xref: /openbmc/linux/fs/crypto/keyring.c (revision 78beef62)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <crypto/skcipher.h>
22 #include <linux/key-type.h>
23 #include <linux/seq_file.h>
24 
25 #include "fscrypt_private.h"
26 
27 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
28 {
29 	fscrypt_destroy_hkdf(&secret->hkdf);
30 	memzero_explicit(secret, sizeof(*secret));
31 }
32 
33 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
34 				   struct fscrypt_master_key_secret *src)
35 {
36 	memcpy(dst, src, sizeof(*dst));
37 	memzero_explicit(src, sizeof(*src));
38 }
39 
40 static void free_master_key(struct fscrypt_master_key *mk)
41 {
42 	size_t i;
43 
44 	wipe_master_key_secret(&mk->mk_secret);
45 
46 	for (i = 0; i < ARRAY_SIZE(mk->mk_mode_keys); i++)
47 		crypto_free_skcipher(mk->mk_mode_keys[i]);
48 
49 	key_put(mk->mk_users);
50 	kzfree(mk);
51 }
52 
53 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
54 {
55 	if (spec->__reserved)
56 		return false;
57 	return master_key_spec_len(spec) != 0;
58 }
59 
60 static int fscrypt_key_instantiate(struct key *key,
61 				   struct key_preparsed_payload *prep)
62 {
63 	key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
64 	return 0;
65 }
66 
67 static void fscrypt_key_destroy(struct key *key)
68 {
69 	free_master_key(key->payload.data[0]);
70 }
71 
72 static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
73 {
74 	seq_puts(m, key->description);
75 
76 	if (key_is_positive(key)) {
77 		const struct fscrypt_master_key *mk = key->payload.data[0];
78 
79 		if (!is_master_key_secret_present(&mk->mk_secret))
80 			seq_puts(m, ": secret removed");
81 	}
82 }
83 
84 /*
85  * Type of key in ->s_master_keys.  Each key of this type represents a master
86  * key which has been added to the filesystem.  Its payload is a
87  * 'struct fscrypt_master_key'.  The "." prefix in the key type name prevents
88  * users from adding keys of this type via the keyrings syscalls rather than via
89  * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
90  */
91 static struct key_type key_type_fscrypt = {
92 	.name			= "._fscrypt",
93 	.instantiate		= fscrypt_key_instantiate,
94 	.destroy		= fscrypt_key_destroy,
95 	.describe		= fscrypt_key_describe,
96 };
97 
98 static int fscrypt_user_key_instantiate(struct key *key,
99 					struct key_preparsed_payload *prep)
100 {
101 	/*
102 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
103 	 * each key, regardless of the exact key size.  The amount of memory
104 	 * actually used is greater than the size of the raw key anyway.
105 	 */
106 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
107 }
108 
109 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
110 {
111 	seq_puts(m, key->description);
112 }
113 
114 /*
115  * Type of key in ->mk_users.  Each key of this type represents a particular
116  * user who has added a particular master key.
117  *
118  * Note that the name of this key type really should be something like
119  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
120  * mainly for simplicity of presentation in /proc/keys when read by a non-root
121  * user.  And it is expected to be rare that a key is actually added by multiple
122  * users, since users should keep their encryption keys confidential.
