xref: /openbmc/linux/fs/crypto/keyring.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <crypto/skcipher.h>
22 #include <linux/key-type.h>
23 #include <linux/random.h>
24 #include <linux/seq_file.h>
25 
26 #include "fscrypt_private.h"
27 
28 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
29 {
30 	fscrypt_destroy_hkdf(&secret->hkdf);
31 	memzero_explicit(secret, sizeof(*secret));
32 }
33 
34 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
35 				   struct fscrypt_master_key_secret *src)
36 {
37 	memcpy(dst, src, sizeof(*dst));
38 	memzero_explicit(src, sizeof(*src));
39 }
40 
41 static void free_master_key(struct fscrypt_master_key *mk)
42 {
43 	size_t i;
44 
45 	wipe_master_key_secret(&mk->mk_secret);
46 
47 	for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) {
48 		fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
49 		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
50 		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]);
51 	}
52 
53 	key_put(mk->mk_users);
54 	kfree_sensitive(mk);
55 }
56 
57 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
58 {
59 	if (spec->__reserved)
60 		return false;
61 	return master_key_spec_len(spec) != 0;
62 }
63 
64 static int fscrypt_key_instantiate(struct key *key,
65 				   struct key_preparsed_payload *prep)
66 {
67 	key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
68 	return 0;
69 }
70 
71 static void fscrypt_key_destroy(struct key *key)
72 {
73 	free_master_key(key->payload.data[0]);
74 }
75 
76 static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
77 {
78 	seq_puts(m, key->description);
79 
80 	if (key_is_positive(key)) {
81 		const struct fscrypt_master_key *mk = key->payload.data[0];
82 
83 		if (!is_master_key_secret_present(&mk->mk_secret))
84 			seq_puts(m, ": secret removed");
85 	}
86 }
87 
88 /*
89  * Type of key in ->s_master_keys.  Each key of this type represents a master
90  * key which has been added to the filesystem.  Its payload is a
91  * 'struct fscrypt_master_key'.  The "." prefix in the key type name prevents
92  * users from adding keys of this type via the keyrings syscalls rather than via
93  * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
94  */
95 static struct key_type key_type_fscrypt = {
96 	.name			= "._fscrypt",
97 	.instantiate		= fscrypt_key_instantiate,
98 	.destroy		= fscrypt_key_destroy,
99 	.describe		= fscrypt_key_describe,
100 };
101 
102 static int fscrypt_user_key_instantiate(struct key *key,
103 					struct key_preparsed_payload *prep)
104 {
105 	/*
106 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
107 	 * each key, regardless of the exact key size.  The amount of memory
108 	 * actually used is greater than the size of the raw key anyway.
109 	 */
110 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
111 }
112 
113 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
114 {
115 	seq_puts(m, key->description);
116 }
117 
118 /*
119  * Type of key in ->mk_users.  Each key of this type represents a particular
120  * user who has added a particular master key.
121  *
122  * Note that the name of this key type really should be something like
123  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
124  * mainly for simplicity of presentation in /proc/keys when read by a non-root
125  * user.  And it is expected to be rare that a key is actually added by multiple
126  * users, since users should keep their encryption keys confidential.
