xref: /openbmc/linux/fs/crypto/keyring.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <crypto/skcipher.h>
22 #include <linux/key-type.h>
23 #include <linux/random.h>
24 #include <linux/seq_file.h>
25 
26 #include "fscrypt_private.h"
27 
28 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
29 {
30 	fscrypt_destroy_hkdf(&secret->hkdf);
31 	memzero_explicit(secret, sizeof(*secret));
32 }
33 
34 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
35 				   struct fscrypt_master_key_secret *src)
36 {
37 	memcpy(dst, src, sizeof(*dst));
38 	memzero_explicit(src, sizeof(*src));
39 }
40 
41 static void free_master_key(struct fscrypt_master_key *mk)
42 {
43 	size_t i;
44 
45 	wipe_master_key_secret(&mk->mk_secret);
46 
47 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
48 		fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
49 		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
50 		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]);
51 	}
52 
53 	key_put(mk->mk_users);
54 	kfree_sensitive(mk);
55 }
56 
57 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
58 {
59 	if (spec->__reserved)
60 		return false;
61 	return master_key_spec_len(spec) != 0;
62 }
63 
64 static int fscrypt_key_instantiate(struct key *key,
65 				   struct key_preparsed_payload *prep)
66 {
67 	key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
68 	return 0;
69 }
70 
71 static void fscrypt_key_destroy(struct key *key)
72 {
73 	free_master_key(key->payload.data[0]);
74 }
75 
76 static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
77 {
78 	seq_puts(m, key->description);
79 
80 	if (key_is_positive(key)) {
81 		const struct fscrypt_master_key *mk = key->payload.data[0];
82 
83 		if (!is_master_key_secret_present(&mk->mk_secret))
84 			seq_puts(m, ": secret removed");
85 	}
86 }
87 
88 /*
89  * Type of key in ->s_master_keys.  Each key of this type represents a master
90  * key which has been added to the filesystem.  Its payload is a
91  * 'struct fscrypt_master_key'.  The "." prefix in the key type name prevents
92  * users from adding keys of this type via the keyrings syscalls rather than via
93  * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
94  */
95 static struct key_type key_type_fscrypt = {
96 	.name			= "._fscrypt",
97 	.instantiate		= fscrypt_key_instantiate,
98 	.destroy		= fscrypt_key_destroy,
99 	.describe		= fscrypt_key_describe,
100 };
101 
102 static int fscrypt_user_key_instantiate(struct key *key,
103 					struct key_preparsed_payload *prep)
104 {
105 	/*
106 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
107 	 * each key, regardless of the exact key size.  The amount of memory
108 	 * actually used is greater than the size of the raw key anyway.
109 	 */
110 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
111 }
112 
113 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
114 {
115 	seq_puts(m, key->description);
116 }
117 
118 /*
119  * Type of key in ->mk_users.  Each key of this type represents a particular
120  * user who has added a particular master key.
121  *
122  * Note that the name of this key type really should be something like
123  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
124  * mainly for simplicity of presentation in /proc/keys when read by a non-root
125  * user.  And it is expected to be rare that a key is actually added by multiple
126  * users, since users should keep their encryption keys confidential.