123  */
124 static struct key_type key_type_fscrypt_user = {
125 	.name			= ".fscrypt",
126 	.instantiate		= fscrypt_user_key_instantiate,
127 	.describe		= fscrypt_user_key_describe,
128 };
129 
130 /* Search ->s_master_keys or ->mk_users */
131 static struct key *search_fscrypt_keyring(struct key *keyring,
132 					  struct key_type *type,
133 					  const char *description)
134 {
135 	/*
136 	 * We need to mark the keyring reference as "possessed" so that we
137 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
138 	 */
139 	key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
140 
141 	keyref = keyring_search(keyref, type, description, false);
142 	if (IS_ERR(keyref)) {
143 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
144 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
145 			keyref = ERR_PTR(-ENOKEY);
146 		return ERR_CAST(keyref);
147 	}
148 	return key_ref_to_ptr(keyref);
149 }
150 
151 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE	\
152 	(CONST_STRLEN("fscrypt-") + FIELD_SIZEOF(struct super_block, s_id))
153 
154 #define FSCRYPT_MK_DESCRIPTION_SIZE	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
155 
156 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
157 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
158 	 CONST_STRLEN("-users") + 1)
159 
160 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
161 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
162 
163 static void format_fs_keyring_description(
164 			char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
165 			const struct super_block *sb)
166 {
167 	sprintf(description, "fscrypt-%s", sb->s_id);
168 }
169 
170 static void format_mk_description(
171 			char description[FSCRYPT_MK_DESCRIPTION_SIZE],
172 			const struct fscrypt_key_specifier *mk_spec)
173 {
174 	sprintf(description, "%*phN",
175 		master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
176 }
177 
178 static void format_mk_users_keyring_description(
179 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
180 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
181 {
182 	sprintf(description, "fscrypt-%*phN-users",
183 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
184 }
185 
186 static void format_mk_user_description(
187 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
188 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
189 {
190 
191 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
192 		mk_identifier, __kuid_val(current_fsuid()));
193 }
194 
195 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
196 static int allocate_filesystem_keyring(struct super_block *sb)
197 {
198 	char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
199 	struct key *keyring;
200 
201 	if (sb->s_master_keys)
202 		return 0;
203 
204 	format_fs_keyring_description(description, sb);
205 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
206 				current_cred(), KEY_POS_SEARCH |
207 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
208 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
209 	if (IS_ERR(keyring))
210 		return PTR_ERR(keyring);
211 
212 	/* Pairs with READ_ONCE() in fscrypt_find_master_key() */
213 	smp_store_release(&sb->s_master_keys, keyring);
214 	return 0;
215 }
216 
217 void fscrypt_sb_free(struct super_block *sb)
218 {
219 	key_put(sb->s_master_keys);
220 	sb->s_master_keys = NULL;
221 }
222 
223 /*
224  * Find the specified master key in ->s_master_keys.
225  * Returns ERR_PTR(-ENOKEY) if not found.
226  */
227 struct key *fscrypt_find_master_key(struct super_block *sb,
228 				    const struct fscrypt_key_specifier *mk_spec)
229 {
230 	struct key *keyring;
231 	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
232 
233 	/* pairs with smp_store_release() in allocate_filesystem_keyring() */
234 	keyring = READ_ONCE(sb->s_master_keys);
235 	if (keyring == NULL)
236 		return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
237 
238 	format_mk_description(description, mk_spec);
239 	return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
240 }
241 
242 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
243 {
244 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
245 	struct key *keyring;
246 
247 	format_mk_users_keyring_description(description,
248 					    mk->mk_spec.u.identifier);
249 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
250 				current_cred(), KEY_POS_SEARCH |
251 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
252 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
253 	if (IS_ERR(keyring))
254 		return PTR_ERR(keyring);
255 
256 	mk->mk_users = keyring;
257 	return 0;
258 }
259 
260 /*
261  * Find the current user's "key" in the master key's ->mk_users.
262  * Returns ERR_PTR(-ENOKEY) if not found.
263  */
264 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
265 {
266 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
267 
268 	format_mk_user_description(description, mk->mk_spec.u.identifier);
269 	return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
270 				      description);
271 }
272 
273 /*
274  * Give the current user a "key" in ->mk_users.  This charges the user's quota
275  * and marks the master key as added by the current user, so that it cannot be
276  * removed by another user with the key.  Either the master key's key->sem must
277  * be held for write, or the master key must be still undergoing initialization.
278  */
279 static int add_master_key_user(struct fscrypt_master_key *mk)
280 {
281 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
282 	struct key *mk_user;
283 	int err;
284 
285 	format_mk_user_description(description, mk->mk_spec.u.identifier);
286 	mk_user = key_alloc(&key_type_fscrypt_user, description,
287 			    current_fsuid(), current_gid(), current_cred(),
288 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
289 	if (IS_ERR(mk_user))
290 		return PTR_ERR(mk_user);
291 
292 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
293 	key_put(mk_user);
294 	return err;
295 }
296 
297 /*
298  * Remove the current user's "key" from ->mk_users.
299  * The master key's key->sem must be held for write.
300  *
301  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
302  */
303 static int remove_master_key_user(struct fscrypt_master_key *mk)
304 {
305 	struct key *mk_user;
306 	int err;
307 
308 	mk_user = find_master_key_user(mk);
309 	if (IS_ERR(mk_user))
310 		return PTR_ERR(mk_user);
311 	err = key_unlink(mk->mk_users, mk_user);
312 	key_put(mk_user);
313 	return err;
314 }
315 
316 /*
317  * Allocate a new fscrypt_master_key which contains the given secret, set it as
318  * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
319  * into the given keyring.  Synchronized by fscrypt_add_key_mutex.
