1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <crypto/skcipher.h> 22 #include <linux/key-type.h> 23 #include <linux/random.h> 24 #include <linux/seq_file.h> 25 26 #include "fscrypt_private.h" 27 28 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 29 { 30 fscrypt_destroy_hkdf(&secret->hkdf); 31 memzero_explicit(secret, sizeof(*secret)); 32 } 33 34 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 35 struct fscrypt_master_key_secret *src) 36 { 37 memcpy(dst, src, sizeof(*dst)); 38 memzero_explicit(src, sizeof(*src)); 39 } 40 41 static void free_master_key(struct fscrypt_master_key *mk) 42 { 43 size_t i; 44 45 wipe_master_key_secret(&mk->mk_secret); 46 47 for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) { 48 fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]); 49 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]); 50 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]); 51 } 52 53 key_put(mk->mk_users); 54 kfree_sensitive(mk); 55 } 56 57 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 58 { 59 if (spec->__reserved) 60 return false; 61 return master_key_spec_len(spec) != 0; 62 } 63 64 static int fscrypt_key_instantiate(struct key *key, 65 struct key_preparsed_payload *prep) 66 { 67 key->payload.data[0] = (struct fscrypt_master_key *)prep->data; 68 return 0; 69 } 70 71 static void fscrypt_key_destroy(struct key *key) 72 { 73 free_master_key(key->payload.data[0]); 74 } 75 76 static void fscrypt_key_describe(const struct key *key, struct seq_file *m) 77 { 78 seq_puts(m, key->description); 79 80 if (key_is_positive(key)) { 81 const struct fscrypt_master_key *mk = key->payload.data[0]; 82 83 if (!is_master_key_secret_present(&mk->mk_secret)) 84 seq_puts(m, ": secret removed"); 85 } 86 } 87 88 /* 89 * Type of key in ->s_master_keys. Each key of this type represents a master 90 * key which has been added to the filesystem. Its payload is a 91 * 'struct fscrypt_master_key'. The "." prefix in the key type name prevents 92 * users from adding keys of this type via the keyrings syscalls rather than via 93 * the intended method of FS_IOC_ADD_ENCRYPTION_KEY. 94 */ 95 static struct key_type key_type_fscrypt = { 96 .name = "._fscrypt", 97 .instantiate = fscrypt_key_instantiate, 98 .destroy = fscrypt_key_destroy, 99 .describe = fscrypt_key_describe, 100 }; 101 102 static int fscrypt_user_key_instantiate(struct key *key, 103 struct key_preparsed_payload *prep) 104 { 105 /* 106 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 107 * each key, regardless of the exact key size. The amount of memory 108 * actually used is greater than the size of the raw key anyway. 109 */ 110 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 111 } 112 113 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 114 { 115 seq_puts(m, key->description); 116 } 117 118 /* 119 * Type of key in ->mk_users. Each key of this type represents a particular 120 * user who has added a particular master key. 121 * 122 * Note that the name of this key type really should be something like 123 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 124 * mainly for simplicity of presentation in /proc/keys when read by a non-root 125 * user. And it is expected to be rare that a key is actually added by multiple 126 * users, since users should keep their encryption keys confidential. 127 */ 128 static struct key_type key_type_fscrypt_user = { 129 .name = ".fscrypt", 130 .instantiate = fscrypt_user_key_instantiate, 131 .describe = fscrypt_user_key_describe, 132 }; 133 134 /* Search ->s_master_keys or ->mk_users */ 135 static struct key *search_fscrypt_keyring(struct key *keyring, 136 struct key_type *type, 137 const char *description) 138 { 139 /* 140 * We need to mark the keyring reference as "possessed" so that we 141 * acquire permission to search it, via the KEY_POS_SEARCH permission. 