127  */
128 static struct key_type key_type_fscrypt_user = {
129 	.name			= ".fscrypt",
130 	.instantiate		= fscrypt_user_key_instantiate,
131 	.describe		= fscrypt_user_key_describe,
132 };
133 
134 /* Search ->s_master_keys or ->mk_users */
135 static struct key *search_fscrypt_keyring(struct key *keyring,
136 					  struct key_type *type,
137 					  const char *description)
138 {
139 	/*
140 	 * We need to mark the keyring reference as "possessed" so that we
141 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
142 	 */
143 	key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
144 
145 	keyref = keyring_search(keyref, type, description, false);
146 	if (IS_ERR(keyref)) {
147 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
148 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
149 			keyref = ERR_PTR(-ENOKEY);
150 		return ERR_CAST(keyref);
151 	}
152 	return key_ref_to_ptr(keyref);
153 }
154 
155 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE	\
156 	(CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id))
157 
158 #define FSCRYPT_MK_DESCRIPTION_SIZE	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
159 
160 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
161 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
162 	 CONST_STRLEN("-users") + 1)
163 
164 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
165 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
166 
167 static void format_fs_keyring_description(
168 			char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
169 			const struct super_block *sb)
170 {
171 	sprintf(description, "fscrypt-%s", sb->s_id);
172 }
173 
174 static void format_mk_description(
175 			char description[FSCRYPT_MK_DESCRIPTION_SIZE],
176 			const struct fscrypt_key_specifier *mk_spec)
177 {
178 	sprintf(description, "%*phN",
179 		master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
180 }
181 
182 static void format_mk_users_keyring_description(
183 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
184 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
185 {
186 	sprintf(description, "fscrypt-%*phN-users",
187 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
188 }
189 
190 static void format_mk_user_description(
191 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
192 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
193 {
194 
195 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
196 		mk_identifier, __kuid_val(current_fsuid()));
197 }
198 
199 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
200 static int allocate_filesystem_keyring(struct super_block *sb)
201 {
202 	char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
203 	struct key *keyring;
204 
205 	if (sb->s_master_keys)
206 		return 0;
207 
208 	format_fs_keyring_description(description, sb);
209 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
210 				current_cred(), KEY_POS_SEARCH |
211 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
212 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
213 	if (IS_ERR(keyring))
214 		return PTR_ERR(keyring);
215 
216 	/*
217 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
218 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
219 	 * concurrent tasks can ACQUIRE it.
220 	 */
221 	smp_store_release(&sb->s_master_keys, keyring);
222 	return 0;
223 }
224 
225 void fscrypt_sb_free(struct super_block *sb)
226 {
227 	key_put(sb->s_master_keys);
228 	sb->s_master_keys = NULL;
229 }
230 
231 /*
232  * Find the specified master key in ->s_master_keys.
233  * Returns ERR_PTR(-ENOKEY) if not found.
234  */
235 struct key *fscrypt_find_master_key(struct super_block *sb,
236 				    const struct fscrypt_key_specifier *mk_spec)
237 {
238 	struct key *keyring;
239 	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
240 
241 	/*
242 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
243 	 * I.e., another task can publish ->s_master_keys concurrently,
244 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
245 	 * to safely ACQUIRE the memory the other task published.
246 	 */
247 	keyring = smp_load_acquire(&sb->s_master_keys);
248 	if (keyring == NULL)
249 		return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
250 
251 	format_mk_description(description, mk_spec);
252 	return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
253 }
254 
255 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
256 {
257 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
258 	struct key *keyring;
259 
260 	format_mk_users_keyring_description(description,
261 					    mk->mk_spec.u.identifier);
262 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
263 				current_cred(), KEY_POS_SEARCH |
264 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
265 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
266 	if (IS_ERR(keyring))
267 		return PTR_ERR(keyring);
268 
269 	mk->mk_users = keyring;
270 	return 0;
271 }
272 
273 /*
274  * Find the current user's "key" in the master key's ->mk_users.
275  * Returns ERR_PTR(-ENOKEY) if not found.
276  */
277 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
278 {
279 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
280 
281 	format_mk_user_description(description, mk->mk_spec.u.identifier);
282 	return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
283 				      description);
284 }
285 
286 /*
287  * Give the current user a "key" in ->mk_users.  This charges the user's quota
288  * and marks the master key as added by the current user, so that it cannot be
289  * removed by another user with the key.  Either the master key's key->sem must
290  * be held for write, or the master key must be still undergoing initialization.
291  */
292 static int add_master_key_user(struct fscrypt_master_key *mk)
293 {
294 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
295 	struct key *mk_user;
296 	int err;
297 
298 	format_mk_user_description(description, mk->mk_spec.u.identifier);
299 	mk_user = key_alloc(&key_type_fscrypt_user, description,
300 			    current_fsuid(), current_gid(), current_cred(),
301 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
302 	if (IS_ERR(mk_user))
303 		return PTR_ERR(mk_user);
304 
305 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
306 	key_put(mk_user);
307 	return err;
308 }
309 
310 /*
311  * Remove the current user's "key" from ->mk_users.
312  * The master key's key->sem must be held for write.
313  *
314  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
315  */
316 static int remove_master_key_user(struct fscrypt_master_key *mk)
317 {
318 	struct key *mk_user;
319 	int err;
320 
321 	mk_user = find_master_key_user(mk);
322 	if (IS_ERR(mk_user))
323 		return PTR_ERR(mk_user);
324 	err = key_unlink(mk->mk_users, mk_user);
325 	key_put(mk_user);
326 	return err;
327 }
328 
329 /*
330  * Allocate a new fscrypt_master_key which contains the given secret, set it as
331  * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
332  * into the given keyring.  Synchronized by fscrypt_add_key_mutex.
