1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <asm/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/seq_file.h> 26 27 #include "fscrypt_private.h" 28 29 /* The master encryption keys for a filesystem (->s_master_keys) */ 30 struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39 }; 40 41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42 { 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45 } 46 47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49 { 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52 } 53 54 static void fscrypt_free_master_key(struct rcu_head *head) 55 { 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65 } 66 67 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68 { 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0); 77 key_put(mk->mk_users); 78 mk->mk_users = NULL; 79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 80 } 81 82 void fscrypt_put_master_key_activeref(struct super_block *sb, 83 struct fscrypt_master_key *mk) 84 { 85 size_t i; 86 87 if (!refcount_dec_and_test(&mk->mk_active_refs)) 88 return; 89 /* 90 * No active references left, so complete the full removal of this 91 * fscrypt_master_key struct by removing it from the keyring and 92 * destroying any subkeys embedded in it. 93 */ 94 95 if (WARN_ON_ONCE(!sb->s_master_keys)) 96 return; 97 spin_lock(&sb->s_master_keys->lock); 98 hlist_del_rcu(&mk->mk_node); 99 spin_unlock(&sb->s_master_keys->lock); 100 101 /* 102 * ->mk_active_refs == 0 implies that ->mk_secret is not present and 103 * that ->mk_decrypted_inodes is empty. 104 */ 105 WARN_ON_ONCE(is_master_key_secret_present(&mk->mk_secret)); 106 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes)); 107 108 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 109 fscrypt_destroy_prepared_key( 110 sb, &mk->mk_direct_keys[i]); 111 fscrypt_destroy_prepared_key( 112 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 113 fscrypt_destroy_prepared_key( 114 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 115 } 116 memzero_explicit(&mk->mk_ino_hash_key, 117 sizeof(mk->mk_ino_hash_key)); 118 mk->mk_ino_hash_key_initialized = false; 119 120 /* Drop the structural ref associated with the active refs. */ 121 fscrypt_put_master_key(mk); 122 } 123 124 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 125 { 126 if (spec->__reserved) 127 return false; 128 return master_key_spec_len(spec) != 0; 129 } 130 131 static int fscrypt_user_key_instantiate(struct key *key, 132 struct key_preparsed_payload *prep) 133 { 134 /* 135 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 136 * each key, regardless of the exact key size. The amount of memory 137 * actually used is greater than the size of the raw key anyway. 138 */ 139 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 140 } 141 142 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 143 { 144 seq_puts(m, key->description); 145 } 146 147 /* 148 * Type of key in ->mk_users. Each key of this type represents a particular 149 * user who has added a particular master key. 150 * 151 * Note that the name of this key type really should be something like 152 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 153 * mainly for simplicity of presentation in /proc/keys when read by a non-root 154 * user. And it is expected to be rare that a key is actually added by multiple 155 * users, since users should keep their encryption keys confidential. 156 */ 157 static struct key_type key_type_fscrypt_user = { 158 .name = ".fscrypt", 159 .instantiate = fscrypt_user_key_instantiate, 160 .describe = fscrypt_user_key_describe, 161 }; 162 163 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 164 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 165 CONST_STRLEN("-users") + 1) 166 167 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 168 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 169 170 static void format_mk_users_keyring_description( 171 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 172 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 173 { 174 sprintf(description, "fscrypt-%*phN-users", 175 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 176 } 177 178 static void format_mk_user_description( 179 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 180 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 181 { 182 183 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 184 mk_identifier, __kuid_val(current_fsuid())); 185 } 186 187 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 188 static int allocate_filesystem_keyring(struct super_block *sb) 189 { 190 struct fscrypt_keyring *keyring; 191 192 if (sb->s_master_keys) 193 return 0; 194 195 