320  */
321 static int add_new_master_key(struct fscrypt_master_key_secret *secret,
322 			      const struct fscrypt_key_specifier *mk_spec,
323 			      struct key *keyring)
324 {
325 	struct fscrypt_master_key *mk;
326 	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
327 	struct key *key;
328 	int err;
329 
330 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
331 	if (!mk)
332 		return -ENOMEM;
333 
334 	mk->mk_spec = *mk_spec;
335 
336 	move_master_key_secret(&mk->mk_secret, secret);
337 	init_rwsem(&mk->mk_secret_sem);
338 
339 	refcount_set(&mk->mk_refcount, 1); /* secret is present */
340 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
341 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
342 
343 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
344 		err = allocate_master_key_users_keyring(mk);
345 		if (err)
346 			goto out_free_mk;
347 		err = add_master_key_user(mk);
348 		if (err)
349 			goto out_free_mk;
350 	}
351 
352 	/*
353 	 * Note that we don't charge this key to anyone's quota, since when
354 	 * ->mk_users is in use those keys are charged instead, and otherwise
355 	 * (when ->mk_users isn't in use) only root can add these keys.
356 	 */
357 	format_mk_description(description, mk_spec);
358 	key = key_alloc(&key_type_fscrypt, description,
359 			GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
360 			KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
361 			KEY_ALLOC_NOT_IN_QUOTA, NULL);
362 	if (IS_ERR(key)) {
363 		err = PTR_ERR(key);
364 		goto out_free_mk;
365 	}
366 	err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
367 	key_put(key);
368 	if (err)
369 		goto out_free_mk;
370 
371 	return 0;
372 
373 out_free_mk:
374 	free_master_key(mk);
375 	return err;
376 }
377 
378 #define KEY_DEAD	1
379 
380 static int add_existing_master_key(struct fscrypt_master_key *mk,
381 				   struct fscrypt_master_key_secret *secret)
382 {
383 	struct key *mk_user;
384 	bool rekey;
385 	int err;
386 
387 	/*
388 	 * If the current user is already in ->mk_users, then there's nothing to
389 	 * do.  (Not applicable for v1 policy keys, which have NULL ->mk_users.)
390 	 */
391 	if (mk->mk_users) {
392 		mk_user = find_master_key_user(mk);
393 		if (mk_user != ERR_PTR(-ENOKEY)) {
394 			if (IS_ERR(mk_user))
395 				return PTR_ERR(mk_user);
396 			key_put(mk_user);
397 			return 0;
398 		}
399 	}
400 
401 	/* If we'll be re-adding ->mk_secret, try to take the reference. */
402 	rekey = !is_master_key_secret_present(&mk->mk_secret);
403 	if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
404 		return KEY_DEAD;
405 
406 	/* Add the current user to ->mk_users, if applicable. */
407 	if (mk->mk_users) {
408 		err = add_master_key_user(mk);
409 		if (err) {
410 			if (rekey && refcount_dec_and_test(&mk->mk_refcount))
411 				return KEY_DEAD;
412 			return err;
413 		}
414 	}
415 
416 	/* Re-add the secret if needed. */
417 	if (rekey) {
418 		down_write(&mk->mk_secret_sem);
419 		move_master_key_secret(&mk->mk_secret, secret);
420 		up_write(&mk->mk_secret_sem);
421 	}
422 	return 0;
423 }
424 
425 static int add_master_key(struct super_block *sb,
426 			  struct fscrypt_master_key_secret *secret,
427 			  const struct fscrypt_key_specifier *mk_spec)
428 {
429 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
430 	struct key *key;
431 	int err;
432 
433 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
434 retry:
435 	key = fscrypt_find_master_key(sb, mk_spec);
436 	if (IS_ERR(key)) {
437 		err = PTR_ERR(key);
438 		if (err != -ENOKEY)
439 			goto out_unlock;
440 		/* Didn't find the key in ->s_master_keys.  Add it. */
441 		err = allocate_filesystem_keyring(sb);
442 		if (err)
443 			goto out_unlock;
444 		err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
445 	} else {
446 		/*
447 		 * Found the key in ->s_master_keys.  Re-add the secret if
448 		 * needed, and add the user to ->mk_users if needed.