142 */ 143 key_ref_t keyref = make_key_ref(keyring, true /* possessed */); 144 145 keyref = keyring_search(keyref, type, description, false); 146 if (IS_ERR(keyref)) { 147 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 148 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 149 keyref = ERR_PTR(-ENOKEY); 150 return ERR_CAST(keyref); 151 } 152 return key_ref_to_ptr(keyref); 153 } 154 155 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \ 156 (CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id)) 157 158 #define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1) 159 160 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 161 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 162 CONST_STRLEN("-users") + 1) 163 164 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 165 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 166 167 static void format_fs_keyring_description( 168 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE], 169 const struct super_block *sb) 170 { 171 sprintf(description, "fscrypt-%s", sb->s_id); 172 } 173 174 static void format_mk_description( 175 char description[FSCRYPT_MK_DESCRIPTION_SIZE], 176 const struct fscrypt_key_specifier *mk_spec) 177 { 178 sprintf(description, "%*phN", 179 master_key_spec_len(mk_spec), (u8 *)&mk_spec->u); 180 } 181 182 static void format_mk_users_keyring_description( 183 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 184 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 185 { 186 sprintf(description, "fscrypt-%*phN-users", 187 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 188 } 189 190 static void format_mk_user_description( 191 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 192 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 193 { 194 195 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 196 mk_identifier, __kuid_val(current_fsuid())); 197 } 198 199 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 200 static int allocate_filesystem_keyring(struct super_block *sb) 201 { 202 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE]; 203 struct key *keyring; 204 205 if (sb->s_master_keys) 206 return 0; 207 208 format_fs_keyring_description(description, sb); 209 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 210 current_cred(), KEY_POS_SEARCH | 211 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 212 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 213 if (IS_ERR(keyring)) 214 return PTR_ERR(keyring); 215 216 /* 217 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 218 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 219 * concurrent tasks can ACQUIRE it. 220 */ 221 smp_store_release(&sb->s_master_keys, keyring); 222 return 0; 223 } 224 225 void fscrypt_sb_free(struct super_block *sb) 226 { 227 key_put(sb->s_master_keys); 228 sb->s_master_keys = NULL; 229 } 230 231 /* 232 * Find the specified master key in ->s_master_keys. 233 * Returns ERR_PTR(-ENOKEY) if not found. 234 */ 235 struct key *fscrypt_find_master_key(struct super_block *sb, 236 const struct fscrypt_key_specifier *mk_spec) 237 { 238 struct key *keyring; 239 char description[FSCRYPT_MK_DESCRIPTION_SIZE]; 240 241 /* 242 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 243 * I.e., another task can publish ->s_master_keys concurrently, 244 * executing a RELEASE barrier. We need to use smp_load_acquire() here 245 * to safely ACQUIRE the memory the other task published. 246 */ 247 keyring = smp_load_acquire(&sb->s_master_keys); 248 if (keyring == NULL) 249 return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */ 250 251 format_mk_description(description, mk_spec); 252 return search_fscrypt_keyring(keyring, &key_type_fscrypt, description); 253 } 254 255 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 256 { 257 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 258 struct key *keyring; 259 260 format_mk_users_keyring_description(description, 261 mk->mk_spec.u.identifier); 262 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 263 current_cred(), KEY_POS_SEARCH | 264 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 265 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 266 if (IS_ERR(keyring)) 267 return PTR_ERR(keyring); 268 269 mk->mk_users = keyring; 270 return 0; 271 } 272 273 /* 274 * Find the current user's "key" in the master key's ->mk_users. 275 * Returns ERR_PTR(-ENOKEY) if not found. 276 */ 277 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 278 { 279 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 280 281 format_mk_user_description(description, mk->mk_spec.u.identifier); 282 return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user, 283 description); 284 } 285 286 /* 287 * Give the current user a "key" in ->mk_users. This charges the user's quota 288 * and marks the master key as added by the current user, so that it cannot be 289 * removed by another user with the key. Either the master key's key->sem must 290 * be held for write, or the master key must be still undergoing initialization. 