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 196 if (!keyring) 197 return -ENOMEM; 198 spin_lock_init(&keyring->lock); 199 /* 200 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 201 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 202 * concurrent tasks can ACQUIRE it. 203 */ 204 smp_store_release(&sb->s_master_keys, keyring); 205 return 0; 206 } 207 208 /* 209 * Release all encryption keys that have been added to the filesystem, along 210 * with the keyring that contains them. 211 * 212 * This is called at unmount time, after all potentially-encrypted inodes have 213 * been evicted. The filesystem's underlying block device(s) are still 214 * available at this time; this is important because after user file accesses 215 * have been allowed, this function may need to evict keys from the keyslots of 216 * an inline crypto engine, which requires the block device(s). 217 */ 218 void fscrypt_destroy_keyring(struct super_block *sb) 219 { 220 struct fscrypt_keyring *keyring = sb->s_master_keys; 221 size_t i; 222 223 if (!keyring) 224 return; 225 226 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 227 struct hlist_head *bucket = &keyring->key_hashtable[i]; 228 struct fscrypt_master_key *mk; 229 struct hlist_node *tmp; 230 231 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 232 /* 233 * Since all potentially-encrypted inodes were already 234 * evicted, every key remaining in the keyring should 235 * have an empty inode list, and should only still be in 236 * the keyring due to the single active ref associated 237 * with ->mk_secret. There should be no structural refs 238 * beyond the one associated with the active ref. 239 */ 240 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1); 241 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1); 242 WARN_ON_ONCE(!is_master_key_secret_present(&mk->mk_secret)); 243 wipe_master_key_secret(&mk->mk_secret); 244 fscrypt_put_master_key_activeref(sb, mk); 245 } 246 } 247 kfree_sensitive(keyring); 248 sb->s_master_keys = NULL; 249 } 250 251 static struct hlist_head * 252 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 253 const struct fscrypt_key_specifier *mk_spec) 254 { 255 /* 256 * Since key specifiers should be "random" values, it is sufficient to 257 * use a trivial hash function that just takes the first several bits of 258 * the key specifier. 259 */ 260 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 261 262 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 263 } 264 265 /* 266 * Find the specified master key struct in ->s_master_keys and take a structural 267 * ref to it. The structural ref guarantees that the key struct continues to 268 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 269 * the key struct. The structural ref needs to be dropped by 270 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 271 */ 272 struct fscrypt_master_key * 273 fscrypt_find_master_key(struct super_block *sb, 274 const struct fscrypt_key_specifier *mk_spec) 275 { 276 struct fscrypt_keyring *keyring; 277 struct hlist_head *bucket; 278 struct fscrypt_master_key *mk; 279 280 /* 281 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 282 * I.e., another task can publish ->s_master_keys concurrently, 283 * executing a RELEASE barrier. We need to use smp_load_acquire() here 284 * to safely ACQUIRE the memory the other task published. 285 */ 286 keyring = smp_load_acquire(&sb->s_master_keys); 287 if (keyring == NULL) 288 return NULL; /* No keyring yet, so no keys yet. */ 289 290 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 291 rcu_read_lock(); 292 switch (mk_spec->type) { 293 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 294 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 295 if (mk->mk_spec.type == 296 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 297 memcmp(mk->mk_spec.u.descriptor, 298 mk_spec->u.descriptor, 299 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 300 refcount_inc_not_zero(&mk->mk_struct_refs)) 301 goto out; 302 } 303 break; 304 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 305 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 306 if (mk->mk_spec.type == 307 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 308 memcmp(mk->mk_spec.u.identifier, 309 mk_spec->u.identifier, 310 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 311 refcount_inc_not_zero(&mk->mk_struct_refs)) 312 goto out; 313 } 314 break; 315 } 316 mk = NULL; 317 out: 318 rcu_read_unlock(); 319 return mk; 320 } 321 322 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 323 { 324 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 325 struct key *keyring; 326 327 format_mk_users_keyring_description(description, 328 mk->mk_spec.u.identifier); 329 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 330 current_cred(), KEY_POS_SEARCH | 331 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 332 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 333 if (IS_ERR(keyring)) 334 return PTR_ERR(keyring); 335 336 mk->mk_users = keyring; 337 return 0; 338 } 339 340 /* 341 * Find the current user's "key" in the master key's ->mk_users. 