449 		 */
450 		down_write(&key->sem);
451 		err = add_existing_master_key(key->payload.data[0], secret);
452 		up_write(&key->sem);
453 		if (err == KEY_DEAD) {
454 			/* Key being removed or needs to be removed */
455 			key_invalidate(key);
456 			key_put(key);
457 			goto retry;
458 		}
459 		key_put(key);
460 	}
461 out_unlock:
462 	mutex_unlock(&fscrypt_add_key_mutex);
463 	return err;
464 }
465 
466 /*
467  * Add a master encryption key to the filesystem, causing all files which were
468  * encrypted with it to appear "unlocked" (decrypted) when accessed.
469  *
470  * When adding a key for use by v1 encryption policies, this ioctl is
471  * privileged, and userspace must provide the 'key_descriptor'.
472  *
473  * When adding a key for use by v2+ encryption policies, this ioctl is
474  * unprivileged.  This is needed, in general, to allow non-root users to use
475  * encryption without encountering the visibility problems of process-subscribed
476  * keyrings and the inability to properly remove keys.  This works by having
477  * each key identified by its cryptographically secure hash --- the
478  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
479  * cannot add the wrong key for a given identifier.  Furthermore, each added key
480  * is charged to the appropriate user's quota for the keyrings service, which
481  * prevents a malicious user from adding too many keys.  Finally, we forbid a
482  * user from removing a key while other users have added it too, which prevents
483  * a user who knows another user's key from causing a denial-of-service by
484  * removing it at an inopportune time.  (We tolerate that a user who knows a key
485  * can prevent other users from removing it.)
486  *
487  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
488  * Documentation/filesystems/fscrypt.rst.
489  */
490 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
491 {
492 	struct super_block *sb = file_inode(filp)->i_sb;
493 	struct fscrypt_add_key_arg __user *uarg = _uarg;
494 	struct fscrypt_add_key_arg arg;
495 	struct fscrypt_master_key_secret secret;
496 	int err;
497 
498 	if (copy_from_user(&arg, uarg, sizeof(arg)))
499 		return -EFAULT;
500 
501 	if (!valid_key_spec(&arg.key_spec))
502 		return -EINVAL;
503 
504 	if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
505 	    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
506 		return -EINVAL;
507 
508 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
509 		return -EINVAL;
510 
511 	memset(&secret, 0, sizeof(secret));
512 	secret.size = arg.raw_size;
513 	err = -EFAULT;
514 	if (copy_from_user(secret.raw, uarg->raw, secret.size))
515 		goto out_wipe_secret;
516 
517 	switch (arg.key_spec.type) {
518 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
519 		/*
520 		 * Only root can add keys that are identified by an arbitrary
521 		 * descriptor rather than by a cryptographic hash --- since
522 		 * otherwise a malicious user could add the wrong key.
523 		 */
524 		err = -EACCES;
525 		if (!capable(CAP_SYS_ADMIN))
526 			goto out_wipe_secret;
527 		break;
528 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
529 		err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
530 		if (err)
531 			goto out_wipe_secret;
532 
533 		/*
534 		 * Now that the HKDF context is initialized, the raw key is no
535 		 * longer needed.
536 		 */
537 		memzero_explicit(secret.raw, secret.size);
538 
539 		/* Calculate the key identifier and return it to userspace. */
540 		err = fscrypt_hkdf_expand(&secret.hkdf,
541 					  HKDF_CONTEXT_KEY_IDENTIFIER,
542 					  NULL, 0, arg.key_spec.u.identifier,
543 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
544 		if (err)
545 			goto out_wipe_secret;
546 		err = -EFAULT;
547 		if (copy_to_user(uarg->key_spec.u.identifier,
548 				 arg.key_spec.u.identifier,
549 				 FSCRYPT_KEY_IDENTIFIER_SIZE))
550 			goto out_wipe_secret;
551 		break;
552 	default:
553 		WARN_ON(1);
554 		err = -EINVAL;
555 		goto out_wipe_secret;
556 	}
557 
558 	err = add_master_key(sb, &secret, &arg.key_spec);
559 out_wipe_secret:
560 	wipe_master_key_secret(&secret);
561 	return err;
562 }
563 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
564 
565 /*
566  * Verify that the current user has added a master key with the given identifier
567  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
568  * their files using some other user's key which they don't actually know.