291 */ 292 static int add_master_key_user(struct fscrypt_master_key *mk) 293 { 294 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 295 struct key *mk_user; 296 int err; 297 298 format_mk_user_description(description, mk->mk_spec.u.identifier); 299 mk_user = key_alloc(&key_type_fscrypt_user, description, 300 current_fsuid(), current_gid(), current_cred(), 301 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 302 if (IS_ERR(mk_user)) 303 return PTR_ERR(mk_user); 304 305 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 306 key_put(mk_user); 307 return err; 308 } 309 310 /* 311 * Remove the current user's "key" from ->mk_users. 312 * The master key's key->sem must be held for write. 313 * 314 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 315 */ 316 static int remove_master_key_user(struct fscrypt_master_key *mk) 317 { 318 struct key *mk_user; 319 int err; 320 321 mk_user = find_master_key_user(mk); 322 if (IS_ERR(mk_user)) 323 return PTR_ERR(mk_user); 324 err = key_unlink(mk->mk_users, mk_user); 325 key_put(mk_user); 326 return err; 327 } 328 329 /* 330 * Allocate a new fscrypt_master_key which contains the given secret, set it as 331 * the payload of a new 'struct key' of type fscrypt, and link the 'struct key' 332 * into the given keyring. Synchronized by fscrypt_add_key_mutex. 333 */ 334 static int add_new_master_key(struct fscrypt_master_key_secret *secret, 335 const struct fscrypt_key_specifier *mk_spec, 336 struct key *keyring) 337 { 338 struct fscrypt_master_key *mk; 339 char description[FSCRYPT_MK_DESCRIPTION_SIZE]; 340 struct key *key; 341 int err; 342 343 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 344 if (!mk) 345 return -ENOMEM; 346 347 mk->mk_spec = *mk_spec; 348 349 move_master_key_secret(&mk->mk_secret, secret); 350 init_rwsem(&mk->mk_secret_sem); 351 352 refcount_set(&mk->mk_refcount, 1); /* secret is present */ 353 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 354 spin_lock_init(&mk->mk_decrypted_inodes_lock); 355 356 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 357 err = allocate_master_key_users_keyring(mk); 358 if (err) 359 goto out_free_mk; 360 err = add_master_key_user(mk); 361 if (err) 362 goto out_free_mk; 363 } 364 365 /* 366 * Note that we don't charge this key to anyone's quota, since when 367 * ->mk_users is in use those keys are charged instead, and otherwise 368 * (when ->mk_users isn't in use) only root can add these keys. 369 */ 370 format_mk_description(description, mk_spec); 371 key = key_alloc(&key_type_fscrypt, description, 372 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(), 373 KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW, 374 KEY_ALLOC_NOT_IN_QUOTA, NULL); 375 if (IS_ERR(key)) { 376 err = PTR_ERR(key); 377 goto out_free_mk; 378 } 379 err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL); 380 key_put(key); 381 if (err) 382 goto out_free_mk; 383 384 return 0; 385 386 out_free_mk: 387 free_master_key(mk); 388 return err; 389 } 390 391 #define KEY_DEAD 1 392 393 static int add_existing_master_key(struct fscrypt_master_key *mk, 394 struct fscrypt_master_key_secret *secret) 395 { 396 struct key *mk_user; 397 bool rekey; 398 int err; 399 400 /* 401 * If the current user is already in ->mk_users, then there's nothing to 402 * do. (Not applicable for v1 policy keys, which have NULL ->mk_users.) 403 */ 404 if (mk->mk_users) { 405 mk_user = find_master_key_user(mk); 406 if (mk_user != ERR_PTR(-ENOKEY)) { 407 if (IS_ERR(mk_user)) 408 return PTR_ERR(mk_user); 409 key_put(mk_user); 410 return 0; 411 } 412 } 413 414 /* If we'll be re-adding ->mk_secret, try to take the reference. */ 415 rekey = !is_master_key_secret_present(&mk->mk_secret); 416 if (rekey && !refcount_inc_not_zero(&mk->mk_refcount)) 417 return KEY_DEAD; 418 419 /* Add the current user to ->mk_users, if applicable. */ 420 if (mk->mk_users) { 421 err = add_master_key_user(mk); 422 if (err) { 423 if (rekey && refcount_dec_and_test(&mk->mk_refcount)) 424 return KEY_DEAD; 425 return err; 426 } 427 } 428 429 /* Re-add the secret if needed. */ 430 if (rekey) { 431 down_write(&mk->mk_secret_sem); 432 move_master_key_secret(&mk->mk_secret, secret); 433 up_write(&mk->mk_secret_sem); 434 } 435 return 0; 436 } 437 438 static int do_add_master_key(struct super_block *sb, 439 struct fscrypt_master_key_secret *secret, 440 const struct fscrypt_key_specifier *mk_spec) 441 { 442 static DEFINE_MUTEX(fscrypt_add_key_mutex); 443 struct key *key; 444 int err; 445 446 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 447 retry: 448 key = fscrypt_find_master_key(sb, mk_spec); 449 if (IS_ERR(key)) { 450 err = PTR_ERR(key); 451 if (err != -ENOKEY) 452 goto out_unlock; 453 /* Didn't find the key in ->s_master_keys. Add it. */ 454 err = allocate_filesystem_keyring(sb); 455 if (err) 456 goto out_unlock; 457 err = add_new_master_key(secret, mk_spec, sb->s_master_keys); 458 } else { 459 /* 460 * Found the key in ->s_master_keys. Re-add the secret if 461 * needed, and add the user to ->mk_users if needed. 