127  */
128 static struct key_type key_type_fscrypt_user = {
129 	.name			= ".fscrypt",
130 	.instantiate		= fscrypt_user_key_instantiate,
131 	.describe		= fscrypt_user_key_describe,
132 };
133 
134 /* Search ->s_master_keys or ->mk_users */
135 static struct key *search_fscrypt_keyring(struct key *keyring,
136 					  struct key_type *type,
137 					  const char *description)
138 {
139 	/*
140 	 * We need to mark the keyring reference as "possessed" so that we
141 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
142 	 */
143 	key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
144 
145 	keyref = keyring_search(keyref, type, description, false);
146 	if (IS_ERR(keyref)) {
147 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
148 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
149 			keyref = ERR_PTR(-ENOKEY);
150 		return ERR_CAST(keyref);
151 	}
152 	return key_ref_to_ptr(keyref);
153 }
154 
155 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE	\
156 	(CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id))
157 
158 #define FSCRYPT_MK_DESCRIPTION_SIZE	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
159 
160 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
161 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
162 	 CONST_STRLEN("-users") + 1)
163 
164 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
165 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
166 
167 static void format_fs_keyring_description(
168 			char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
169 			const struct super_block *sb)
170 {
171 	sprintf(description, "fscrypt-%s", sb->s_id);
172 }
173 
174 static void format_mk_description(
175 			char description[FSCRYPT_MK_DESCRIPTION_SIZE],
176 			const struct fscrypt_key_specifier *mk_spec)
177 {
178 	sprintf(description, "%*phN",
179 		master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
180 }
181 
182 static void format_mk_users_keyring_description(
183 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
184 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
185 {
186 	sprintf(description, "fscrypt-%*phN-users",
187 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
188 }
189 
190 static void format_mk_user_description(
191 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
192 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
193 {
194 
195 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
196 		mk_identifier, __kuid_val(current_fsuid()));
197 }
198 
199 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
200 static int allocate_filesystem_keyring(struct super_block *sb)
201 {
202 	char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
203 	struct key *keyring;
204 
205 	if (sb->s_master_keys)
206 		return 0;
207 
208 	format_fs_keyring_description(description, sb);
209 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
210 				current_cred(), KEY_POS_SEARCH |
211 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
212 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
213 	if (IS_ERR(keyring))
214 		return PTR_ERR(keyring);
215 
216 	/*
217 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
218 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
219 	 * concurrent tasks can ACQUIRE it.
220 	 */
221 	smp_store_release(&sb->s_master_keys, keyring);
222 	return 0;
223 }
224 
225 void fscrypt_sb_free(struct super_block *sb)
226 {
227 	key_put(sb->s_master_keys);
228 	sb->s_master_keys = NULL;
229 }
230 
231 /*
232  * Find the specified master key in ->s_master_keys.
233  * Returns ERR_PTR(-ENOKEY) if not found.
234  */
235 struct key *fscrypt_find_master_key(struct super_block *sb,
236 				    const struct fscrypt_key_specifier *mk_spec)
237 {
238 	struct key *keyring;
239 	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
240 
241 	/*
242 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
243 	 * I.e., another task can publish ->s_master_keys concurrently,
244 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
245 	 * to safely ACQUIRE the memory the other task published.
246 	 */
247 	keyring = smp_load_acquire(&sb->s_master_keys);
248 	if (keyring == NULL)
249 		return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
250 
251 	format_mk_description(description, mk_spec);
252 	return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
253 }
254 
255 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
256 {
257 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
258 	struct key *keyring;
259 
260 	format_mk_users_keyring_description(description,
261 					    mk->mk_spec.u.identifier);
262 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
263 				current_cred(), KEY_POS_SEARCH |
264 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
265 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
266 	if (IS_ERR(keyring))
267 		return PTR_ERR(keyring);
268 
269 	mk->mk_users = keyring;
270 	return 0;
271 }
272 
273 /*
274  * Find the current user's "key" in the master key's ->mk_users.
275  * Returns ERR_PTR(-ENOKEY) if not found.
276  */
277 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
278 {
279 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
280 
281 	format_mk_user_description(description, mk->mk_spec.u.identifier);
282 	return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
283 				      description);
284 }
285 
286 /*
287  * Give the current user a "key" in ->mk_users.  This charges the user's quota
288  * and marks the master key as added by the current user, so that it cannot be
289  * removed by another user with the key.  Either the master key's key->sem must
290  * be held for write, or the master key must be still undergoing initialization.
291  */
292 static int add_master_key_user(struct fscrypt_master_key *mk)
293 {
294 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
295 	struct key *mk_user;
296 	int err;
297 
298 	format_mk_user_description(description, mk->mk_spec.u.identifier);
299 	mk_user = key_alloc(&key_type_fscrypt_user, description,
300 			    current_fsuid(), current_gid(), current_cred(),
301 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
302 	if (IS_ERR(mk_user))
303 		return PTR_ERR(mk_user);
304 
305 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
306 	key_put(mk_user);
307 	return err;
308 }
309 
310 /*
311  * Remove the current user's "key" from ->mk_users.
312  * The master key's key->sem must be held for write.
313  *
314  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
315  */
316 static int remove_master_key_user(struct fscrypt_master_key *mk)
317 {
318 	struct key *mk_user;
319 	int err;
320 
321 	mk_user = find_master_key_user(mk);
322 	if (IS_ERR(mk_user))
323 		return PTR_ERR(mk_user);
324 	err = key_unlink(mk->mk_users, mk_user);
325 	key_put(mk_user);
326 	return err;
327 }
328 
329 /*
330  * Allocate a new fscrypt_master_key which contains the given secret, set it as
331  * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
332  * into the given keyring.  Synchronized by fscrypt_add_key_mutex.