333  */
334 static int add_new_master_key(struct fscrypt_master_key_secret *secret,
335 			      const struct fscrypt_key_specifier *mk_spec,
336 			      struct key *keyring)
337 {
338 	struct fscrypt_master_key *mk;
339 	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
340 	struct key *key;
341 	int err;
342 
343 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
344 	if (!mk)
345 		return -ENOMEM;
346 
347 	mk->mk_spec = *mk_spec;
348 
349 	move_master_key_secret(&mk->mk_secret, secret);
350 
351 	refcount_set(&mk->mk_refcount, 1); /* secret is present */
352 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
353 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
354 
355 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
356 		err = allocate_master_key_users_keyring(mk);
357 		if (err)
358 			goto out_free_mk;
359 		err = add_master_key_user(mk);
360 		if (err)
361 			goto out_free_mk;
362 	}
363 
364 	/*
365 	 * Note that we don't charge this key to anyone's quota, since when
366 	 * ->mk_users is in use those keys are charged instead, and otherwise
367 	 * (when ->mk_users isn't in use) only root can add these keys.
368 	 */
369 	format_mk_description(description, mk_spec);
370 	key = key_alloc(&key_type_fscrypt, description,
371 			GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
372 			KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
373 			KEY_ALLOC_NOT_IN_QUOTA, NULL);
374 	if (IS_ERR(key)) {
375 		err = PTR_ERR(key);
376 		goto out_free_mk;
377 	}
378 	err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
379 	key_put(key);
380 	if (err)
381 		goto out_free_mk;
382 
383 	return 0;
384 
385 out_free_mk:
386 	free_master_key(mk);
387 	return err;
388 }
389 
390 #define KEY_DEAD	1
391 
392 static int add_existing_master_key(struct fscrypt_master_key *mk,
393 				   struct fscrypt_master_key_secret *secret)
394 {
395 	struct key *mk_user;
396 	bool rekey;
397 	int err;
398 
399 	/*
400 	 * If the current user is already in ->mk_users, then there's nothing to
401 	 * do.  (Not applicable for v1 policy keys, which have NULL ->mk_users.)
402 	 */
403 	if (mk->mk_users) {
404 		mk_user = find_master_key_user(mk);
405 		if (mk_user != ERR_PTR(-ENOKEY)) {
406 			if (IS_ERR(mk_user))
407 				return PTR_ERR(mk_user);
408 			key_put(mk_user);
409 			return 0;
410 		}
411 	}
412 
413 	/* If we'll be re-adding ->mk_secret, try to take the reference. */
414 	rekey = !is_master_key_secret_present(&mk->mk_secret);
415 	if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
416 		return KEY_DEAD;
417 
418 	/* Add the current user to ->mk_users, if applicable. */
419 	if (mk->mk_users) {
420 		err = add_master_key_user(mk);
421 		if (err) {
422 			if (rekey && refcount_dec_and_test(&mk->mk_refcount))
423 				return KEY_DEAD;
424 			return err;
425 		}
426 	}
427 
428 	/* Re-add the secret if needed. */
429 	if (rekey)
430 		move_master_key_secret(&mk->mk_secret, secret);
431 	return 0;
432 }
433 
434 static int do_add_master_key(struct super_block *sb,
435 			     struct fscrypt_master_key_secret *secret,
436 			     const struct fscrypt_key_specifier *mk_spec)
437 {
438 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
439 	struct key *key;
440 	int err;
441 
442 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
443 retry:
444 	key = fscrypt_find_master_key(sb, mk_spec);
445 	if (IS_ERR(key)) {
446 		err = PTR_ERR(key);
447 		if (err != -ENOKEY)
448 			goto out_unlock;
449 		/* Didn't find the key in ->s_master_keys.  Add it. */
450 		err = allocate_filesystem_keyring(sb);
451 		if (err)
452 			goto out_unlock;
453 		err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
454 	} else {
455 		/*
456 		 * Found the key in ->s_master_keys.  Re-add the secret if
457 		 * needed, and add the user to ->mk_users if needed.