462 */ 463 down_write(&key->sem); 464 err = add_existing_master_key(key->payload.data[0], secret); 465 up_write(&key->sem); 466 if (err == KEY_DEAD) { 467 /* Key being removed or needs to be removed */ 468 key_invalidate(key); 469 key_put(key); 470 goto retry; 471 } 472 key_put(key); 473 } 474 out_unlock: 475 mutex_unlock(&fscrypt_add_key_mutex); 476 return err; 477 } 478 479 static int add_master_key(struct super_block *sb, 480 struct fscrypt_master_key_secret *secret, 481 struct fscrypt_key_specifier *key_spec) 482 { 483 int err; 484 485 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 486 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 487 secret->size); 488 if (err) 489 return err; 490 491 /* 492 * Now that the HKDF context is initialized, the raw key is no 493 * longer needed. 494 */ 495 memzero_explicit(secret->raw, secret->size); 496 497 /* Calculate the key identifier */ 498 err = fscrypt_hkdf_expand(&secret->hkdf, 499 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 500 key_spec->u.identifier, 501 FSCRYPT_KEY_IDENTIFIER_SIZE); 502 if (err) 503 return err; 504 } 505 return do_add_master_key(sb, secret, key_spec); 506 } 507 508 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 509 { 510 const struct fscrypt_provisioning_key_payload *payload = prep->data; 511 512 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 513 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 514 return -EINVAL; 515 516 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 517 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 518 return -EINVAL; 519 520 if (payload->__reserved) 521 return -EINVAL; 522 523 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 524 if (!prep->payload.data[0]) 525 return -ENOMEM; 526 527 prep->quotalen = prep->datalen; 528 return 0; 529 } 530 531 static void fscrypt_provisioning_key_free_preparse( 532 struct key_preparsed_payload *prep) 533 { 534 kfree_sensitive(prep->payload.data[0]); 535 } 536 537 static void fscrypt_provisioning_key_describe(const struct key *key, 538 struct seq_file *m) 539 { 540 seq_puts(m, key->description); 541 if (key_is_positive(key)) { 542 const struct fscrypt_provisioning_key_payload *payload = 543 key->payload.data[0]; 544 545 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 546 } 547 } 548 549 static void fscrypt_provisioning_key_destroy(struct key *key) 550 { 551 kfree_sensitive(key->payload.data[0]); 552 } 553 554 static struct key_type key_type_fscrypt_provisioning = { 555 .name = "fscrypt-provisioning", 556 .preparse = fscrypt_provisioning_key_preparse, 557 .free_preparse = fscrypt_provisioning_key_free_preparse, 558 .instantiate = generic_key_instantiate, 559 .describe = fscrypt_provisioning_key_describe, 560 .destroy = fscrypt_provisioning_key_destroy, 561 }; 562 563 /* 564 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 565 * store it into 'secret'. 566 * 567 * The key must be of type "fscrypt-provisioning" and must have the field 568 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 569 * only usable with fscrypt with the particular KDF version identified by 570 * 'type'. We don't use the "logon" key type because there's no way to 571 * completely restrict the use of such keys; they can be used by any kernel API 572 * that accepts "logon" keys and doesn't require a specific service prefix. 573 * 574 * The ability to specify the key via Linux keyring key is intended for cases 575 * where userspace needs to re-add keys after the filesystem is unmounted and 576 * re-mounted. Most users should just provide the raw key directly instead. 