333  */
334 static int add_new_master_key(struct fscrypt_master_key_secret *secret,
335 			      const struct fscrypt_key_specifier *mk_spec,
336 			      struct key *keyring)
337 {
338 	struct fscrypt_master_key *mk;
339 	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
340 	struct key *key;
341 	int err;
342 
343 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
344 	if (!mk)
345 		return -ENOMEM;
346 
347 	mk->mk_spec = *mk_spec;
348 
349 	move_master_key_secret(&mk->mk_secret, secret);
350 	init_rwsem(&mk->mk_secret_sem);
351 
352 	refcount_set(&mk->mk_refcount, 1); /* secret is present */
353 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
354 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
355 
356 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
357 		err = allocate_master_key_users_keyring(mk);
358 		if (err)
359 			goto out_free_mk;
360 		err = add_master_key_user(mk);
361 		if (err)
362 			goto out_free_mk;
363 	}
364 
365 	/*
366 	 * Note that we don't charge this key to anyone's quota, since when
367 	 * ->mk_users is in use those keys are charged instead, and otherwise
368 	 * (when ->mk_users isn't in use) only root can add these keys.
369 	 */
370 	format_mk_description(description, mk_spec);
371 	key = key_alloc(&key_type_fscrypt, description,
372 			GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
373 			KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
374 			KEY_ALLOC_NOT_IN_QUOTA, NULL);
375 	if (IS_ERR(key)) {
376 		err = PTR_ERR(key);
377 		goto out_free_mk;
378 	}
379 	err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
380 	key_put(key);
381 	if (err)
382 		goto out_free_mk;
383 
384 	return 0;
385 
386 out_free_mk:
387 	free_master_key(mk);
388 	return err;
389 }
390 
391 #define KEY_DEAD	1
392 
393 static int add_existing_master_key(struct fscrypt_master_key *mk,
394 				   struct fscrypt_master_key_secret *secret)
395 {
396 	struct key *mk_user;
397 	bool rekey;
398 	int err;
399 
400 	/*
401 	 * If the current user is already in ->mk_users, then there's nothing to
402 	 * do.  (Not applicable for v1 policy keys, which have NULL ->mk_users.)
403 	 */
404 	if (mk->mk_users) {
405 		mk_user = find_master_key_user(mk);
406 		if (mk_user != ERR_PTR(-ENOKEY)) {
407 			if (IS_ERR(mk_user))
408 				return PTR_ERR(mk_user);
409 			key_put(mk_user);
410 			return 0;
411 		}
412 	}
413 
414 	/* If we'll be re-adding ->mk_secret, try to take the reference. */
415 	rekey = !is_master_key_secret_present(&mk->mk_secret);
416 	if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
417 		return KEY_DEAD;
418 
419 	/* Add the current user to ->mk_users, if applicable. */
420 	if (mk->mk_users) {
421 		err = add_master_key_user(mk);
422 		if (err) {
423 			if (rekey && refcount_dec_and_test(&mk->mk_refcount))
424 				return KEY_DEAD;
425 			return err;
426 		}
427 	}
428 
429 	/* Re-add the secret if needed. */
430 	if (rekey) {
431 		down_write(&mk->mk_secret_sem);
432 		move_master_key_secret(&mk->mk_secret, secret);
433 		up_write(&mk->mk_secret_sem);
434 	}
435 	return 0;
436 }
437 
438 static int do_add_master_key(struct super_block *sb,
439 			     struct fscrypt_master_key_secret *secret,
440 			     const struct fscrypt_key_specifier *mk_spec)
441 {
442 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
443 	struct key *key;
444 	int err;
445 
446 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
447 retry:
448 	key = fscrypt_find_master_key(sb, mk_spec);
449 	if (IS_ERR(key)) {
450 		err = PTR_ERR(key);
451 		if (err != -ENOKEY)
452 			goto out_unlock;
453 		/* Didn't find the key in ->s_master_keys.  Add it. */
454 		err = allocate_filesystem_keyring(sb);
455 		if (err)
456 			goto out_unlock;
457 		err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
458 	} else {
459 		/*
460 		 * Found the key in ->s_master_keys.  Re-add the secret if
461 		 * needed, and add the user to ->mk_users if needed.