342 * Returns ERR_PTR(-ENOKEY) if not found. 343 */ 344 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 345 { 346 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 347 key_ref_t keyref; 348 349 format_mk_user_description(description, mk->mk_spec.u.identifier); 350 351 /* 352 * We need to mark the keyring reference as "possessed" so that we 353 * acquire permission to search it, via the KEY_POS_SEARCH permission. 354 */ 355 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 356 &key_type_fscrypt_user, description, false); 357 if (IS_ERR(keyref)) { 358 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 359 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 360 keyref = ERR_PTR(-ENOKEY); 361 return ERR_CAST(keyref); 362 } 363 return key_ref_to_ptr(keyref); 364 } 365 366 /* 367 * Give the current user a "key" in ->mk_users. This charges the user's quota 368 * and marks the master key as added by the current user, so that it cannot be 369 * removed by another user with the key. Either ->mk_sem must be held for 370 * write, or the master key must be still undergoing initialization. 371 */ 372 static int add_master_key_user(struct fscrypt_master_key *mk) 373 { 374 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 375 struct key *mk_user; 376 int err; 377 378 format_mk_user_description(description, mk->mk_spec.u.identifier); 379 mk_user = key_alloc(&key_type_fscrypt_user, description, 380 current_fsuid(), current_gid(), current_cred(), 381 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 382 if (IS_ERR(mk_user)) 383 return PTR_ERR(mk_user); 384 385 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 386 key_put(mk_user); 387 return err; 388 } 389 390 /* 391 * Remove the current user's "key" from ->mk_users. 392 * ->mk_sem must be held for write. 393 * 394 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 395 */ 396 static int remove_master_key_user(struct fscrypt_master_key *mk) 397 { 398 struct key *mk_user; 399 int err; 400 401 mk_user = find_master_key_user(mk); 402 if (IS_ERR(mk_user)) 403 return PTR_ERR(mk_user); 404 err = key_unlink(mk->mk_users, mk_user); 405 key_put(mk_user); 406 return err; 407 } 408 409 /* 410 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 411 * insert it into sb->s_master_keys. 412 */ 413 static int add_new_master_key(struct super_block *sb, 414 struct fscrypt_master_key_secret *secret, 415 const struct fscrypt_key_specifier *mk_spec) 416 { 417 struct fscrypt_keyring *keyring = sb->s_master_keys; 418 struct fscrypt_master_key *mk; 419 int err; 420 421 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 422 if (!mk) 423 return -ENOMEM; 424 425 init_rwsem(&mk->mk_sem); 426 refcount_set(&mk->mk_struct_refs, 1); 427 mk->mk_spec = *mk_spec; 428 429 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 430 spin_lock_init(&mk->mk_decrypted_inodes_lock); 431 432 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 433 err = allocate_master_key_users_keyring(mk); 434 if (err) 435 goto out_put; 436 err = add_master_key_user(mk); 437 if (err) 438 goto out_put; 439 } 440 441 move_master_key_secret(&mk->mk_secret, secret); 442 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */ 443 444 spin_lock(&keyring->lock); 445 hlist_add_head_rcu(&mk->mk_node, 446 fscrypt_mk_hash_bucket(keyring, mk_spec)); 447 spin_unlock(&keyring->lock); 448 return 0; 449 450 out_put: 451 fscrypt_put_master_key(mk); 452 return err; 453 } 454 455 #define KEY_DEAD 1 456 457 static int add_existing_master_key(struct fscrypt_master_key *mk, 458 struct fscrypt_master_key_secret *secret) 459 { 460 int err; 461 462 /* 463 * If the current user is already in ->mk_users, then there's nothing to 464 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 465 * applicable for v1 policy keys, which have NULL ->mk_users.) 