xref: /openbmc/linux/fs/crypto/keyring.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26 
27 #include "fscrypt_private.h"
28 
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 	/*
32 	 * Lock that protects ->key_hashtable.  It does *not* protect the
33 	 * fscrypt_master_key structs themselves.
34 	 */
35 	spinlock_t lock;
36 
37 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 	struct hlist_head key_hashtable[128];
39 };
40 
41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 	fscrypt_destroy_hkdf(&secret->hkdf);
44 	memzero_explicit(secret, sizeof(*secret));
45 }
46 
47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 				   struct fscrypt_master_key_secret *src)
49 {
50 	memcpy(dst, src, sizeof(*dst));
51 	memzero_explicit(src, sizeof(*src));
52 }
53 
54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 	struct fscrypt_master_key *mk =
57 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 	/*
59 	 * The master key secret and any embedded subkeys should have already
60 	 * been wiped when the last active reference to the fscrypt_master_key
61 	 * struct was dropped; doing it here would be unnecessarily late.
62 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 	 */
64 	kfree_sensitive(mk);
65 }
66 
67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 		return;
71 	/*
72 	 * No structural references left, so free ->mk_users, and also free the
73 	 * fscrypt_master_key struct itself after an RCU grace period ensures
74 	 * that concurrent keyring lookups can no longer find it.
75 	 */
76 	WARN_ON(refcount_read(&mk->mk_active_refs) != 0);
77 	key_put(mk->mk_users);
78 	mk->mk_users = NULL;
79 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81 
82 void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk)
83 {
84 	struct super_block *sb = mk->mk_sb;
85 	struct fscrypt_keyring *keyring = sb->s_master_keys;
86 	size_t i;
87 
88 	if (!refcount_dec_and_test(&mk->mk_active_refs))
89 		return;
90 	/*
91 	 * No active references left, so complete the full removal of this
92 	 * fscrypt_master_key struct by removing it from the keyring and
93 	 * destroying any subkeys embedded in it.
94 	 */
95 
96 	spin_lock(&keyring->lock);
97 	hlist_del_rcu(&mk->mk_node);
98 	spin_unlock(&keyring->lock);
99 
100 	/*
101 	 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
102 	 * that ->mk_decrypted_inodes is empty.
103 	 */
104 	WARN_ON(is_master_key_secret_present(&mk->mk_secret));
105 	WARN_ON(!list_empty(&mk->mk_decrypted_inodes));
106 
107 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
108 		fscrypt_destroy_prepared_key(
109 				sb, &mk->mk_direct_keys[i]);
110 		fscrypt_destroy_prepared_key(
111 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
112 		fscrypt_destroy_prepared_key(
113 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
114 	}
115 	memzero_explicit(&mk->mk_ino_hash_key,
116 			 sizeof(mk->mk_ino_hash_key));
117 	mk->mk_ino_hash_key_initialized = false;
118 
119 	/* Drop the structural ref associated with the active refs. */
120 	fscrypt_put_master_key(mk);
121 }
122 
123 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
124 {
125 	if (spec->__reserved)
126 		return false;
127 	return master_key_spec_len(spec) != 0;
128 }
129 
130 static int fscrypt_user_key_instantiate(struct key *key,
131 					struct key_preparsed_payload *prep)
132 {
133 	/*
134 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
135 	 * each key, regardless of the exact key size.  The amount of memory
136 	 * actually used is greater than the size of the raw key anyway.
137 	 */
138 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
139 }
140 
141 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
142 {
143 	seq_puts(m, key->description);
144 }
145 
146 /*
147  * Type of key in ->mk_users.  Each key of this type represents a particular
148  * user who has added a particular master key.
149  *
150  * Note that the name of this key type really should be something like
151  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
152  * mainly for simplicity of presentation in /proc/keys when read by a non-root
153  * user.  And it is expected to be rare that a key is actually added by multiple
154  * users, since users should keep their encryption keys confidential.
155  */
156 static struct key_type key_type_fscrypt_user = {
157 	.name			= ".fscrypt",
158 	.instantiate		= fscrypt_user_key_instantiate,
159 	.describe		= fscrypt_user_key_describe,
160 };
161 
162 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
163 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
164 	 CONST_STRLEN("-users") + 1)
165 
166 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
167 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
168 
169 static void format_mk_users_keyring_description(
170 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
171 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
172 {
173 	sprintf(description, "fscrypt-%*phN-users",
174 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
175 }
176 
177 static void format_mk_user_description(
178 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
179 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
180 {
181 
182 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
183 		mk_identifier, __kuid_val(current_fsuid()));
184 }
185 
186 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
187 static int allocate_filesystem_keyring(struct super_block *sb)
188 {
189 	struct fscrypt_keyring *keyring;
190 
191 	if (sb->s_master_keys)
192 		return 0;
193 
194 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
195 	if (!keyring)
196 		return -ENOMEM;
197 	spin_lock_init(&keyring->lock);
198 	/*
199 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
200 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
201 	 * concurrent tasks can ACQUIRE it.