462 		 */
463 		down_write(&key->sem);
464 		err = add_existing_master_key(key->payload.data[0], secret);
465 		up_write(&key->sem);
466 		if (err == KEY_DEAD) {
467 			/* Key being removed or needs to be removed */
468 			key_invalidate(key);
469 			key_put(key);
470 			goto retry;
471 		}
472 		key_put(key);
473 	}
474 out_unlock:
475 	mutex_unlock(&fscrypt_add_key_mutex);
476 	return err;
477 }
478 
479 static int add_master_key(struct super_block *sb,
480 			  struct fscrypt_master_key_secret *secret,
481 			  struct fscrypt_key_specifier *key_spec)
482 {
483 	int err;
484 
485 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
486 		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
487 					secret->size);
488 		if (err)
489 			return err;
490 
491 		/*
492 		 * Now that the HKDF context is initialized, the raw key is no
493 		 * longer needed.
494 		 */
495 		memzero_explicit(secret->raw, secret->size);
496 
497 		/* Calculate the key identifier */
498 		err = fscrypt_hkdf_expand(&secret->hkdf,
499 					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
500 					  key_spec->u.identifier,
501 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
502 		if (err)
503 			return err;
504 	}
505 	return do_add_master_key(sb, secret, key_spec);
506 }
507 
508 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
509 {
510 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
511 
512 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
513 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
514 		return -EINVAL;
515 
516 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
517 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
518 		return -EINVAL;
519 
520 	if (payload->__reserved)
521 		return -EINVAL;
522 
523 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
524 	if (!prep->payload.data[0])
525 		return -ENOMEM;
526 
527 	prep->quotalen = prep->datalen;
528 	return 0;
529 }
530 
531 static void fscrypt_provisioning_key_free_preparse(
532 					struct key_preparsed_payload *prep)
533 {
534 	kfree_sensitive(prep->payload.data[0]);
535 }
536 
537 static void fscrypt_provisioning_key_describe(const struct key *key,
538 					      struct seq_file *m)
539 {
540 	seq_puts(m, key->description);
541 	if (key_is_positive(key)) {
542 		const struct fscrypt_provisioning_key_payload *payload =
543 			key->payload.data[0];
544 
545 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
546 	}
547 }
548 
549 static void fscrypt_provisioning_key_destroy(struct key *key)
550 {
551 	kfree_sensitive(key->payload.data[0]);
552 }
553 
554 static struct key_type key_type_fscrypt_provisioning = {
555 	.name			= "fscrypt-provisioning",
556 	.preparse		= fscrypt_provisioning_key_preparse,
557 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
558 	.instantiate		= generic_key_instantiate,
559 	.describe		= fscrypt_provisioning_key_describe,
560 	.destroy		= fscrypt_provisioning_key_destroy,
561 };
562 
563 /*
564  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
565  * store it into 'secret'.
566  *
567  * The key must be of type "fscrypt-provisioning" and must have the field
568  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
569  * only usable with fscrypt with the particular KDF version identified by
570  * 'type'.  We don't use the "logon" key type because there's no way to
571  * completely restrict the use of such keys; they can be used by any kernel API
572  * that accepts "logon" keys and doesn't require a specific service prefix.
573  *
574  * The ability to specify the key via Linux keyring key is intended for cases
575  * where userspace needs to re-add keys after the filesystem is unmounted and
576  * re-mounted.  Most users should just provide the raw key directly instead.
577  */
578 static int get_keyring_key(u32 key_id, u32 type,
579 			   struct fscrypt_master_key_secret *secret)
580 {
581 	key_ref_t ref;
582 	struct key *key;
583 	const struct fscrypt_provisioning_key_payload *payload;
584 	int err;
585 
586 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
587 	if (IS_ERR(ref))
588 		return PTR_ERR(ref);
589 	key = key_ref_to_ptr(ref);
590 
591 	if (key->type != &key_type_fscrypt_provisioning)
592 		goto bad_key;
593 	payload = key->payload.data[0];
594 
595 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
596 	if (payload->type != type)
597 		goto bad_key;
598 
599 	secret->size = key->datalen - sizeof(*payload);
600 	memcpy(secret->raw, payload->raw, secret->size);
601 	err = 0;
602 	goto out_put;
603 
604 bad_key:
605 	err = -EKEYREJECTED;
606 out_put:
607 	key_ref_put(ref);
608 	return err;
609 }
610 
611 /*
612  * Add a master encryption key to the filesystem, causing all files which were
613  * encrypted with it to appear "unlocked" (decrypted) when accessed.