458 		 */
459 		down_write(&key->sem);
460 		err = add_existing_master_key(key->payload.data[0], secret);
461 		up_write(&key->sem);
462 		if (err == KEY_DEAD) {
463 			/* Key being removed or needs to be removed */
464 			key_invalidate(key);
465 			key_put(key);
466 			goto retry;
467 		}
468 		key_put(key);
469 	}
470 out_unlock:
471 	mutex_unlock(&fscrypt_add_key_mutex);
472 	return err;
473 }
474 
475 static int add_master_key(struct super_block *sb,
476 			  struct fscrypt_master_key_secret *secret,
477 			  struct fscrypt_key_specifier *key_spec)
478 {
479 	int err;
480 
481 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
482 		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
483 					secret->size);
484 		if (err)
485 			return err;
486 
487 		/*
488 		 * Now that the HKDF context is initialized, the raw key is no
489 		 * longer needed.
490 		 */
491 		memzero_explicit(secret->raw, secret->size);
492 
493 		/* Calculate the key identifier */
494 		err = fscrypt_hkdf_expand(&secret->hkdf,
495 					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
496 					  key_spec->u.identifier,
497 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
498 		if (err)
499 			return err;
500 	}
501 	return do_add_master_key(sb, secret, key_spec);
502 }
503 
504 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
505 {
506 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
507 
508 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
509 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
510 		return -EINVAL;
511 
512 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
513 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
514 		return -EINVAL;
515 
516 	if (payload->__reserved)
517 		return -EINVAL;
518 
519 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
520 	if (!prep->payload.data[0])
521 		return -ENOMEM;
522 
523 	prep->quotalen = prep->datalen;
524 	return 0;
525 }
526 
527 static void fscrypt_provisioning_key_free_preparse(
528 					struct key_preparsed_payload *prep)
529 {
530 	kfree_sensitive(prep->payload.data[0]);
531 }
532 
533 static void fscrypt_provisioning_key_describe(const struct key *key,
534 					      struct seq_file *m)
535 {
536 	seq_puts(m, key->description);
537 	if (key_is_positive(key)) {
538 		const struct fscrypt_provisioning_key_payload *payload =
539 			key->payload.data[0];
540 
541 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
542 	}
543 }
544 
545 static void fscrypt_provisioning_key_destroy(struct key *key)
546 {
547 	kfree_sensitive(key->payload.data[0]);
548 }
549 
550 static struct key_type key_type_fscrypt_provisioning = {
551 	.name			= "fscrypt-provisioning",
552 	.preparse		= fscrypt_provisioning_key_preparse,
553 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
554 	.instantiate		= generic_key_instantiate,
555 	.describe		= fscrypt_provisioning_key_describe,
556 	.destroy		= fscrypt_provisioning_key_destroy,
557 };
558 
559 /*
560  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
561  * store it into 'secret'.
562  *
563  * The key must be of type "fscrypt-provisioning" and must have the field
564  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
565  * only usable with fscrypt with the particular KDF version identified by
566  * 'type'.  We don't use the "logon" key type because there's no way to
567  * completely restrict the use of such keys; they can be used by any kernel API
568  * that accepts "logon" keys and doesn't require a specific service prefix.
569  *
570  * The ability to specify the key via Linux keyring key is intended for cases
571  * where userspace needs to re-add keys after the filesystem is unmounted and
572  * re-mounted.  Most users should just provide the raw key directly instead.
573  */
574 static int get_keyring_key(u32 key_id, u32 type,
575 			   struct fscrypt_master_key_secret *secret)
576 {
577 	key_ref_t ref;
578 	struct key *key;
579 	const struct fscrypt_provisioning_key_payload *payload;
580 	int err;
581 
582 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
583 	if (IS_ERR(ref))
584 		return PTR_ERR(ref);
585 	key = key_ref_to_ptr(ref);
586 
587 	if (key->type != &key_type_fscrypt_provisioning)
588 		goto bad_key;
589 	payload = key->payload.data[0];
590 
591 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
592 	if (payload->type != type)
593 		goto bad_key;
594 
595 	secret->size = key->datalen - sizeof(*payload);
596 	memcpy(secret->raw, payload->raw, secret->size);
597 	err = 0;
598 	goto out_put;
599 
600 bad_key:
601 	err = -EKEYREJECTED;
602 out_put:
603 	key_ref_put(ref);
604 	return err;
605 }
606 
607 /*
608  * Add a master encryption key to the filesystem, causing all files which were
609  * encrypted with it to appear "unlocked" (decrypted) when accessed.