577 */ 578 static int get_keyring_key(u32 key_id, u32 type, 579 struct fscrypt_master_key_secret *secret) 580 { 581 key_ref_t ref; 582 struct key *key; 583 const struct fscrypt_provisioning_key_payload *payload; 584 int err; 585 586 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 587 if (IS_ERR(ref)) 588 return PTR_ERR(ref); 589 key = key_ref_to_ptr(ref); 590 591 if (key->type != &key_type_fscrypt_provisioning) 592 goto bad_key; 593 payload = key->payload.data[0]; 594 595 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 596 if (payload->type != type) 597 goto bad_key; 598 599 secret->size = key->datalen - sizeof(*payload); 600 memcpy(secret->raw, payload->raw, secret->size); 601 err = 0; 602 goto out_put; 603 604 bad_key: 605 err = -EKEYREJECTED; 606 out_put: 607 key_ref_put(ref); 608 return err; 609 } 610 611 /* 612 * Add a master encryption key to the filesystem, causing all files which were 613 * encrypted with it to appear "unlocked" (decrypted) when accessed. 614 * 615 * When adding a key for use by v1 encryption policies, this ioctl is 616 * privileged, and userspace must provide the 'key_descriptor'. 617 * 618 * When adding a key for use by v2+ encryption policies, this ioctl is 619 * unprivileged. This is needed, in general, to allow non-root users to use 620 * encryption without encountering the visibility problems of process-subscribed 621 * keyrings and the inability to properly remove keys. This works by having 622 * each key identified by its cryptographically secure hash --- the 623 * 'key_identifier'. The cryptographic hash ensures that a malicious user 624 * cannot add the wrong key for a given identifier. Furthermore, each added key 625 * is charged to the appropriate user's quota for the keyrings service, which 626 * prevents a malicious user from adding too many keys. Finally, we forbid a 627 * user from removing a key while other users have added it too, which prevents 628 * a user who knows another user's key from causing a denial-of-service by 629 * removing it at an inopportune time. (We tolerate that a user who knows a key 630 * can prevent other users from removing it.) 631 * 632 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 633 * Documentation/filesystems/fscrypt.rst. 634 */ 635 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 636 { 637 struct super_block *sb = file_inode(filp)->i_sb; 638 struct fscrypt_add_key_arg __user *uarg = _uarg; 639 struct fscrypt_add_key_arg arg; 640 struct fscrypt_master_key_secret secret; 641 int err; 642 643 if (copy_from_user(&arg, uarg, sizeof(arg))) 644 return -EFAULT; 645 646 if (!valid_key_spec(&arg.key_spec)) 647 return -EINVAL; 648 649 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 650 return -EINVAL; 651 652 /* 653 * Only root can add keys that are identified by an arbitrary descriptor 654 * rather than by a cryptographic hash --- since otherwise a malicious 655 * user could add the wrong key. 656 */ 657 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 658 !capable(CAP_SYS_ADMIN)) 659 return -EACCES; 660 661 memset(&secret, 0, sizeof(secret)); 662 if (arg.key_id) { 663 if (arg.raw_size != 0) 664 return -EINVAL; 665 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 666 if (err) 667 goto out_wipe_secret; 668 } else { 669 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 670 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 671 return -EINVAL; 672 secret.size = arg.raw_size; 673 err = -EFAULT; 674 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 675 goto out_wipe_secret; 676 } 677 678 err = add_master_key(sb, &secret, &arg.key_spec); 679 if (err) 680 goto out_wipe_secret; 681 682 /* Return the key identifier to userspace, if applicable */ 683 err = -EFAULT; 684 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 685 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 686 FSCRYPT_KEY_IDENTIFIER_SIZE)) 687 goto out_wipe_secret; 688 err = 0; 689 out_wipe_secret: 690 wipe_master_key_secret(&secret); 691 return err; 692 } 693 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 694 695 /* 696 * Add the key for '-o test_dummy_encryption' to the filesystem keyring. 697 * 698 * Use a per-boot random key to prevent people from misusing this option. 