614  *
615  * When adding a key for use by v1 encryption policies, this ioctl is
616  * privileged, and userspace must provide the 'key_descriptor'.
617  *
618  * When adding a key for use by v2+ encryption policies, this ioctl is
619  * unprivileged.  This is needed, in general, to allow non-root users to use
620  * encryption without encountering the visibility problems of process-subscribed
621  * keyrings and the inability to properly remove keys.  This works by having
622  * each key identified by its cryptographically secure hash --- the
623  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
624  * cannot add the wrong key for a given identifier.  Furthermore, each added key
625  * is charged to the appropriate user's quota for the keyrings service, which
626  * prevents a malicious user from adding too many keys.  Finally, we forbid a
627  * user from removing a key while other users have added it too, which prevents
628  * a user who knows another user's key from causing a denial-of-service by
629  * removing it at an inopportune time.  (We tolerate that a user who knows a key
630  * can prevent other users from removing it.)
631  *
632  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
633  * Documentation/filesystems/fscrypt.rst.
634  */
635 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
636 {
637 	struct super_block *sb = file_inode(filp)->i_sb;
638 	struct fscrypt_add_key_arg __user *uarg = _uarg;
639 	struct fscrypt_add_key_arg arg;
640 	struct fscrypt_master_key_secret secret;
641 	int err;
642 
643 	if (copy_from_user(&arg, uarg, sizeof(arg)))
644 		return -EFAULT;
645 
646 	if (!valid_key_spec(&arg.key_spec))
647 		return -EINVAL;
648 
649 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
650 		return -EINVAL;
651 
652 	/*
653 	 * Only root can add keys that are identified by an arbitrary descriptor
654 	 * rather than by a cryptographic hash --- since otherwise a malicious
655 	 * user could add the wrong key.
656 	 */
657 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
658 	    !capable(CAP_SYS_ADMIN))
659 		return -EACCES;
660 
661 	memset(&secret, 0, sizeof(secret));
662 	if (arg.key_id) {
663 		if (arg.raw_size != 0)
664 			return -EINVAL;
665 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
666 		if (err)
667 			goto out_wipe_secret;
668 	} else {
669 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
670 		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
671 			return -EINVAL;
672 		secret.size = arg.raw_size;
673 		err = -EFAULT;
674 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
675 			goto out_wipe_secret;
676 	}
677 
678 	err = add_master_key(sb, &secret, &arg.key_spec);
679 	if (err)
680 		goto out_wipe_secret;
681 
682 	/* Return the key identifier to userspace, if applicable */
683 	err = -EFAULT;
684 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
685 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
686 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
687 		goto out_wipe_secret;
688 	err = 0;
689 out_wipe_secret:
690 	wipe_master_key_secret(&secret);
691 	return err;
692 }
693 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
694 
695 /*
696  * Add the key for '-o test_dummy_encryption' to the filesystem keyring.
697  *
698  * Use a per-boot random key to prevent people from misusing this option.
699  */
700 int fscrypt_add_test_dummy_key(struct super_block *sb,
701 			       struct fscrypt_key_specifier *key_spec)
702 {
703 	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
704 	struct fscrypt_master_key_secret secret;
705 	int err;
706 
707 	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
708 
709 	memset(&secret, 0, sizeof(secret));
710 	secret.size = FSCRYPT_MAX_KEY_SIZE;
711 	memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE);
712 
713 	err = add_master_key(sb, &secret, key_spec);
714 	wipe_master_key_secret(&secret);
715 	return err;
716 }
717 
718 /*
719  * Verify that the current user has added a master key with the given identifier
720  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
721  * their files using some other user's key which they don't actually know.
722  * Cryptographically this isn't much of a problem, but the semantics of this
723  * would be a bit weird, so it's best to just forbid it.
724  *
725  * The system administrator (CAP_FOWNER) can override this, which should be
726  * enough for any use cases where encryption policies are being set using keys
727  * that were chosen ahead of time but aren't available at the moment.