202 	 */
203 	smp_store_release(&sb->s_master_keys, keyring);
204 	return 0;
205 }
206 
207 /*
208  * Release all encryption keys that have been added to the filesystem, along
209  * with the keyring that contains them.
210  *
211  * This is called at unmount time.  The filesystem's underlying block device(s)
212  * are still available at this time; this is important because after user file
213  * accesses have been allowed, this function may need to evict keys from the
214  * keyslots of an inline crypto engine, which requires the block device(s).
215  *
216  * This is also called when the super_block is being freed.  This is needed to
217  * avoid a memory leak if mounting fails after the "test_dummy_encryption"
218  * option was processed, as in that case the unmount-time call isn't made.
219  */
220 void fscrypt_destroy_keyring(struct super_block *sb)
221 {
222 	struct fscrypt_keyring *keyring = sb->s_master_keys;
223 	size_t i;
224 
225 	if (!keyring)
226 		return;
227 
228 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
229 		struct hlist_head *bucket = &keyring->key_hashtable[i];
230 		struct fscrypt_master_key *mk;
231 		struct hlist_node *tmp;
232 
233 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
234 			/*
235 			 * Since all inodes were already evicted, every key
236 			 * remaining in the keyring should have an empty inode
237 			 * list, and should only still be in the keyring due to
238 			 * the single active ref associated with ->mk_secret.
239 			 * There should be no structural refs beyond the one
240 			 * associated with the active ref.
241 			 */
242 			WARN_ON(refcount_read(&mk->mk_active_refs) != 1);
243 			WARN_ON(refcount_read(&mk->mk_struct_refs) != 1);
244 			WARN_ON(!is_master_key_secret_present(&mk->mk_secret));
245 			wipe_master_key_secret(&mk->mk_secret);
246 			fscrypt_put_master_key_activeref(mk);
247 		}
248 	}
249 	kfree_sensitive(keyring);
250 	sb->s_master_keys = NULL;
251 }
252 
253 static struct hlist_head *
254 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
255 		       const struct fscrypt_key_specifier *mk_spec)
256 {
257 	/*
258 	 * Since key specifiers should be "random" values, it is sufficient to
259 	 * use a trivial hash function that just takes the first several bits of
260 	 * the key specifier.
261 	 */
262 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
263 
264 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
265 }
266 
267 /*
268  * Find the specified master key struct in ->s_master_keys and take a structural
269  * ref to it.  The structural ref guarantees that the key struct continues to
270  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
271  * the key struct.  The structural ref needs to be dropped by
272  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
273  */
274 struct fscrypt_master_key *
275 fscrypt_find_master_key(struct super_block *sb,
276 			const struct fscrypt_key_specifier *mk_spec)
277 {
278 	struct fscrypt_keyring *keyring;
279 	struct hlist_head *bucket;
280 	struct fscrypt_master_key *mk;
281 
282 	/*
283 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
284 	 * I.e., another task can publish ->s_master_keys concurrently,
285 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
286 	 * to safely ACQUIRE the memory the other task published.
287 	 */
288 	keyring = smp_load_acquire(&sb->s_master_keys);
289 	if (keyring == NULL)
290 		return NULL; /* No keyring yet, so no keys yet. */
291 
292 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
293 	rcu_read_lock();
294 	switch (mk_spec->type) {
295 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
296 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
297 			if (mk->mk_spec.type ==
298 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
299 			    memcmp(mk->mk_spec.u.descriptor,
300 				   mk_spec->u.descriptor,
301 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
302 			    refcount_inc_not_zero(&mk->mk_struct_refs))
303 				goto out;
304 		}
305 		break;
306 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
307 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
308 			if (mk->mk_spec.type ==
309 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
310 			    memcmp(mk->mk_spec.u.identifier,
311 				   mk_spec->u.identifier,
312 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
313 			    refcount_inc_not_zero(&mk->mk_struct_refs))
314 				goto out;
315 		}
316 		break;
317 	}
318 	mk = NULL;
319 out:
320 	rcu_read_unlock();
321 	return mk;
322 }
323 
324 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
325 {
326 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
327 	struct key *keyring;
328 
329 	format_mk_users_keyring_description(description,
330 					    mk->mk_spec.u.identifier);
331 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
332 				current_cred(), KEY_POS_SEARCH |
333 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
334 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
335 	if (IS_ERR(keyring))
336 		return PTR_ERR(keyring);
337 
338 	mk->mk_users = keyring;
339 	return 0;
340 }
341 
342 /*
343  * Find the current user's "key" in the master key's ->mk_users.