699 */ 700 int fscrypt_add_test_dummy_key(struct super_block *sb, 701 struct fscrypt_key_specifier *key_spec) 702 { 703 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 704 struct fscrypt_master_key_secret secret; 705 int err; 706 707 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 708 709 memset(&secret, 0, sizeof(secret)); 710 secret.size = FSCRYPT_MAX_KEY_SIZE; 711 memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE); 712 713 err = add_master_key(sb, &secret, key_spec); 714 wipe_master_key_secret(&secret); 715 return err; 716 } 717 718 /* 719 * Verify that the current user has added a master key with the given identifier 720 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 721 * their files using some other user's key which they don't actually know. 722 * Cryptographically this isn't much of a problem, but the semantics of this 723 * would be a bit weird, so it's best to just forbid it. 724 * 725 * The system administrator (CAP_FOWNER) can override this, which should be 726 * enough for any use cases where encryption policies are being set using keys 727 * that were chosen ahead of time but aren't available at the moment. 728 * 729 * Note that the key may have already removed by the time this returns, but 730 * that's okay; we just care whether the key was there at some point. 731 * 732 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 733 */ 734 int fscrypt_verify_key_added(struct super_block *sb, 735 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 736 { 737 struct fscrypt_key_specifier mk_spec; 738 struct key *key, *mk_user; 739 struct fscrypt_master_key *mk; 740 int err; 741 742 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 743 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 744 745 key = fscrypt_find_master_key(sb, &mk_spec); 746 if (IS_ERR(key)) { 747 err = PTR_ERR(key); 748 goto out; 749 } 750 mk = key->payload.data[0]; 751 mk_user = find_master_key_user(mk); 752 if (IS_ERR(mk_user)) { 753 err = PTR_ERR(mk_user); 754 } else { 755 key_put(mk_user); 756 err = 0; 757 } 758 key_put(key); 759 out: 760 if (err == -ENOKEY && capable(CAP_FOWNER)) 761 err = 0; 762 return err; 763 } 764 765 /* 766 * Try to evict the inode's dentries from the dentry cache. If the inode is a 767 * directory, then it can have at most one dentry; however, that dentry may be 768 * pinned by child dentries, so first try to evict the children too. 769 */ 770 static void shrink_dcache_inode(struct inode *inode) 771 { 772 struct dentry *dentry; 773 774 if (S_ISDIR(inode->i_mode)) { 775 dentry = d_find_any_alias(inode); 776 if (dentry) { 777 shrink_dcache_parent(dentry); 778 dput(dentry); 779 } 780 } 781 d_prune_aliases(inode); 782 } 783 784 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 785 { 786 struct fscrypt_info *ci; 787 struct inode *inode; 788 struct inode *toput_inode = NULL; 789 790 spin_lock(&mk->mk_decrypted_inodes_lock); 791 792 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 793 inode = ci->ci_inode; 794 spin_lock(&inode->i_lock); 795 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 796 spin_unlock(&inode->i_lock); 797 continue; 798 } 799 __iget(inode); 800 spin_unlock(&inode->i_lock); 801 spin_unlock(&mk->mk_decrypted_inodes_lock); 802 803 shrink_dcache_inode(inode); 804 iput(toput_inode); 805 toput_inode = inode; 806 807 spin_lock(&mk->mk_decrypted_inodes_lock); 808 } 809 810 spin_unlock(&mk->mk_decrypted_inodes_lock); 811 iput(toput_inode); 812 } 813 814 static int check_for_busy_inodes(struct super_block *sb, 815 struct fscrypt_master_key *mk) 816 { 817 struct list_head *pos; 818 size_t busy_count = 0; 819 unsigned long ino; 820 821 spin_lock(&mk->mk_decrypted_inodes_lock); 822 823 list_for_each(pos, &mk->mk_decrypted_inodes) 824 busy_count++; 825 826 if (busy_count == 0) { 827 spin_unlock(&mk->mk_decrypted_inodes_lock); 828 return 0; 829 } 830 831 { 832 /* select an example file to show for debugging purposes */ 833 struct inode *inode = 834 list_first_entry(&mk->mk_decrypted_inodes, 835 struct fscrypt_info, 836 ci_master_key_link)->ci_inode; 837 ino = inode->i_ino; 838 } 839 spin_unlock(&mk->mk_decrypted_inodes_lock); 840 841 fscrypt_warn(NULL, 842 "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu", 843 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 844 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 845 ino); 846 return -EBUSY; 847 } 848 849 static int try_to_lock_encrypted_files(struct super_block *sb, 850 struct fscrypt_master_key *mk) 851 { 852 int err1; 853 int err2; 854 855 /* 856 * An inode can't be evicted while it is dirty or has dirty pages. 857 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 858 * 859 * Just do it the easy way: call sync_filesystem(). It's overkill, but 860 * it works, and it's more important to minimize the amount of caches we 861 * drop than the amount of data we sync. Also, unprivileged users can 862 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 863 */ 864 down_read(&sb->s_umount); 865 err1 = sync_filesystem(sb); 866 up_read(&sb->s_umount); 867 /* If a sync error occurs, still try to evict as much as possible. */ 868 869 /* 870 * Inodes are pinned by their dentries, so we have to evict their 871 * dentries. shrink_dcache_sb() would suffice, but would be overkill 872 * and inappropriate for use by unprivileged users. So instead go 873 * through the inodes' alias lists and try to evict each dentry. 