728  *
729  * Note that the key may have already removed by the time this returns, but
730  * that's okay; we just care whether the key was there at some point.
731  *
732  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
733  */
734 int fscrypt_verify_key_added(struct super_block *sb,
735 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
736 {
737 	struct fscrypt_key_specifier mk_spec;
738 	struct key *key, *mk_user;
739 	struct fscrypt_master_key *mk;
740 	int err;
741 
742 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
743 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
744 
745 	key = fscrypt_find_master_key(sb, &mk_spec);
746 	if (IS_ERR(key)) {
747 		err = PTR_ERR(key);
748 		goto out;
749 	}
750 	mk = key->payload.data[0];
751 	mk_user = find_master_key_user(mk);
752 	if (IS_ERR(mk_user)) {
753 		err = PTR_ERR(mk_user);
754 	} else {
755 		key_put(mk_user);
756 		err = 0;
757 	}
758 	key_put(key);
759 out:
760 	if (err == -ENOKEY && capable(CAP_FOWNER))
761 		err = 0;
762 	return err;
763 }
764 
765 /*
766  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
767  * directory, then it can have at most one dentry; however, that dentry may be
768  * pinned by child dentries, so first try to evict the children too.
769  */
770 static void shrink_dcache_inode(struct inode *inode)
771 {
772 	struct dentry *dentry;
773 
774 	if (S_ISDIR(inode->i_mode)) {
775 		dentry = d_find_any_alias(inode);
776 		if (dentry) {
777 			shrink_dcache_parent(dentry);
778 			dput(dentry);
779 		}
780 	}
781 	d_prune_aliases(inode);
782 }
783 
784 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
785 {
786 	struct fscrypt_info *ci;
787 	struct inode *inode;
788 	struct inode *toput_inode = NULL;
789 
790 	spin_lock(&mk->mk_decrypted_inodes_lock);
791 
792 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
793 		inode = ci->ci_inode;
794 		spin_lock(&inode->i_lock);
795 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
796 			spin_unlock(&inode->i_lock);
797 			continue;
798 		}
799 		__iget(inode);
800 		spin_unlock(&inode->i_lock);
801 		spin_unlock(&mk->mk_decrypted_inodes_lock);
802 
803 		shrink_dcache_inode(inode);
804 		iput(toput_inode);
805 		toput_inode = inode;
806 
807 		spin_lock(&mk->mk_decrypted_inodes_lock);
808 	}
809 
810 	spin_unlock(&mk->mk_decrypted_inodes_lock);
811 	iput(toput_inode);
812 }
813 
814 static int check_for_busy_inodes(struct super_block *sb,
815 				 struct fscrypt_master_key *mk)
816 {
817 	struct list_head *pos;
818 	size_t busy_count = 0;
819 	unsigned long ino;
820 
821 	spin_lock(&mk->mk_decrypted_inodes_lock);
822 
823 	list_for_each(pos, &mk->mk_decrypted_inodes)
824 		busy_count++;
825 
826 	if (busy_count == 0) {
827 		spin_unlock(&mk->mk_decrypted_inodes_lock);
828 		return 0;
829 	}
830 
831 	{
832 		/* select an example file to show for debugging purposes */
833 		struct inode *inode =
834 			list_first_entry(&mk->mk_decrypted_inodes,
835 					 struct fscrypt_info,
836 					 ci_master_key_link)->ci_inode;
837 		ino = inode->i_ino;
838 	}
839 	spin_unlock(&mk->mk_decrypted_inodes_lock);
840 
841 	fscrypt_warn(NULL,
842 		     "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu",
843 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
844 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
845 		     ino);
846 	return -EBUSY;
847 }
848 
849 static int try_to_lock_encrypted_files(struct super_block *sb,
850 				       struct fscrypt_master_key *mk)
851 {
852 	int err1;
853 	int err2;
854 
855 	/*
856 	 * An inode can't be evicted while it is dirty or has dirty pages.
857 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
858 	 *
859 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
860 	 * it works, and it's more important to minimize the amount of caches we
861 	 * drop than the amount of data we sync.  Also, unprivileged users can
862 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
863 	 */
864 	down_read(&sb->s_umount);
865 	err1 = sync_filesystem(sb);
866 	up_read(&sb->s_umount);
867 	/* If a sync error occurs, still try to evict as much as possible. */
868 
869 	/*
870 	 * Inodes are pinned by their dentries, so we have to evict their
871 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
872 	 * and inappropriate for use by unprivileged users.  So instead go
873 	 * through the inodes' alias lists and try to evict each dentry.