344  * Returns ERR_PTR(-ENOKEY) if not found.
345  */
346 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
347 {
348 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
349 	key_ref_t keyref;
350 
351 	format_mk_user_description(description, mk->mk_spec.u.identifier);
352 
353 	/*
354 	 * We need to mark the keyring reference as "possessed" so that we
355 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
356 	 */
357 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
358 				&key_type_fscrypt_user, description, false);
359 	if (IS_ERR(keyref)) {
360 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
361 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
362 			keyref = ERR_PTR(-ENOKEY);
363 		return ERR_CAST(keyref);
364 	}
365 	return key_ref_to_ptr(keyref);
366 }
367 
368 /*
369  * Give the current user a "key" in ->mk_users.  This charges the user's quota
370  * and marks the master key as added by the current user, so that it cannot be
371  * removed by another user with the key.  Either ->mk_sem must be held for
372  * write, or the master key must be still undergoing initialization.
373  */
374 static int add_master_key_user(struct fscrypt_master_key *mk)
375 {
376 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
377 	struct key *mk_user;
378 	int err;
379 
380 	format_mk_user_description(description, mk->mk_spec.u.identifier);
381 	mk_user = key_alloc(&key_type_fscrypt_user, description,
382 			    current_fsuid(), current_gid(), current_cred(),
383 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
384 	if (IS_ERR(mk_user))
385 		return PTR_ERR(mk_user);
386 
387 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
388 	key_put(mk_user);
389 	return err;
390 }
391 
392 /*
393  * Remove the current user's "key" from ->mk_users.
394  * ->mk_sem must be held for write.
395  *
396  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
397  */
398 static int remove_master_key_user(struct fscrypt_master_key *mk)
399 {
400 	struct key *mk_user;
401 	int err;
402 
403 	mk_user = find_master_key_user(mk);
404 	if (IS_ERR(mk_user))
405 		return PTR_ERR(mk_user);
406 	err = key_unlink(mk->mk_users, mk_user);
407 	key_put(mk_user);
408 	return err;
409 }
410 
411 /*
412  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
413  * insert it into sb->s_master_keys.
414  */
415 static int add_new_master_key(struct super_block *sb,
416 			      struct fscrypt_master_key_secret *secret,
417 			      const struct fscrypt_key_specifier *mk_spec)
418 {
419 	struct fscrypt_keyring *keyring = sb->s_master_keys;
420 	struct fscrypt_master_key *mk;
421 	int err;
422 
423 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
424 	if (!mk)
425 		return -ENOMEM;
426 
427 	mk->mk_sb = sb;
428 	init_rwsem(&mk->mk_sem);
429 	refcount_set(&mk->mk_struct_refs, 1);
430 	mk->mk_spec = *mk_spec;
431 
432 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
433 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
434 
435 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
436 		err = allocate_master_key_users_keyring(mk);
437 		if (err)
438 			goto out_put;
439 		err = add_master_key_user(mk);
440 		if (err)
441 			goto out_put;
442 	}
443 
444 	move_master_key_secret(&mk->mk_secret, secret);
445 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
446 
447 	spin_lock(&keyring->lock);
448 	hlist_add_head_rcu(&mk->mk_node,
449 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
450 	spin_unlock(&keyring->lock);
451 	return 0;
452 
453 out_put:
454 	fscrypt_put_master_key(mk);
455 	return err;
456 }
457 
458 #define KEY_DEAD	1
459 
460 static int add_existing_master_key(struct fscrypt_master_key *mk,
461 				   struct fscrypt_master_key_secret *secret)
462 {
463 	int err;
464 
465 	/*
466 	 * If the current user is already in ->mk_users, then there's nothing to
467 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
468 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
469 	 */
470 	if (mk->mk_users) {
471 		struct key *mk_user = find_master_key_user(mk);
472 
473 		if (mk_user != ERR_PTR(-ENOKEY)) {
474 			if (IS_ERR(mk_user))
475 				return PTR_ERR(mk_user);
476 			key_put(mk_user);
477 			return 0;
478 		}
479 		err = add_master_key_user(mk);
480 		if (err)
481 			return err;
482 	}
483 
484 	/* Re-add the secret if needed. */
485 	if (!is_master_key_secret_present(&mk->mk_secret)) {
486 		if (!refcount_inc_not_zero(&mk->mk_active_refs))
487 			return KEY_DEAD;
488 		move_master_key_secret(&mk->mk_secret, secret);
489 	}
490 
491 	return 0;
492 }
493 
494 static int do_add_master_key(struct super_block *sb,
495 			     struct fscrypt_master_key_secret *secret,
496 			     const struct fscrypt_key_specifier *mk_spec)
497 {
498 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
499 	struct fscrypt_master_key *mk;
500 	int err;
501 
502 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
503 
504 	mk = fscrypt_find_master_key(sb, mk_spec);
505 	if (!mk) {
506 		/* Didn't find the key in ->s_master_keys.  Add it. */
507 		err = allocate_filesystem_keyring(sb);
508 		if (!err)
509 			err = add_new_master_key(sb, secret, mk_spec);
510 	} else {
511 		/*
512 		 * Found the key in ->s_master_keys.  Re-add the secret if
513 		 * needed, and add the user to ->mk_users if needed.