466 */ 467 if (mk->mk_users) { 468 struct key *mk_user = find_master_key_user(mk); 469 470 if (mk_user != ERR_PTR(-ENOKEY)) { 471 if (IS_ERR(mk_user)) 472 return PTR_ERR(mk_user); 473 key_put(mk_user); 474 return 0; 475 } 476 err = add_master_key_user(mk); 477 if (err) 478 return err; 479 } 480 481 /* Re-add the secret if needed. */ 482 if (!is_master_key_secret_present(&mk->mk_secret)) { 483 if (!refcount_inc_not_zero(&mk->mk_active_refs)) 484 return KEY_DEAD; 485 move_master_key_secret(&mk->mk_secret, secret); 486 } 487 488 return 0; 489 } 490 491 static int do_add_master_key(struct super_block *sb, 492 struct fscrypt_master_key_secret *secret, 493 const struct fscrypt_key_specifier *mk_spec) 494 { 495 static DEFINE_MUTEX(fscrypt_add_key_mutex); 496 struct fscrypt_master_key *mk; 497 int err; 498 499 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 500 501 mk = fscrypt_find_master_key(sb, mk_spec); 502 if (!mk) { 503 /* Didn't find the key in ->s_master_keys. Add it. */ 504 err = allocate_filesystem_keyring(sb); 505 if (!err) 506 err = add_new_master_key(sb, secret, mk_spec); 507 } else { 508 /* 509 * Found the key in ->s_master_keys. Re-add the secret if 510 * needed, and add the user to ->mk_users if needed. 511 */ 512 down_write(&mk->mk_sem); 513 err = add_existing_master_key(mk, secret); 514 up_write(&mk->mk_sem); 515 if (err == KEY_DEAD) { 516 /* 517 * We found a key struct, but it's already been fully 518 * removed. Ignore the old struct and add a new one. 519 * fscrypt_add_key_mutex means we don't need to worry 520 * about concurrent adds. 521 */ 522 err = add_new_master_key(sb, secret, mk_spec); 523 } 524 fscrypt_put_master_key(mk); 525 } 526 mutex_unlock(&fscrypt_add_key_mutex); 527 return err; 528 } 529 530 static int add_master_key(struct super_block *sb, 531 struct fscrypt_master_key_secret *secret, 532 struct fscrypt_key_specifier *key_spec) 533 { 534 int err; 535 536 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 537 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 538 secret->size); 539 if (err) 540 return err; 541 542 /* 543 * Now that the HKDF context is initialized, the raw key is no 544 * longer needed. 545 */ 546 memzero_explicit(secret->raw, secret->size); 547 548 /* Calculate the key identifier */ 549 err = fscrypt_hkdf_expand(&secret->hkdf, 550 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 551 key_spec->u.identifier, 552 FSCRYPT_KEY_IDENTIFIER_SIZE); 553 if (err) 554 return err; 555 } 556 return do_add_master_key(sb, secret, key_spec); 557 } 558 559 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 560 { 561 const struct fscrypt_provisioning_key_payload *payload = prep->data; 562 563 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 564 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 565 return -EINVAL; 566 567 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 568 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 569 return -EINVAL; 570 571 if (payload->__reserved) 572 return -EINVAL; 573 574 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 575 if (!prep->payload.data[0]) 576 return -ENOMEM; 577 578 prep->quotalen = prep->datalen; 579 return 0; 580 } 581 582 static void fscrypt_provisioning_key_free_preparse( 583 struct key_preparsed_payload *prep) 584 { 585 kfree_sensitive(prep->payload.data[0]); 586 } 587 588 static void fscrypt_provisioning_key_describe(const struct key *key, 589 struct seq_file *m) 590 { 591 seq_puts(m, key->description); 592 if (key_is_positive(key)) { 593 const struct fscrypt_provisioning_key_payload *payload = 594 key->payload.data[0]; 595 596 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 597 } 598 } 599 600 static void fscrypt_provisioning_key_destroy(struct key *key) 601 { 602 kfree_sensitive(key->payload.data[0]); 603 } 604 605 static struct key_type key_type_fscrypt_provisioning = { 606 .name = "fscrypt-provisioning", 607 .preparse = fscrypt_provisioning_key_preparse, 608 .free_preparse = fscrypt_provisioning_key_free_preparse, 609 .instantiate = generic_key_instantiate, 610 .describe = fscrypt_provisioning_key_describe, 611 .destroy = fscrypt_provisioning_key_destroy, 612 }; 613 614 /* 615 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 616 * store it into 'secret'. 617 * 618 * The key must be of type "fscrypt-provisioning" and must have the field 619 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 620 * only usable with fscrypt with the particular KDF version identified by 621 * 'type'. We don't use the "logon" key type because there's no way to 622 * completely restrict the use of such keys; they can be used by any kernel API 623 * that accepts "logon" keys and doesn't require a specific service prefix. 624 * 625 * The ability to specify the key via Linux keyring key is intended for cases 626 * where userspace needs to re-add keys after the filesystem is unmounted and 627 * re-mounted. Most users should just provide the raw key directly instead. 