874 	 */
875 	evict_dentries_for_decrypted_inodes(mk);
876 
877 	/*
878 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
879 	 * the list; any inodes for which that dropped the last reference will
880 	 * have been evicted due to fscrypt_drop_inode() detecting the key
881 	 * removal and telling the VFS to evict the inode.  So to finish, we
882 	 * just need to check whether any inodes couldn't be evicted.
883 	 */
884 	err2 = check_for_busy_inodes(sb, mk);
885 
886 	return err1 ?: err2;
887 }
888 
889 /*
890  * Try to remove an fscrypt master encryption key.
891  *
892  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
893  * claim to the key, then removes the key itself if no other users have claims.
894  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
895  * key itself.
896  *
897  * To "remove the key itself", first we wipe the actual master key secret, so
898  * that no more inodes can be unlocked with it.  Then we try to evict all cached
899  * inodes that had been unlocked with the key.
900  *
901  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
902  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
903  * state (without the actual secret key) where it tracks the list of remaining
904  * inodes.  Userspace can execute the ioctl again later to retry eviction, or
905  * alternatively can re-add the secret key again.
906  *
907  * For more details, see the "Removing keys" section of
908  * Documentation/filesystems/fscrypt.rst.
909  */
910 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
911 {
912 	struct super_block *sb = file_inode(filp)->i_sb;
913 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
914 	struct fscrypt_remove_key_arg arg;
915 	struct key *key;
916 	struct fscrypt_master_key *mk;
917 	u32 status_flags = 0;
918 	int err;
919 	bool dead;
920 
921 	if (copy_from_user(&arg, uarg, sizeof(arg)))
922 		return -EFAULT;
923 
924 	if (!valid_key_spec(&arg.key_spec))
925 		return -EINVAL;
926 
927 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
928 		return -EINVAL;
929 
930 	/*
931 	 * Only root can add and remove keys that are identified by an arbitrary
932 	 * descriptor rather than by a cryptographic hash.
933 	 */
934 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
935 	    !capable(CAP_SYS_ADMIN))
936 		return -EACCES;
937 
938 	/* Find the key being removed. */
939 	key = fscrypt_find_master_key(sb, &arg.key_spec);
940 	if (IS_ERR(key))
941 		return PTR_ERR(key);
942 	mk = key->payload.data[0];
943 
944 	down_write(&key->sem);
945 
946 	/* If relevant, remove current user's (or all users) claim to the key */
947 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
948 		if (all_users)
949 			err = keyring_clear(mk->mk_users);
950 		else
951 			err = remove_master_key_user(mk);
952 		if (err) {
953 			up_write(&key->sem);
954 			goto out_put_key;
955 		}
956 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
957 			/*
958 			 * Other users have still added the key too.  We removed
959 			 * the current user's claim to the key, but we still
960 			 * can't remove the key itself.
961 			 */
962 			status_flags |=
963 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
964 			err = 0;
965 			up_write(&key->sem);
966 			goto out_put_key;
967 		}
968 	}
969 
970 	/* No user claims remaining.  Go ahead and wipe the secret. */
971 	dead = false;
972 	if (is_master_key_secret_present(&mk->mk_secret)) {
973 		down_write(&mk->mk_secret_sem);
974 		wipe_master_key_secret(&mk->mk_secret);
975 		dead = refcount_dec_and_test(&mk->mk_refcount);
976 		up_write(&mk->mk_secret_sem);
977 	}
978 	up_write(&key->sem);
979 	if (dead) {
980 		/*
981 		 * No inodes reference the key, and we wiped the secret, so the
982 		 * key object is free to be removed from the keyring.
983 		 */
984 		key_invalidate(key);
985 		err = 0;
986 	} else {
987 		/* Some inodes still reference this key; try to evict them. */
988 		err = try_to_lock_encrypted_files(sb, mk);
989 		if (err == -EBUSY) {
990 			status_flags |=
991 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
992 			err = 0;
993 		}
994 	}
995 	/*
996 	 * We return 0 if we successfully did something: removed a claim to the
997 	 * key, wiped the secret, or tried locking the files again.  Users need
998 	 * to check the informational status flags if they care whether the key
999 	 * has been fully removed including all files locked.