569  * Cryptographically this isn't much of a problem, but the semantics of this
570  * would be a bit weird, so it's best to just forbid it.
571  *
572  * The system administrator (CAP_FOWNER) can override this, which should be
573  * enough for any use cases where encryption policies are being set using keys
574  * that were chosen ahead of time but aren't available at the moment.
575  *
576  * Note that the key may have already removed by the time this returns, but
577  * that's okay; we just care whether the key was there at some point.
578  *
579  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
580  */
581 int fscrypt_verify_key_added(struct super_block *sb,
582 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
583 {
584 	struct fscrypt_key_specifier mk_spec;
585 	struct key *key, *mk_user;
586 	struct fscrypt_master_key *mk;
587 	int err;
588 
589 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
590 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
591 
592 	key = fscrypt_find_master_key(sb, &mk_spec);
593 	if (IS_ERR(key)) {
594 		err = PTR_ERR(key);
595 		goto out;
596 	}
597 	mk = key->payload.data[0];
598 	mk_user = find_master_key_user(mk);
599 	if (IS_ERR(mk_user)) {
600 		err = PTR_ERR(mk_user);
601 	} else {
602 		key_put(mk_user);
603 		err = 0;
604 	}
605 	key_put(key);
606 out:
607 	if (err == -ENOKEY && capable(CAP_FOWNER))
608 		err = 0;
609 	return err;
610 }
611 
612 /*
613  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
614  * directory, then it can have at most one dentry; however, that dentry may be
615  * pinned by child dentries, so first try to evict the children too.
616  */
617 static void shrink_dcache_inode(struct inode *inode)
618 {
619 	struct dentry *dentry;
620 
621 	if (S_ISDIR(inode->i_mode)) {
622 		dentry = d_find_any_alias(inode);
623 		if (dentry) {
624 			shrink_dcache_parent(dentry);
625 			dput(dentry);
626 		}
627 	}
628 	d_prune_aliases(inode);
629 }
630 
631 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
632 {
633 	struct fscrypt_info *ci;
634 	struct inode *inode;
635 	struct inode *toput_inode = NULL;
636 
637 	spin_lock(&mk->mk_decrypted_inodes_lock);
638 
639 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
640 		inode = ci->ci_inode;
641 		spin_lock(&inode->i_lock);
642 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
643 			spin_unlock(&inode->i_lock);
644 			continue;
645 		}
646 		__iget(inode);
647 		spin_unlock(&inode->i_lock);
648 		spin_unlock(&mk->mk_decrypted_inodes_lock);
649 
650 		shrink_dcache_inode(inode);
651 		iput(toput_inode);
652 		toput_inode = inode;
653 
654 		spin_lock(&mk->mk_decrypted_inodes_lock);
655 	}
656 
657 	spin_unlock(&mk->mk_decrypted_inodes_lock);
658 	iput(toput_inode);
659 }
660 
661 static int check_for_busy_inodes(struct super_block *sb,
662 				 struct fscrypt_master_key *mk)
663 {
664 	struct list_head *pos;
665 	size_t busy_count = 0;
666 	unsigned long ino;
667 	struct dentry *dentry;
668 	char _path[256];
669 	char *path = NULL;
670 
671 	spin_lock(&mk->mk_decrypted_inodes_lock);
672 
673 	list_for_each(pos, &mk->mk_decrypted_inodes)
674 		busy_count++;
675 
676 	if (busy_count == 0) {
677 		spin_unlock(&mk->mk_decrypted_inodes_lock);
678 		return 0;
679 	}
680 
681 	{
682 		/* select an example file to show for debugging purposes */
683 		struct inode *inode =
684 			list_first_entry(&mk->mk_decrypted_inodes,
685 					 struct fscrypt_info,
686 					 ci_master_key_link)->ci_inode;
687 		ino = inode->i_ino;
688 		dentry = d_find_alias(inode);
689 	}
690 	spin_unlock(&mk->mk_decrypted_inodes_lock);
691 
692 	if (dentry) {
693 		path = dentry_path(dentry, _path, sizeof(_path));
694 		dput(dentry);
695 	}
696 	if (IS_ERR_OR_NULL(path))
697 		path = "(unknown)";
698 
699 	fscrypt_warn(NULL,
700 		     "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu (%s)",
701 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
702 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
703 		     ino, path);
704 	return -EBUSY;
705 }
706 
707 static int try_to_lock_encrypted_files(struct super_block *sb,
708 				       struct fscrypt_master_key *mk)
709 {
710 	int err1;
711 	int err2;
712 
713 	/*
714 	 * An inode can't be evicted while it is dirty or has dirty pages.