610  *
611  * When adding a key for use by v1 encryption policies, this ioctl is
612  * privileged, and userspace must provide the 'key_descriptor'.
613  *
614  * When adding a key for use by v2+ encryption policies, this ioctl is
615  * unprivileged.  This is needed, in general, to allow non-root users to use
616  * encryption without encountering the visibility problems of process-subscribed
617  * keyrings and the inability to properly remove keys.  This works by having
618  * each key identified by its cryptographically secure hash --- the
619  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
620  * cannot add the wrong key for a given identifier.  Furthermore, each added key
621  * is charged to the appropriate user's quota for the keyrings service, which
622  * prevents a malicious user from adding too many keys.  Finally, we forbid a
623  * user from removing a key while other users have added it too, which prevents
624  * a user who knows another user's key from causing a denial-of-service by
625  * removing it at an inopportune time.  (We tolerate that a user who knows a key
626  * can prevent other users from removing it.)
627  *
628  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
629  * Documentation/filesystems/fscrypt.rst.
630  */
631 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
632 {
633 	struct super_block *sb = file_inode(filp)->i_sb;
634 	struct fscrypt_add_key_arg __user *uarg = _uarg;
635 	struct fscrypt_add_key_arg arg;
636 	struct fscrypt_master_key_secret secret;
637 	int err;
638 
639 	if (copy_from_user(&arg, uarg, sizeof(arg)))
640 		return -EFAULT;
641 
642 	if (!valid_key_spec(&arg.key_spec))
643 		return -EINVAL;
644 
645 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
646 		return -EINVAL;
647 
648 	/*
649 	 * Only root can add keys that are identified by an arbitrary descriptor
650 	 * rather than by a cryptographic hash --- since otherwise a malicious
651 	 * user could add the wrong key.
652 	 */
653 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
654 	    !capable(CAP_SYS_ADMIN))
655 		return -EACCES;
656 
657 	memset(&secret, 0, sizeof(secret));
658 	if (arg.key_id) {
659 		if (arg.raw_size != 0)
660 			return -EINVAL;
661 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
662 		if (err)
663 			goto out_wipe_secret;
664 	} else {
665 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
666 		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
667 			return -EINVAL;
668 		secret.size = arg.raw_size;
669 		err = -EFAULT;
670 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
671 			goto out_wipe_secret;
672 	}
673 
674 	err = add_master_key(sb, &secret, &arg.key_spec);
675 	if (err)
676 		goto out_wipe_secret;
677 
678 	/* Return the key identifier to userspace, if applicable */
679 	err = -EFAULT;
680 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
681 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
682 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
683 		goto out_wipe_secret;
684 	err = 0;
685 out_wipe_secret:
686 	wipe_master_key_secret(&secret);
687 	return err;
688 }
689 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
690 
691 /*
692  * Add the key for '-o test_dummy_encryption' to the filesystem keyring.
693  *
694  * Use a per-boot random key to prevent people from misusing this option.
695  */
696 int fscrypt_add_test_dummy_key(struct super_block *sb,
697 			       struct fscrypt_key_specifier *key_spec)
698 {
699 	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
700 	struct fscrypt_master_key_secret secret;
701 	int err;
702 
703 	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
704 
705 	memset(&secret, 0, sizeof(secret));
706 	secret.size = FSCRYPT_MAX_KEY_SIZE;
707 	memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE);
708 
709 	err = add_master_key(sb, &secret, key_spec);
710 	wipe_master_key_secret(&secret);
711 	return err;
712 }
713 
714 /*
715  * Verify that the current user has added a master key with the given identifier
716  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
717  * their files using some other user's key which they don't actually know.
718  * Cryptographically this isn't much of a problem, but the semantics of this
719  * would be a bit weird, so it's best to just forbid it.
720  *
721  * The system administrator (CAP_FOWNER) can override this, which should be
722  * enough for any use cases where encryption policies are being set using keys
723  * that were chosen ahead of time but aren't available at the moment.
724  *
725  * Note that the key may have already removed by the time this returns, but
726  * that's okay; we just care whether the key was there at some point.