874 */ 875 evict_dentries_for_decrypted_inodes(mk); 876 877 /* 878 * evict_dentries_for_decrypted_inodes() already iput() each inode in 879 * the list; any inodes for which that dropped the last reference will 880 * have been evicted due to fscrypt_drop_inode() detecting the key 881 * removal and telling the VFS to evict the inode. So to finish, we 882 * just need to check whether any inodes couldn't be evicted. 883 */ 884 err2 = check_for_busy_inodes(sb, mk); 885 886 return err1 ?: err2; 887 } 888 889 /* 890 * Try to remove an fscrypt master encryption key. 891 * 892 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 893 * claim to the key, then removes the key itself if no other users have claims. 894 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 895 * key itself. 896 * 897 * To "remove the key itself", first we wipe the actual master key secret, so 898 * that no more inodes can be unlocked with it. Then we try to evict all cached 899 * inodes that had been unlocked with the key. 900 * 901 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 902 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 903 * state (without the actual secret key) where it tracks the list of remaining 904 * inodes. Userspace can execute the ioctl again later to retry eviction, or 905 * alternatively can re-add the secret key again. 906 * 907 * For more details, see the "Removing keys" section of 908 * Documentation/filesystems/fscrypt.rst. 909 */ 910 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 911 { 912 struct super_block *sb = file_inode(filp)->i_sb; 913 struct fscrypt_remove_key_arg __user *uarg = _uarg; 914 struct fscrypt_remove_key_arg arg; 915 struct key *key; 916 struct fscrypt_master_key *mk; 917 u32 status_flags = 0; 918 int err; 919 bool dead; 920 921 if (copy_from_user(&arg, uarg, sizeof(arg))) 922 return -EFAULT; 923 924 if (!valid_key_spec(&arg.key_spec)) 925 return -EINVAL; 926 927 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 928 return -EINVAL; 929 930 /* 931 * Only root can add and remove keys that are identified by an arbitrary 932 * descriptor rather than by a cryptographic hash. 933 */ 934 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 935 !capable(CAP_SYS_ADMIN)) 936 return -EACCES; 937 938 /* Find the key being removed. */ 939 key = fscrypt_find_master_key(sb, &arg.key_spec); 940 if (IS_ERR(key)) 941 return PTR_ERR(key); 942 mk = key->payload.data[0]; 943 944 down_write(&key->sem); 945 946 /* If relevant, remove current user's (or all users) claim to the key */ 947 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 948 if (all_users) 949 err = keyring_clear(mk->mk_users); 950 else 951 err = remove_master_key_user(mk); 952 if (err) { 953 up_write(&key->sem); 954 goto out_put_key; 955 } 956 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 957 /* 958 * Other users have still added the key too. We removed 959 * the current user's claim to the key, but we still 960 * can't remove the key itself. 961 */ 962 status_flags |= 963 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 964 err = 0; 965 up_write(&key->sem); 966 goto out_put_key; 967 } 968 } 969 970 /* No user claims remaining. Go ahead and wipe the secret. */ 971 dead = false; 972 if (is_master_key_secret_present(&mk->mk_secret)) { 973 down_write(&mk->mk_secret_sem); 974 wipe_master_key_secret(&mk->mk_secret); 975 dead = refcount_dec_and_test(&mk->mk_refcount); 976 up_write(&mk->mk_secret_sem); 977 } 978 up_write(&key->sem); 979 if (dead) { 980 /* 981 * No inodes reference the key, and we wiped the secret, so the 982 * key object is free to be removed from the keyring. 983 */ 984 key_invalidate(key); 985 err = 0; 986 } else { 987 /* Some inodes still reference this key; try to evict them. */ 988 err = try_to_lock_encrypted_files(sb, mk); 989 if (err == -EBUSY) { 990 status_flags |= 991 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 992 err = 0; 993 } 994 } 995 /* 996 * We return 0 if we successfully did something: removed a claim to the 997 * key, wiped the secret, or tried locking the files again. Users need 998 * to check the informational status flags if they care whether the key 999 * has been fully removed including all files locked. 