); 848 err = 0; 849 } 850 up_read(&mk->mk_sem); 851 fscrypt_put_master_key(mk); 852 out: 853 if (err == -ENOKEY && capable(CAP_FOWNER)) 854 err = 0; 855 return err; 856 } 857 858 /* 859 * Try to evict the inode's dentries from the dentry cache. If the inode is a 860 * directory, then it can have at most one dentry; however, that dentry may be 861 * pinned by child dentries, so first try to evict the children too. 862 */ 863 static void shrink_dcache_inode(struct inode *inode) 864 { 865 struct dentry *dentry; 866 867 if (S_ISDIR(inode->i_mode)) { 868 dentry = d_find_any_alias(inode); 869 if (dentry) { 870 shrink_dcache_parent(dentry); 871 dput(dentry); 872 } 873 } 874 d_prune_aliases(inode); 875 } 876 877 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 878 { 879 struct fscrypt_info *ci; 880 struct inode *inode; 881 struct inode *toput_inode = NULL; 882 883 spin_lock(&mk->mk_decrypted_inodes_lock); 884 885 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 886 inode = ci->ci_inode; 887 spin_lock(&inode->i_lock); 888 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 889 spin_unlock(&inode->i_lock); 890 continue; 891 } 892 __iget(inode); 893 spin_unlock(&inode->i_lock); 894 spin_unlock(&mk->mk_decrypted_inodes_lock); 895 896 shrink_dcache_inode(inode); 897 iput(toput_inode); 898 toput_inode = inode; 899 900 spin_lock(&mk->mk_decrypted_inodes_lock); 901 } 902 903 spin_unlock(&mk->mk_decrypted_inodes_lock); 904 iput(toput_inode); 905 } 906 907 static int check_for_busy_inodes(struct super_block *sb, 908 struct fscrypt_master_key *mk) 909 { 910 struct list_head *pos; 911 size_t busy_count = 0; 912 unsigned long ino; 913 char ino_str[50] = ""; 914 915 spin_lock(&mk->mk_decrypted_inodes_lock); 916 917 list_for_each(pos, &mk->mk_decrypted_inodes) 918 busy_count++; 919 920 if (busy_count == 0) { 921 spin_unlock(&mk->mk_decrypted_inodes_lock); 922 return 0; 923 } 924 925 { 926 /* select an example file to show for debugging purposes */ 927 struct inode *inode = 928 list_first_entry(&mk->mk_decrypted_inodes, 929 struct fscrypt_info, 930 ci_master_key_link)->ci_inode; 931 ino = inode->i_ino; 932 } 933 spin_unlock(&mk->mk_decrypted_inodes_lock); 934 935 /* If the inode is currently being created, ino may still be 0. */ 936 if (ino) 937 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 938 939 fscrypt_warn(NULL, 940 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 941 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 942 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 943 ino_str); 944 return -EBUSY; 945 } 946 947 static int try_to_lock_encrypted_files(struct super_block *sb, 948 struct fscrypt_master_key *mk) 949 { 950 int err1; 951 int err2; 952 953 /* 954 * An inode can't be evicted while it is dirty or has dirty pages. 955 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 956 * 957 * Just do it the easy way: call sync_filesystem(). It's overkill, but 958 * it works, and it's more important to minimize the amount of caches we 959 * drop than the amount of data we sync. Also, unprivileged users can 960 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 961 */ 962 down_read(&sb->s_umount); 963 err1 = sync_filesystem(sb); 964 up_read(&sb->s_umount); 965 /* If a sync error occurs, still try to evict as much as possible. */ 966 967 /* 968 * Inodes are pinned by their dentries, so we have to evict their 969 * dentries. shrink_dcache_sb() would suffice, but would be overkill 970 * and inappropriate for use by unprivileged users. So instead go 971 * through the inodes' alias lists and try to evict each dentry. 972 */ 973 evict_dentries_for_decrypted_inodes(mk); 974 975 /* 976 * evict_dentries_for_decrypted_inodes() already iput() each inode in 977 * the list; any inodes for which that dropped the last reference will 978 * have been evicted due to fscrypt_drop_inode() detecting the key 979 * removal and telling the VFS to evict the inode. So to finish, we 980 * just need to check whether any inodes couldn't be evicted. 981 */ 982 err2 = check_for_busy_inodes(sb, mk); 983 984 return err1 ?: err2; 985 } 986 987 /* 988 * Try to remove an fscrypt master encryption key. 989 * 990 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 991 * claim to the key, then removes the key itself if no other users have claims. 992 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 993 * key itself. 994 * 995 * To "remove the key itself", first we wipe the actual master key secret, so 996 * that no more inodes can be unlocked with it. Then we try to evict all cached 997 * inodes that had been unlocked with the key. 998 * 999 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 1000 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 1001 * state (without the actual secret key) where it tracks the list of remaining 1002 * inodes. Userspace can execute the ioctl again later to retry eviction, or 1003 * alternatively can re-add the secret key again. 1004 * 1005 * For more details, see the "Removing keys" section of 1006 * Documentation/filesystems/fscrypt.rst. 1007 */ 1008 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1009 { 1010 struct super_block *sb = file_inode(filp)->i_sb; 1011 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1012 struct fscrypt_remove_key_arg arg; 1013 struct fscrypt_master_key *mk; 1014 u32 status_flags = 0; 1015 int err; 1016 bool inodes_remain; 1017 1018 if (copy_from_user(&arg, uarg, sizeof(arg))) 1019 return -EFAULT; 1020 1021 if (!valid_key_spec(&arg.key_spec)) 1022 return -EINVAL; 1023 1024 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1025 return -EINVAL; 1026 1027 /* 1028 * Only root can add and remove keys that are identified by an arbitrary 1029 * descriptor rather than by a cryptographic hash. 1030 */ 1031 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1032 !capable(CAP_SYS_ADMIN)) 1033 return -EACCES; 1034 1035 /* Find the key being removed. */ 1036 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1037 if (!mk) 1038 return -ENOKEY; 1039 down_write(&mk->mk_sem); 1040 1041 /* If relevant, remove current user's (or all users) claim to the key */ 1042 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1043 if (all_users) 1044 err = keyring_clear(mk->mk_users); 1045 else 1046 err = remove_master_key_user(mk); 1047 if (err) { 1048 up_write(&mk->mk_sem); 1049 goto out_put_key; 1050 } 1051 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1052 /* 1053 * Other users have still added the key too. We removed 1054 * the current user's claim to the key, but we still 1055 * can't remove the key itself. 