727  *
728  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
729  */
730 int fscrypt_verify_key_added(struct super_block *sb,
731 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
732 {
733 	struct fscrypt_key_specifier mk_spec;
734 	struct key *key, *mk_user;
735 	struct fscrypt_master_key *mk;
736 	int err;
737 
738 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
739 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
740 
741 	key = fscrypt_find_master_key(sb, &mk_spec);
742 	if (IS_ERR(key)) {
743 		err = PTR_ERR(key);
744 		goto out;
745 	}
746 	mk = key->payload.data[0];
747 	mk_user = find_master_key_user(mk);
748 	if (IS_ERR(mk_user)) {
749 		err = PTR_ERR(mk_user);
750 	} else {
751 		key_put(mk_user);
752 		err = 0;
753 	}
754 	key_put(key);
755 out:
756 	if (err == -ENOKEY && capable(CAP_FOWNER))
757 		err = 0;
758 	return err;
759 }
760 
761 /*
762  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
763  * directory, then it can have at most one dentry; however, that dentry may be
764  * pinned by child dentries, so first try to evict the children too.
765  */
766 static void shrink_dcache_inode(struct inode *inode)
767 {
768 	struct dentry *dentry;
769 
770 	if (S_ISDIR(inode->i_mode)) {
771 		dentry = d_find_any_alias(inode);
772 		if (dentry) {
773 			shrink_dcache_parent(dentry);
774 			dput(dentry);
775 		}
776 	}
777 	d_prune_aliases(inode);
778 }
779 
780 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
781 {
782 	struct fscrypt_info *ci;
783 	struct inode *inode;
784 	struct inode *toput_inode = NULL;
785 
786 	spin_lock(&mk->mk_decrypted_inodes_lock);
787 
788 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
789 		inode = ci->ci_inode;
790 		spin_lock(&inode->i_lock);
791 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
792 			spin_unlock(&inode->i_lock);
793 			continue;
794 		}
795 		__iget(inode);
796 		spin_unlock(&inode->i_lock);
797 		spin_unlock(&mk->mk_decrypted_inodes_lock);
798 
799 		shrink_dcache_inode(inode);
800 		iput(toput_inode);
801 		toput_inode = inode;
802 
803 		spin_lock(&mk->mk_decrypted_inodes_lock);
804 	}
805 
806 	spin_unlock(&mk->mk_decrypted_inodes_lock);
807 	iput(toput_inode);
808 }
809 
810 static int check_for_busy_inodes(struct super_block *sb,
811 				 struct fscrypt_master_key *mk)
812 {
813 	struct list_head *pos;
814 	size_t busy_count = 0;
815 	unsigned long ino;
816 	char ino_str[50] = "";
817 
818 	spin_lock(&mk->mk_decrypted_inodes_lock);
819 
820 	list_for_each(pos, &mk->mk_decrypted_inodes)
821 		busy_count++;
822 
823 	if (busy_count == 0) {
824 		spin_unlock(&mk->mk_decrypted_inodes_lock);
825 		return 0;
826 	}
827 
828 	{
829 		/* select an example file to show for debugging purposes */
830 		struct inode *inode =
831 			list_first_entry(&mk->mk_decrypted_inodes,
832 					 struct fscrypt_info,
833 					 ci_master_key_link)->ci_inode;
834 		ino = inode->i_ino;
835 	}
836 	spin_unlock(&mk->mk_decrypted_inodes_lock);
837 
838 	/* If the inode is currently being created, ino may still be 0. */
839 	if (ino)
840 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
841 
842 	fscrypt_warn(NULL,
843 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
844 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
845 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
846 		     ino_str);
847 	return -EBUSY;
848 }
849 
850 static int try_to_lock_encrypted_files(struct super_block *sb,
851 				       struct fscrypt_master_key *mk)
852 {
853 	int err1;
854 	int err2;
855 
856 	/*
857 	 * An inode can't be evicted while it is dirty or has dirty pages.
858 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
859 	 *
860 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
861 	 * it works, and it's more important to minimize the amount of caches we
862 	 * drop than the amount of data we sync.  Also, unprivileged users can
863 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
864 	 */
865 	down_read(&sb->s_umount);
866 	err1 = sync_filesystem(sb);
867 	up_read(&sb->s_umount);
868 	/* If a sync error occurs, still try to evict as much as possible. */
869 
870 	/*
871 	 * Inodes are pinned by their dentries, so we have to evict their
872 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
873 	 * and inappropriate for use by unprivileged users.  So instead go
874 	 * through the inodes' alias lists and try to evict each dentry.