1000 	 */
1001 out_put_key:
1002 	key_put(key);
1003 	if (err == 0)
1004 		err = put_user(status_flags, &uarg->removal_status_flags);
1005 	return err;
1006 }
1007 
1008 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1009 {
1010 	return do_remove_key(filp, uarg, false);
1011 }
1012 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1013 
1014 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1015 {
1016 	if (!capable(CAP_SYS_ADMIN))
1017 		return -EACCES;
1018 	return do_remove_key(filp, uarg, true);
1019 }
1020 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1021 
1022 /*
1023  * Retrieve the status of an fscrypt master encryption key.
1024  *
1025  * We set ->status to indicate whether the key is absent, present, or
1026  * incompletely removed.  "Incompletely removed" means that the master key
1027  * secret has been removed, but some files which had been unlocked with it are
1028  * still in use.  This field allows applications to easily determine the state
1029  * of an encrypted directory without using a hack such as trying to open a
1030  * regular file in it (which can confuse the "incompletely removed" state with
1031  * absent or present).
1032  *
1033  * In addition, for v2 policy keys we allow applications to determine, via
1034  * ->status_flags and ->user_count, whether the key has been added by the
1035  * current user, by other users, or by both.  Most applications should not need
1036  * this, since ordinarily only one user should know a given key.  However, if a
1037  * secret key is shared by multiple users, applications may wish to add an
1038  * already-present key to prevent other users from removing it.  This ioctl can
1039  * be used to check whether that really is the case before the work is done to
1040  * add the key --- which might e.g. require prompting the user for a passphrase.
1041  *
1042  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1043  * Documentation/filesystems/fscrypt.rst.
1044  */
1045 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1046 {
1047 	struct super_block *sb = file_inode(filp)->i_sb;
1048 	struct fscrypt_get_key_status_arg arg;
1049 	struct key *key;
1050 	struct fscrypt_master_key *mk;
1051 	int err;
1052 
1053 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1054 		return -EFAULT;
1055 
1056 	if (!valid_key_spec(&arg.key_spec))
1057 		return -EINVAL;
1058 
1059 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1060 		return -EINVAL;
1061 
1062 	arg.status_flags = 0;
1063 	arg.user_count = 0;
1064 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1065 
1066 	key = fscrypt_find_master_key(sb, &arg.key_spec);
1067 	if (IS_ERR(key)) {
1068 		if (key != ERR_PTR(-ENOKEY))
1069 			return PTR_ERR(key);
1070 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1071 		err = 0;
1072 		goto out;
1073 	}
1074 	mk = key->payload.data[0];
1075 	down_read(&key->sem);
1076 
1077 	if (!is_master_key_secret_present(&mk->mk_secret)) {
1078 		arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
1079 		err = 0;
1080 		goto out_release_key;
1081 	}
1082 
1083 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1084 	if (mk->mk_users) {
1085 		struct key *mk_user;
1086 
1087 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1088 		mk_user = find_master_key_user(mk);
1089 		if (!IS_ERR(mk_user)) {
1090 			arg.status_flags |=
1091 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1092 			key_put(mk_user);
1093 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1094 			err = PTR_ERR(mk_user);
1095 			goto out_release_key;
1096 		}
1097 	}
1098 	err = 0;
1099 out_release_key:
1100 	up_read(&key->sem);
1101 	key_put(key);
1102 out:
1103 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1104 		err = -EFAULT;
1105 	return err;
1106 }
1107 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1108 
1109 int __init fscrypt_init_keyring(void)
1110 {
1111 	int err;
1112 
1113 	err = register_key_type(&key_type_fscrypt);
1114 	if (err)
1115 		return err;
1116 
1117 	err = register_key_type(&key_type_fscrypt_user);
1118 	if (err)
1119 		goto err_unregister_fscrypt;
1120 
1121 	err = register_key_type(&key_type_fscrypt_provisioning);
1122 	if (err)
1123 		goto err_unregister_fscrypt_user;
1124 
1125 	return 0;
1126 
1127 err_unregister_fscrypt_user:
1128 	unregister_key_type(&key_type_fscrypt_user);
1129 err_unregister_fscrypt:
1130 	unregister_key_type(&key_type_fscrypt);
1131 	return err;
1132 }
1133