628 */ 629 static int get_keyring_key(u32 key_id, u32 type, 630 struct fscrypt_master_key_secret *secret) 631 { 632 key_ref_t ref; 633 struct key *key; 634 const struct fscrypt_provisioning_key_payload *payload; 635 int err; 636 637 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 638 if (IS_ERR(ref)) 639 return PTR_ERR(ref); 640 key = key_ref_to_ptr(ref); 641 642 if (key->type != &key_type_fscrypt_provisioning) 643 goto bad_key; 644 payload = key->payload.data[0]; 645 646 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 647 if (payload->type != type) 648 goto bad_key; 649 650 secret->size = key->datalen - sizeof(*payload); 651 memcpy(secret->raw, payload->raw, secret->size); 652 err = 0; 653 goto out_put; 654 655 bad_key: 656 err = -EKEYREJECTED; 657 out_put: 658 key_ref_put(ref); 659 return err; 660 } 661 662 /* 663 * Add a master encryption key to the filesystem, causing all files which were 664 * encrypted with it to appear "unlocked" (decrypted) when accessed. 665 * 666 * When adding a key for use by v1 encryption policies, this ioctl is 667 * privileged, and userspace must provide the 'key_descriptor'. 668 * 669 * When adding a key for use by v2+ encryption policies, this ioctl is 670 * unprivileged. This is needed, in general, to allow non-root users to use 671 * encryption without encountering the visibility problems of process-subscribed 672 * keyrings and the inability to properly remove keys. This works by having 673 * each key identified by its cryptographically secure hash --- the 674 * 'key_identifier'. The cryptographic hash ensures that a malicious user 675 * cannot add the wrong key for a given identifier. Furthermore, each added key 676 * is charged to the appropriate user's quota for the keyrings service, which 677 * prevents a malicious user from adding too many keys. Finally, we forbid a 678 * user from removing a key while other users have added it too, which prevents 679 * a user who knows another user's key from causing a denial-of-service by 680 * removing it at an inopportune time. (We tolerate that a user who knows a key 681 * can prevent other users from removing it.) 682 * 683 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 684 * Documentation/filesystems/fscrypt.rst. 685 */ 686 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 687 { 688 struct super_block *sb = file_inode(filp)->i_sb; 689 struct fscrypt_add_key_arg __user *uarg = _uarg; 690 struct fscrypt_add_key_arg arg; 691 struct fscrypt_master_key_secret secret; 692 int err; 693 694 if (copy_from_user(&arg, uarg, sizeof(arg))) 695 return -EFAULT; 696 697 if (!valid_key_spec(&arg.key_spec)) 698 return -EINVAL; 699 700 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 701 return -EINVAL; 702 703 /* 704 * Only root can add keys that are identified by an arbitrary descriptor 705 * rather than by a cryptographic hash --- since otherwise a malicious 706 * user could add the wrong key. 707 */ 708 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 709 !capable(CAP_SYS_ADMIN)) 710 return -EACCES; 711 712 memset(&secret, 0, sizeof(secret)); 713 if (arg.key_id) { 714 if (arg.raw_size != 0) 715 return -EINVAL; 716 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 717 if (err) 718 goto out_wipe_secret; 719 } else { 720 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 721 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 722 return -EINVAL; 723 secret.size = arg.raw_size; 724 err = -EFAULT; 725 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 726 goto out_wipe_secret; 727 } 728 729 err = add_master_key(sb, &secret, &arg.key_spec); 730 if (err) 731 goto out_wipe_secret; 732 733 /* Return the key identifier to userspace, if applicable */ 734 err = -EFAULT; 735 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 736 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 737 FSCRYPT_KEY_IDENTIFIER_SIZE)) 738 goto out_wipe_secret; 739 err = 0; 740 out_wipe_secret: 741 wipe_master_key_secret(&secret); 742 return err; 743 } 744 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 745 746 static void 747 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 748 { 749 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 750 751 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 752 753 memset(secret, 0, sizeof(*secret)); 754 secret->size = FSCRYPT_MAX_KEY_SIZE; 755 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 756 } 757 758 int fscrypt_get_test_dummy_key_identifier( 759 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 760 { 761 struct fscrypt_master_key_secret secret; 762 int err; 763 764 fscrypt_get_test_dummy_secret(&secret); 765 766 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 767 if (err) 768 goto out; 769 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 770 NULL, 0, key_identifier, 771 FSCRYPT_KEY_IDENTIFIER_SIZE); 772 out: 773 wipe_master_key_secret(&secret); 774 return err; 775 } 776 777 /** 778 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 779 * @sb: the filesystem instance to add the key to 780 * @key_spec: the key specifier of the test dummy encryption key 781 * 782 * Add the key for the test_dummy_encryption mount option to the filesystem. To 783 * prevent misuse of this mount option, a per-boot random key is used instead of 784 * a hardcoded one. This makes it so that any encrypted files created using 785 * this option won't be accessible after a reboot. 