715 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
716 	 *
717 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
718 	 * it works, and it's more important to minimize the amount of caches we
719 	 * drop than the amount of data we sync.  Also, unprivileged users can
720 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
721 	 */
722 	down_read(&sb->s_umount);
723 	err1 = sync_filesystem(sb);
724 	up_read(&sb->s_umount);
725 	/* If a sync error occurs, still try to evict as much as possible. */
726 
727 	/*
728 	 * Inodes are pinned by their dentries, so we have to evict their
729 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
730 	 * and inappropriate for use by unprivileged users.  So instead go
731 	 * through the inodes' alias lists and try to evict each dentry.
732 	 */
733 	evict_dentries_for_decrypted_inodes(mk);
734 
735 	/*
736 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
737 	 * the list; any inodes for which that dropped the last reference will
738 	 * have been evicted due to fscrypt_drop_inode() detecting the key
739 	 * removal and telling the VFS to evict the inode.  So to finish, we
740 	 * just need to check whether any inodes couldn't be evicted.
741 	 */
742 	err2 = check_for_busy_inodes(sb, mk);
743 
744 	return err1 ?: err2;
745 }
746 
747 /*
748  * Try to remove an fscrypt master encryption key.
749  *
750  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
751  * claim to the key, then removes the key itself if no other users have claims.
752  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
753  * key itself.
754  *
755  * To "remove the key itself", first we wipe the actual master key secret, so
756  * that no more inodes can be unlocked with it.  Then we try to evict all cached
757  * inodes that had been unlocked with the key.
758  *
759  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
760  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
761  * state (without the actual secret key) where it tracks the list of remaining
762  * inodes.  Userspace can execute the ioctl again later to retry eviction, or
763  * alternatively can re-add the secret key again.
764  *
765  * For more details, see the "Removing keys" section of
766  * Documentation/filesystems/fscrypt.rst.
767  */
768 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
769 {
770 	struct super_block *sb = file_inode(filp)->i_sb;
771 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
772 	struct fscrypt_remove_key_arg arg;
773 	struct key *key;
774 	struct fscrypt_master_key *mk;
775 	u32 status_flags = 0;
776 	int err;
777 	bool dead;
778 
779 	if (copy_from_user(&arg, uarg, sizeof(arg)))
780 		return -EFAULT;
781 
782 	if (!valid_key_spec(&arg.key_spec))
783 		return -EINVAL;
784 
785 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
786 		return -EINVAL;
787 
788 	/*
789 	 * Only root can add and remove keys that are identified by an arbitrary
790 	 * descriptor rather than by a cryptographic hash.
791 	 */
792 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
793 	    !capable(CAP_SYS_ADMIN))
794 		return -EACCES;
795 
796 	/* Find the key being removed. */
797 	key = fscrypt_find_master_key(sb, &arg.key_spec);
798 	if (IS_ERR(key))
799 		return PTR_ERR(key);
800 	mk = key->payload.data[0];
801 
802 	down_write(&key->sem);
803 
804 	/* If relevant, remove current user's (or all users) claim to the key */
805 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
806 		if (all_users)
807 			err = keyring_clear(mk->mk_users);
808 		else
809 			err = remove_master_key_user(mk);
810 		if (err) {
811 			up_write(&key->sem);
812 			goto out_put_key;
813 		}
814 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
815 			/*
816 			 * Other users have still added the key too.  We removed
817 			 * the current user's claim to the key, but we still
818 			 * can't remove the key itself.
819 			 */
820 			status_flags |=
821 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
822 			err = 0;
823 			up_write(&key->sem);
824 			goto out_put_key;
825 		}
826 	}
827 
828 	/* No user claims remaining.  Go ahead and wipe the secret. */
829 	dead = false;
830 	if (is_master_key_secret_present(&mk->mk_secret)) {
831 		down_write(&mk->mk_secret_sem);
832 		wipe_master_key_secret(&mk->mk_secret);
833 		dead = refcount_dec_and_test(&mk->mk_refcount);
834 		up_write(&mk->mk_secret_sem);
835 	}
836 	up_write(&key->sem);
837 	if (dead) {
838 		/*
839 		 * No inodes reference the key, and we wiped the secret, so the
840 		 * key object is free to be removed from the keyring.