875 	 */
876 	evict_dentries_for_decrypted_inodes(mk);
877 
878 	/*
879 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
880 	 * the list; any inodes for which that dropped the last reference will
881 	 * have been evicted due to fscrypt_drop_inode() detecting the key
882 	 * removal and telling the VFS to evict the inode.  So to finish, we
883 	 * just need to check whether any inodes couldn't be evicted.
884 	 */
885 	err2 = check_for_busy_inodes(sb, mk);
886 
887 	return err1 ?: err2;
888 }
889 
890 /*
891  * Try to remove an fscrypt master encryption key.
892  *
893  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
894  * claim to the key, then removes the key itself if no other users have claims.
895  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
896  * key itself.
897  *
898  * To "remove the key itself", first we wipe the actual master key secret, so
899  * that no more inodes can be unlocked with it.  Then we try to evict all cached
900  * inodes that had been unlocked with the key.
901  *
902  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
903  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
904  * state (without the actual secret key) where it tracks the list of remaining
905  * inodes.  Userspace can execute the ioctl again later to retry eviction, or
906  * alternatively can re-add the secret key again.
907  *
908  * For more details, see the "Removing keys" section of
909  * Documentation/filesystems/fscrypt.rst.
910  */
911 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
912 {
913 	struct super_block *sb = file_inode(filp)->i_sb;
914 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
915 	struct fscrypt_remove_key_arg arg;
916 	struct key *key;
917 	struct fscrypt_master_key *mk;
918 	u32 status_flags = 0;
919 	int err;
920 	bool dead;
921 
922 	if (copy_from_user(&arg, uarg, sizeof(arg)))
923 		return -EFAULT;
924 
925 	if (!valid_key_spec(&arg.key_spec))
926 		return -EINVAL;
927 
928 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
929 		return -EINVAL;
930 
931 	/*
932 	 * Only root can add and remove keys that are identified by an arbitrary
933 	 * descriptor rather than by a cryptographic hash.
934 	 */
935 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
936 	    !capable(CAP_SYS_ADMIN))
937 		return -EACCES;
938 
939 	/* Find the key being removed. */
940 	key = fscrypt_find_master_key(sb, &arg.key_spec);
941 	if (IS_ERR(key))
942 		return PTR_ERR(key);
943 	mk = key->payload.data[0];
944 
945 	down_write(&key->sem);
946 
947 	/* If relevant, remove current user's (or all users) claim to the key */
948 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
949 		if (all_users)
950 			err = keyring_clear(mk->mk_users);
951 		else
952 			err = remove_master_key_user(mk);
953 		if (err) {
954 			up_write(&key->sem);
955 			goto out_put_key;
956 		}
957 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
958 			/*
959 			 * Other users have still added the key too.  We removed
960 			 * the current user's claim to the key, but we still
961 			 * can't remove the key itself.
962 			 */
963 			status_flags |=
964 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
965 			err = 0;
966 			up_write(&key->sem);
967 			goto out_put_key;
968 		}
969 	}
970 
971 	/* No user claims remaining.  Go ahead and wipe the secret. */
972 	dead = false;
973 	if (is_master_key_secret_present(&mk->mk_secret)) {
974 		wipe_master_key_secret(&mk->mk_secret);
975 		dead = refcount_dec_and_test(&mk->mk_refcount);
976 	}
977 	up_write(&key->sem);
978 	if (dead) {
979 		/*
980 		 * No inodes reference the key, and we wiped the secret, so the
981 		 * key object is free to be removed from the keyring.
982 		 */
983 		key_invalidate(key);
984 		err = 0;
985 	} else {
986 		/* Some inodes still reference this key; try to evict them. */
987 		err = try_to_lock_encrypted_files(sb, mk);
988 		if (err == -EBUSY) {
989 			status_flags |=
990 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
991 			err = 0;
992 		}
993 	}
994 	/*
995 	 * We return 0 if we successfully did something: removed a claim to the
996 	 * key, wiped the secret, or tried locking the files again.  Users need
997 	 * to check the informational status flags if they care whether the key
998 	 * has been fully removed including all files locked.