786 * 787 * Return: 0 on success, -errno on failure 788 */ 789 int fscrypt_add_test_dummy_key(struct super_block *sb, 790 struct fscrypt_key_specifier *key_spec) 791 { 792 struct fscrypt_master_key_secret secret; 793 int err; 794 795 fscrypt_get_test_dummy_secret(&secret); 796 err = add_master_key(sb, &secret, key_spec); 797 wipe_master_key_secret(&secret); 798 return err; 799 } 800 801 /* 802 * Verify that the current user has added a master key with the given identifier 803 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 804 * their files using some other user's key which they don't actually know. 805 * Cryptographically this isn't much of a problem, but the semantics of this 806 * would be a bit weird, so it's best to just forbid it. 807 * 808 * The system administrator (CAP_FOWNER) can override this, which should be 809 * enough for any use cases where encryption policies are being set using keys 810 * that were chosen ahead of time but aren't available at the moment. 811 * 812 * Note that the key may have already removed by the time this returns, but 813 * that's okay; we just care whether the key was there at some point. 814 * 815 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 816 */ 817 int fscrypt_verify_key_added(struct super_block *sb, 818 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 819 { 820 struct fscrypt_key_specifier mk_spec; 821 struct fscrypt_master_key *mk; 822 struct key *mk_user; 823 int err; 824 825 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 826 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 827 828 mk = fscrypt_find_master_key(sb, &mk_spec); 829 if (!mk) { 830 err = -ENOKEY; 831 goto out; 832 } 833 down_read(&mk->mk_sem); 834 mk_user = find_master_key_user(mk); 835 if (IS_ERR(mk_user)) { 836 err = PTR_ERR(mk_user); 837 } else { 838 key_put(mk_user); 839 err = 0; 840 } 841 up_read(&mk->mk_sem); 842 fscrypt_put_master_key(mk); 843 out: 844 if (err == -ENOKEY && capable(CAP_FOWNER)) 845 err = 0; 846 return err; 847 } 848 849 /* 850 * Try to evict the inode's dentries from the dentry cache. If the inode is a 851 * directory, then it can have at most one dentry; however, that dentry may be 852 * pinned by child dentries, so first try to evict the children too. 853 */ 854 static void shrink_dcache_inode(struct inode *inode) 855 { 856 struct dentry *dentry; 857 858 if (S_ISDIR(inode->i_mode)) { 859 dentry = d_find_any_alias(inode); 860 if (dentry) { 861 shrink_dcache_parent(dentry); 862 dput(dentry); 863 } 864 } 865 d_prune_aliases(inode); 866 } 867 868 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 869 { 870 struct fscrypt_info *ci; 871 struct inode *inode; 872 struct inode *toput_inode = NULL; 873 874 spin_lock(&mk->mk_decrypted_inodes_lock); 875 876 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 877 inode = ci->ci_inode; 878 spin_lock(&inode->i_lock); 879 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 880 spin_unlock(&inode->i_lock); 881 continue; 882 } 883 __iget(inode); 884 spin_unlock(&inode->i_lock); 885 spin_unlock(&mk->mk_decrypted_inodes_lock); 886 887 shrink_dcache_inode(inode); 888 iput(toput_inode); 889 toput_inode = inode; 890 891 spin_lock(&mk->mk_decrypted_inodes_lock); 892 } 893 894 spin_unlock(&mk->mk_decrypted_inodes_lock); 895 iput(toput_inode); 896 } 897 898 static int check_for_busy_inodes(struct super_block *sb, 899 struct fscrypt_master_key *mk) 900 { 901 struct list_head *pos; 902 size_t busy_count = 0; 903 unsigned long ino; 904 char ino_str[50] = ""; 905 906 spin_lock(&mk->mk_decrypted_inodes_lock); 907 908 list_for_each(pos, &mk->mk_decrypted_inodes) 909 busy_count++; 910 911 if (busy_count == 0) { 912 spin_unlock(&mk->mk_decrypted_inodes_lock); 913 return 0; 914 } 915 916 { 917 /* select an example file to show for debugging purposes */ 918 struct inode *inode = 919 list_first_entry(&mk->mk_decrypted_inodes, 920 struct fscrypt_info, 921 ci_master_key_link)->ci_inode; 922 ino = inode->i_ino; 923 } 924 spin_unlock(&mk->mk_decrypted_inodes_lock); 925 926 /* If the inode is currently being created, ino may still be 0. */ 927 if (ino) 928 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 929 930 fscrypt_warn(NULL, 931 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 932 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 933 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 934 ino_str); 935 return -EBUSY; 936 } 937 938 static int try_to_lock_encrypted_files(struct super_block *sb, 939 struct fscrypt_master_key *mk) 940 { 941 int err1; 942 int err2; 943 944 /* 945 * An inode can't be evicted while it is dirty or has dirty pages. 