841 		 */
842 		key_invalidate(key);
843 		err = 0;
844 	} else {
845 		/* Some inodes still reference this key; try to evict them. */
846 		err = try_to_lock_encrypted_files(sb, mk);
847 		if (err == -EBUSY) {
848 			status_flags |=
849 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
850 			err = 0;
851 		}
852 	}
853 	/*
854 	 * We return 0 if we successfully did something: removed a claim to the
855 	 * key, wiped the secret, or tried locking the files again.  Users need
856 	 * to check the informational status flags if they care whether the key
857 	 * has been fully removed including all files locked.
858 	 */
859 out_put_key:
860 	key_put(key);
861 	if (err == 0)
862 		err = put_user(status_flags, &uarg->removal_status_flags);
863 	return err;
864 }
865 
866 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
867 {
868 	return do_remove_key(filp, uarg, false);
869 }
870 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
871 
872 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
873 {
874 	if (!capable(CAP_SYS_ADMIN))
875 		return -EACCES;
876 	return do_remove_key(filp, uarg, true);
877 }
878 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
879 
880 /*
881  * Retrieve the status of an fscrypt master encryption key.
882  *
883  * We set ->status to indicate whether the key is absent, present, or
884  * incompletely removed.  "Incompletely removed" means that the master key
885  * secret has been removed, but some files which had been unlocked with it are
886  * still in use.  This field allows applications to easily determine the state
887  * of an encrypted directory without using a hack such as trying to open a
888  * regular file in it (which can confuse the "incompletely removed" state with
889  * absent or present).
890  *
891  * In addition, for v2 policy keys we allow applications to determine, via
892  * ->status_flags and ->user_count, whether the key has been added by the
893  * current user, by other users, or by both.  Most applications should not need
894  * this, since ordinarily only one user should know a given key.  However, if a
895  * secret key is shared by multiple users, applications may wish to add an
896  * already-present key to prevent other users from removing it.  This ioctl can
897  * be used to check whether that really is the case before the work is done to
898  * add the key --- which might e.g. require prompting the user for a passphrase.
899  *
900  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
901  * Documentation/filesystems/fscrypt.rst.
902  */
903 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
904 {
905 	struct super_block *sb = file_inode(filp)->i_sb;
906 	struct fscrypt_get_key_status_arg arg;
907 	struct key *key;
908 	struct fscrypt_master_key *mk;
909 	int err;
910 
911 	if (copy_from_user(&arg, uarg, sizeof(arg)))
912 		return -EFAULT;
913 
914 	if (!valid_key_spec(&arg.key_spec))
915 		return -EINVAL;
916 
917 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
918 		return -EINVAL;
919 
920 	arg.status_flags = 0;
921 	arg.user_count = 0;
922 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
923 
924 	key = fscrypt_find_master_key(sb, &arg.key_spec);
925 	if (IS_ERR(key)) {
926 		if (key != ERR_PTR(-ENOKEY))
927 			return PTR_ERR(key);
928 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
929 		err = 0;
930 		goto out;
931 	}
932 	mk = key->payload.data[0];
933 	down_read(&key->sem);
934 
935 	if (!is_master_key_secret_present(&mk->mk_secret)) {
936 		arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
937 		err = 0;
938 		goto out_release_key;
939 	}
940 
941 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
942 	if (mk->mk_users) {
943 		struct key *mk_user;
944 
945 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
946 		mk_user = find_master_key_user(mk);
947 		if (!IS_ERR(mk_user)) {
948 			arg.status_flags |=
949 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
950 			key_put(mk_user);
951 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
952 			err = PTR_ERR(mk_user);
953 			goto out_release_key;
954 		}
955 	}
956 	err = 0;
957 out_release_key:
958 	up_read(&key->sem);
959 	key_put(key);
960 out:
961 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
962 		err = -EFAULT;
963 	return err;
964 }
965 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
966 
967 int __init fscrypt_init_keyring(void)
968 {
969 	int err;
970 
971 	err = register_key_type(&key_type_fscrypt);
972 	if (err)
973 		return err;
974 
975 	err = register_key_type(&key_type_fscrypt_user);
976 	if (err)
977 		goto err_unregister_fscrypt;
978 
979 	return 0;
980 
981 err_unregister_fscrypt:
982 	unregister_key_type(&key_type_fscrypt);
983 	return err;
984 }
985