1000 */ 1001 out_put_key: 1002 key_put(key); 1003 if (err == 0) 1004 err = put_user(status_flags, &uarg->removal_status_flags); 1005 return err; 1006 } 1007 1008 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1009 { 1010 return do_remove_key(filp, uarg, false); 1011 } 1012 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1013 1014 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1015 { 1016 if (!capable(CAP_SYS_ADMIN)) 1017 return -EACCES; 1018 return do_remove_key(filp, uarg, true); 1019 } 1020 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1021 1022 /* 1023 * Retrieve the status of an fscrypt master encryption key. 1024 * 1025 * We set ->status to indicate whether the key is absent, present, or 1026 * incompletely removed. "Incompletely removed" means that the master key 1027 * secret has been removed, but some files which had been unlocked with it are 1028 * still in use. This field allows applications to easily determine the state 1029 * of an encrypted directory without using a hack such as trying to open a 1030 * regular file in it (which can confuse the "incompletely removed" state with 1031 * absent or present). 1032 * 1033 * In addition, for v2 policy keys we allow applications to determine, via 1034 * ->status_flags and ->user_count, whether the key has been added by the 1035 * current user, by other users, or by both. Most applications should not need 1036 * this, since ordinarily only one user should know a given key. However, if a 1037 * secret key is shared by multiple users, applications may wish to add an 1038 * already-present key to prevent other users from removing it. This ioctl can 1039 * be used to check whether that really is the case before the work is done to 1040 * add the key --- which might e.g. require prompting the user for a passphrase. 1041 * 1042 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1043 * Documentation/filesystems/fscrypt.rst. 1044 */ 1045 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1046 { 1047 struct super_block *sb = file_inode(filp)->i_sb; 1048 struct fscrypt_get_key_status_arg arg; 1049 struct key *key; 1050 struct fscrypt_master_key *mk; 1051 int err; 1052 1053 if (copy_from_user(&arg, uarg, sizeof(arg))) 1054 return -EFAULT; 1055 1056 if (!valid_key_spec(&arg.key_spec)) 1057 return -EINVAL; 1058 1059 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1060 return -EINVAL; 1061 1062 arg.status_flags = 0; 1063 arg.user_count = 0; 1064 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1065 1066 key = fscrypt_find_master_key(sb, &arg.key_spec); 1067 if (IS_ERR(key)) { 1068 if (key != ERR_PTR(-ENOKEY)) 1069 return PTR_ERR(key); 1070 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1071 err = 0; 1072 goto out; 1073 } 1074 mk = key->payload.data[0]; 1075 down_read(&key->sem); 1076 1077 if (!is_master_key_secret_present(&mk->mk_secret)) { 1078 arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED; 1079 err = 0; 1080 goto out_release_key; 1081 } 1082 1083 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1084 if (mk->mk_users) { 1085 struct key *mk_user; 1086 1087 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1088 mk_user = find_master_key_user(mk); 1089 if (!IS_ERR(mk_user)) { 1090 arg.status_flags |= 1091 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1092 key_put(mk_user); 1093 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1094 err = PTR_ERR(mk_user); 1095 goto out_release_key; 1096 } 1097 } 1098 err = 0; 1099 out_release_key: 1100 up_read(&key->sem); 1101 key_put(key); 1102 out: 1103 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1104 err = -EFAULT; 1105 return err; 1106 } 1107 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1108 1109 int __init fscrypt_init_keyring(void) 1110 { 1111 int err; 1112 1113 err = register_key_type(&key_type_fscrypt); 1114 if (err) 1115 return err; 1116 1117 err = register_key_type(&key_type_fscrypt_user); 1118 if (err) 1119 goto err_unregister_fscrypt; 1120 1121 err = register_key_type(&key_type_fscrypt_provisioning); 1122 if (err) 1123 goto err_unregister_fscrypt_user; 1124 1125 return 0; 1126 1127 err_unregister_fscrypt_user: 1128 unregister_key_type(&key_type_fscrypt_user); 1129 err_unregister_fscrypt: 1130 unregister_key_type(&key_type_fscrypt); 1131 return err; 1132 } 1133