946 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 947 * 948 * Just do it the easy way: call sync_filesystem(). It's overkill, but 949 * it works, and it's more important to minimize the amount of caches we 950 * drop than the amount of data we sync. Also, unprivileged users can 951 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 952 */ 953 down_read(&sb->s_umount); 954 err1 = sync_filesystem(sb); 955 up_read(&sb->s_umount); 956 /* If a sync error occurs, still try to evict as much as possible. */ 957 958 /* 959 * Inodes are pinned by their dentries, so we have to evict their 960 * dentries. shrink_dcache_sb() would suffice, but would be overkill 961 * and inappropriate for use by unprivileged users. So instead go 962 * through the inodes' alias lists and try to evict each dentry. 963 */ 964 evict_dentries_for_decrypted_inodes(mk); 965 966 /* 967 * evict_dentries_for_decrypted_inodes() already iput() each inode in 968 * the list; any inodes for which that dropped the last reference will 969 * have been evicted due to fscrypt_drop_inode() detecting the key 970 * removal and telling the VFS to evict the inode. So to finish, we 971 * just need to check whether any inodes couldn't be evicted. 972 */ 973 err2 = check_for_busy_inodes(sb, mk); 974 975 return err1 ?: err2; 976 } 977 978 /* 979 * Try to remove an fscrypt master encryption key. 980 * 981 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 982 * claim to the key, then removes the key itself if no other users have claims. 983 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 984 * key itself. 985 * 986 * To "remove the key itself", first we wipe the actual master key secret, so 987 * that no more inodes can be unlocked with it. Then we try to evict all cached 988 * inodes that had been unlocked with the key. 989 * 990 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 991 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 992 * state (without the actual secret key) where it tracks the list of remaining 993 * inodes. Userspace can execute the ioctl again later to retry eviction, or 994 * alternatively can re-add the secret key again. 995 * 996 * For more details, see the "Removing keys" section of 997 * Documentation/filesystems/fscrypt.rst. 998 */ 999 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1000 { 1001 struct super_block *sb = file_inode(filp)->i_sb; 1002 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1003 struct fscrypt_remove_key_arg arg; 1004 struct fscrypt_master_key *mk; 1005 u32 status_flags = 0; 1006 int err; 1007 bool inodes_remain; 1008 1009 if (copy_from_user(&arg, uarg, sizeof(arg))) 1010 return -EFAULT; 1011 1012 if (!valid_key_spec(&arg.key_spec)) 1013 return -EINVAL; 1014 1015 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1016 return -EINVAL; 1017 1018 /* 1019 * Only root can add and remove keys that are identified by an arbitrary 1020 * descriptor rather than by a cryptographic hash. 1021 */ 1022 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1023 !capable(CAP_SYS_ADMIN)) 1024 return -EACCES; 1025 1026 /* Find the key being removed. */ 1027 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1028 if (!mk) 1029 return -ENOKEY; 1030 down_write(&mk->mk_sem); 1031 1032 /* If relevant, remove current user's (or all users) claim to the key */ 1033 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1034 if (all_users) 1035 err = keyring_clear(mk->mk_users); 1036 else 1037 err = remove_master_key_user(mk); 1038 if (err) { 1039 up_write(&mk->mk_sem); 1040 goto out_put_key; 1041 } 1042 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1043 /* 1044 * Other users have still added the key too. We removed 1045 * the current user's claim to the key, but we still 1046 * can't remove the key itself. 