1056 */ 1057 status_flags |= 1058 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1059 err = 0; 1060 up_write(&mk->mk_sem); 1061 goto out_put_key; 1062 } 1063 } 1064 1065 /* No user claims remaining. Go ahead and wipe the secret. */ 1066 err = -ENOKEY; 1067 if (is_master_key_secret_present(&mk->mk_secret)) { 1068 wipe_master_key_secret(&mk->mk_secret); 1069 fscrypt_put_master_key_activeref(sb, mk); 1070 err = 0; 1071 } 1072 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1073 up_write(&mk->mk_sem); 1074 1075 if (inodes_remain) { 1076 /* Some inodes still reference this key; try to evict them. */ 1077 err = try_to_lock_encrypted_files(sb, mk); 1078 if (err == -EBUSY) { 1079 status_flags |= 1080 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1081 err = 0; 1082 } 1083 } 1084 /* 1085 * We return 0 if we successfully did something: removed a claim to the 1086 * key, wiped the secret, or tried locking the files again. Users need 1087 * to check the informational status flags if they care whether the key 1088 * has been fully removed including all files locked. 1089 */ 1090 out_put_key: 1091 fscrypt_put_master_key(mk); 1092 if (err == 0) 1093 err = put_user(status_flags, &uarg->removal_status_flags); 1094 return err; 1095 } 1096 1097 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1098 { 1099 return do_remove_key(filp, uarg, false); 1100 } 1101 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1102 1103 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1104 { 1105 if (!capable(CAP_SYS_ADMIN)) 1106 return -EACCES; 1107 return do_remove_key(filp, uarg, true); 1108 } 1109 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1110 1111 /* 1112 * Retrieve the status of an fscrypt master encryption key. 1113 * 1114 * We set ->status to indicate whether the key is absent, present, or 1115 * incompletely removed. "Incompletely removed" means that the master key 1116 * secret has been removed, but some files which had been unlocked with it are 1117 * still in use. This field allows applications to easily determine the state 1118 * of an encrypted directory without using a hack such as trying to open a 1119 * regular file in it (which can confuse the "incompletely removed" state with 1120 * absent or present). 1121 * 1122 * In addition, for v2 policy keys we allow applications to determine, via 1123 * ->status_flags and ->user_count, whether the key has been added by the 1124 * current user, by other users, or by both. Most applications should not need 1125 * this, since ordinarily only one user should know a given key. However, if a 1126 * secret key is shared by multiple users, applications may wish to add an 1127 * already-present key to prevent other users from removing it. This ioctl can 1128 * be used to check whether that really is the case before the work is done to 1129 * add the key --- which might e.g. require prompting the user for a passphrase. 1130 * 1131 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1132 * Documentation/filesystems/fscrypt.rst. 1133 */ 1134 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1135 { 1136 struct super_block *sb = file_inode(filp)->i_sb; 1137 struct fscrypt_get_key_status_arg arg; 1138 struct fscrypt_master_key *mk; 1139 int err; 1140 1141 if (copy_from_user(&arg, uarg, sizeof(arg))) 1142 return -EFAULT; 1143 1144 if (!valid_key_spec(&arg.key_spec)) 1145 return -EINVAL; 1146 1147 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1148 return -EINVAL; 1149 1150 arg.status_flags = 0; 1151 arg.user_count = 0; 1152 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1153 1154 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1155 if (!mk) { 1156 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1157 err = 0; 1158 goto out; 1159 } 1160 down_read(&mk->mk_sem); 1161 1162 if (!is_master_key_secret_present(&mk->mk_secret)) { 1163 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1164 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1165 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1166 err = 0; 1167 goto out_release_key; 1168 } 1169 1170 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1171 if (mk->mk_users) { 1172 struct key *mk_user; 1173 1174 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1175 mk_user = find_master_key_user(mk); 1176 if (!IS_ERR(mk_user)) { 1177 arg.status_flags |= 1178 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1179 key_put(mk_user); 1180 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1181 err = PTR_ERR(mk_user); 1182 goto out_release_key; 1183 } 1184 } 1185 err = 0; 1186 out_release_key: 1187 up_read(&mk->mk_sem); 1188 fscrypt_put_master_key(mk); 1189 out: 1190 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1191 err = -EFAULT; 1192 return err; 1193 } 1194 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1195 1196 int __init fscrypt_init_keyring(void) 1197 { 1198 int err; 1199 1200 err = register_key_type(&key_type_fscrypt_user); 1201 if (err) 1202 return err; 1203 1204 err = register_key_type(&key_type_fscrypt_provisioning); 1205 if (err) 1206 goto err_unregister_fscrypt_user; 1207 1208 return 0; 1209 1210 err_unregister_fscrypt_user: 1211 unregister_key_type(&key_type_fscrypt_user); 1212 return err; 1213 } 1214