999 	 */
1000 out_put_key:
1001 	key_put(key);
1002 	if (err == 0)
1003 		err = put_user(status_flags, &uarg->removal_status_flags);
1004 	return err;
1005 }
1006 
1007 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1008 {
1009 	return do_remove_key(filp, uarg, false);
1010 }
1011 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1012 
1013 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1014 {
1015 	if (!capable(CAP_SYS_ADMIN))
1016 		return -EACCES;
1017 	return do_remove_key(filp, uarg, true);
1018 }
1019 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1020 
1021 /*
1022  * Retrieve the status of an fscrypt master encryption key.
1023  *
1024  * We set ->status to indicate whether the key is absent, present, or
1025  * incompletely removed.  "Incompletely removed" means that the master key
1026  * secret has been removed, but some files which had been unlocked with it are
1027  * still in use.  This field allows applications to easily determine the state
1028  * of an encrypted directory without using a hack such as trying to open a
1029  * regular file in it (which can confuse the "incompletely removed" state with
1030  * absent or present).
1031  *
1032  * In addition, for v2 policy keys we allow applications to determine, via
1033  * ->status_flags and ->user_count, whether the key has been added by the
1034  * current user, by other users, or by both.  Most applications should not need
1035  * this, since ordinarily only one user should know a given key.  However, if a
1036  * secret key is shared by multiple users, applications may wish to add an
1037  * already-present key to prevent other users from removing it.  This ioctl can
1038  * be used to check whether that really is the case before the work is done to
1039  * add the key --- which might e.g. require prompting the user for a passphrase.
1040  *
1041  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1042  * Documentation/filesystems/fscrypt.rst.
1043  */
1044 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1045 {
1046 	struct super_block *sb = file_inode(filp)->i_sb;
1047 	struct fscrypt_get_key_status_arg arg;
1048 	struct key *key;
1049 	struct fscrypt_master_key *mk;
1050 	int err;
1051 
1052 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1053 		return -EFAULT;
1054 
1055 	if (!valid_key_spec(&arg.key_spec))
1056 		return -EINVAL;
1057 
1058 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1059 		return -EINVAL;
1060 
1061 	arg.status_flags = 0;
1062 	arg.user_count = 0;
1063 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1064 
1065 	key = fscrypt_find_master_key(sb, &arg.key_spec);
1066 	if (IS_ERR(key)) {
1067 		if (key != ERR_PTR(-ENOKEY))
1068 			return PTR_ERR(key);
1069 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1070 		err = 0;
1071 		goto out;
1072 	}
1073 	mk = key->payload.data[0];
1074 	down_read(&key->sem);
1075 
1076 	if (!is_master_key_secret_present(&mk->mk_secret)) {
1077 		arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
1078 		err = 0;
1079 		goto out_release_key;
1080 	}
1081 
1082 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1083 	if (mk->mk_users) {
1084 		struct key *mk_user;
1085 
1086 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1087 		mk_user = find_master_key_user(mk);
1088 		if (!IS_ERR(mk_user)) {
1089 			arg.status_flags |=
1090 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1091 			key_put(mk_user);
1092 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1093 			err = PTR_ERR(mk_user);
1094 			goto out_release_key;
1095 		}
1096 	}
1097 	err = 0;
1098 out_release_key:
1099 	up_read(&key->sem);
1100 	key_put(key);
1101 out:
1102 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1103 		err = -EFAULT;
1104 	return err;
1105 }
1106 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1107 
1108 int __init fscrypt_init_keyring(void)
1109 {
1110 	int err;
1111 
1112 	err = register_key_type(&key_type_fscrypt);
1113 	if (err)
1114 		return err;
1115 
1116 	err = register_key_type(&key_type_fscrypt_user);
1117 	if (err)
1118 		goto err_unregister_fscrypt;
1119 
1120 	err = register_key_type(&key_type_fscrypt_provisioning);
1121 	if (err)
1122 		goto err_unregister_fscrypt_user;
1123 
1124 	return 0;
1125 
1126 err_unregister_fscrypt_user:
1127 	unregister_key_type(&key_type_fscrypt_user);
1128 err_unregister_fscrypt:
1129 	unregister_key_type(&key_type_fscrypt);
1130 	return err;
1131 }
1132