1047 */ 1048 status_flags |= 1049 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1050 err = 0; 1051 up_write(&mk->mk_sem); 1052 goto out_put_key; 1053 } 1054 } 1055 1056 /* No user claims remaining. Go ahead and wipe the secret. */ 1057 err = -ENOKEY; 1058 if (is_master_key_secret_present(&mk->mk_secret)) { 1059 wipe_master_key_secret(&mk->mk_secret); 1060 fscrypt_put_master_key_activeref(sb, mk); 1061 err = 0; 1062 } 1063 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1064 up_write(&mk->mk_sem); 1065 1066 if (inodes_remain) { 1067 /* Some inodes still reference this key; try to evict them. */ 1068 err = try_to_lock_encrypted_files(sb, mk); 1069 if (err == -EBUSY) { 1070 status_flags |= 1071 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1072 err = 0; 1073 } 1074 } 1075 /* 1076 * We return 0 if we successfully did something: removed a claim to the 1077 * key, wiped the secret, or tried locking the files again. Users need 1078 * to check the informational status flags if they care whether the key 1079 * has been fully removed including all files locked. 1080 */ 1081 out_put_key: 1082 fscrypt_put_master_key(mk); 1083 if (err == 0) 1084 err = put_user(status_flags, &uarg->removal_status_flags); 1085 return err; 1086 } 1087 1088 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1089 { 1090 return do_remove_key(filp, uarg, false); 1091 } 1092 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1093 1094 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1095 { 1096 if (!capable(CAP_SYS_ADMIN)) 1097 return -EACCES; 1098 return do_remove_key(filp, uarg, true); 1099 } 1100 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1101 1102 /* 1103 * Retrieve the status of an fscrypt master encryption key. 1104 * 1105 * We set ->status to indicate whether the key is absent, present, or 1106 * incompletely removed. "Incompletely removed" means that the master key 1107 * secret has been removed, but some files which had been unlocked with it are 1108 * still in use. This field allows applications to easily determine the state 1109 * of an encrypted directory without using a hack such as trying to open a 1110 * regular file in it (which can confuse the "incompletely removed" state with 1111 * absent or present). 1112 * 1113 * In addition, for v2 policy keys we allow applications to determine, via 1114 * ->status_flags and ->user_count, whether the key has been added by the 1115 * current user, by other users, or by both. Most applications should not need 1116 * this, since ordinarily only one user should know a given key. However, if a 1117 * secret key is shared by multiple users, applications may wish to add an 1118 * already-present key to prevent other users from removing it. This ioctl can 1119 * be used to check whether that really is the case before the work is done to 1120 * add the key --- which might e.g. require prompting the user for a passphrase. 1121 * 1122 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1123 * Documentation/filesystems/fscrypt.rst. 1124 */ 1125 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1126 { 1127 struct super_block *sb = file_inode(filp)->i_sb; 1128 struct fscrypt_get_key_status_arg arg; 1129 struct fscrypt_master_key *mk; 1130 int err; 1131 1132 if (copy_from_user(&arg, uarg, sizeof(arg))) 1133 return -EFAULT; 1134 1135 if (!valid_key_spec(&arg.key_spec)) 1136 return -EINVAL; 1137 1138 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1139 return -EINVAL; 1140 1141 arg.status_flags = 0; 1142 arg.user_count = 0; 1143 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1144 1145 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1146 if (!mk) { 1147 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1148 err = 0; 1149 goto out; 1150 } 1151 down_read(&mk->mk_sem); 1152 1153 if (!is_master_key_secret_present(&mk->mk_secret)) { 1154 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1155 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1156 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1157 err = 0; 1158 goto out_release_key; 1159 } 1160 1161 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1162 if (mk->mk_users) { 1163 struct key *mk_user; 1164 1165 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1166 mk_user = find_master_key_user(mk); 1167 if (!IS_ERR(mk_user)) { 1168 arg.status_flags |= 1169 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1170 key_put(mk_user); 1171 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1172 err = PTR_ERR(mk_user); 1173 goto out_release_key; 1174 } 1175 } 1176 err = 0; 1177 out_release_key: 1178 up_read(&mk->mk_sem); 1179 fscrypt_put_master_key(mk); 1180 out: 1181 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1182 err = -EFAULT; 1183 return err; 1184 } 1185 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1186 1187 int __init fscrypt_init_keyring(void) 1188 { 1189 int err; 1190 1191 err = register_key_type(&key_type_fscrypt_user); 1192 if (err) 1193 return err; 1194 1195 err = register_key_type(&key_type_fscrypt_provisioning); 1196 if (err) 1197 goto err_unregister_fscrypt_user; 1198 1199 return 0; 1200 1201 err_unregister_fscrypt_user: 1202 unregister_key_type(&key_type_fscrypt_user); 1203 return err; 1204 } 1205