514 		 */
515 		down_write(&mk->mk_sem);
516 		err = add_existing_master_key(mk, secret);
517 		up_write(&mk->mk_sem);
518 		if (err == KEY_DEAD) {
519 			/*
520 			 * We found a key struct, but it's already been fully
521 			 * removed.  Ignore the old struct and add a new one.
522 			 * fscrypt_add_key_mutex means we don't need to worry
523 			 * about concurrent adds.
524 			 */
525 			err = add_new_master_key(sb, secret, mk_spec);
526 		}
527 		fscrypt_put_master_key(mk);
528 	}
529 	mutex_unlock(&fscrypt_add_key_mutex);
530 	return err;
531 }
532 
533 static int add_master_key(struct super_block *sb,
534 			  struct fscrypt_master_key_secret *secret,
535 			  struct fscrypt_key_specifier *key_spec)
536 {
537 	int err;
538 
539 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
540 		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
541 					secret->size);
542 		if (err)
543 			return err;
544 
545 		/*
546 		 * Now that the HKDF context is initialized, the raw key is no
547 		 * longer needed.
548 		 */
549 		memzero_explicit(secret->raw, secret->size);
550 
551 		/* Calculate the key identifier */
552 		err = fscrypt_hkdf_expand(&secret->hkdf,
553 					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
554 					  key_spec->u.identifier,
555 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
556 		if (err)
557 			return err;
558 	}
559 	return do_add_master_key(sb, secret, key_spec);
560 }
561 
562 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
563 {
564 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
565 
566 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
567 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
568 		return -EINVAL;
569 
570 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
571 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
572 		return -EINVAL;
573 
574 	if (payload->__reserved)
575 		return -EINVAL;
576 
577 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
578 	if (!prep->payload.data[0])
579 		return -ENOMEM;
580 
581 	prep->quotalen = prep->datalen;
582 	return 0;
583 }
584 
585 static void fscrypt_provisioning_key_free_preparse(
586 					struct key_preparsed_payload *prep)
587 {
588 	kfree_sensitive(prep->payload.data[0]);
589 }
590 
591 static void fscrypt_provisioning_key_describe(const struct key *key,
592 					      struct seq_file *m)
593 {
594 	seq_puts(m, key->description);
595 	if (key_is_positive(key)) {
596 		const struct fscrypt_provisioning_key_payload *payload =
597 			key->payload.data[0];
598 
599 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
600 	}
601 }
602 
603 static void fscrypt_provisioning_key_destroy(struct key *key)
604 {
605 	kfree_sensitive(key->payload.data[0]);
606 }
607 
608 static struct key_type key_type_fscrypt_provisioning = {
609 	.name			= "fscrypt-provisioning",
610 	.preparse		= fscrypt_provisioning_key_preparse,
611 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
612 	.instantiate		= generic_key_instantiate,
613 	.describe		= fscrypt_provisioning_key_describe,
614 	.destroy		= fscrypt_provisioning_key_destroy,
615 };
616 
617 /*
618  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
619  * store it into 'secret'.
620  *
621  * The key must be of type "fscrypt-provisioning" and must have the field
622  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
623  * only usable with fscrypt with the particular KDF version identified by
624  * 'type'.  We don't use the "logon" key type because there's no way to
625  * completely restrict the use of such keys; they can be used by any kernel API
626  * that accepts "logon" keys and doesn't require a specific service prefix.
627  *
628  * The ability to specify the key via Linux keyring key is intended for cases
629  * where userspace needs to re-add keys after the filesystem is unmounted and
630  * re-mounted.  Most users should just provide the raw key directly instead.
631  */
632 static int get_keyring_key(u32 key_id, u32 type,
633 			   struct fscrypt_master_key_secret *secret)
634 {
635 	key_ref_t ref;
636 	struct key *key;
637 	const struct fscrypt_provisioning_key_payload *payload;
638 	int err;
639 
640 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
641 	if (IS_ERR(ref))
642 		return PTR_ERR(ref);
643 	key = key_ref_to_ptr(ref);
644 
645 	if (key->type != &key_type_fscrypt_provisioning)
646 		goto bad_key;
647 	payload = key->payload.data[0];
648 
649 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
650 	if (payload->type != type)
651 		goto bad_key;
652 
653 	secret->size = key->datalen - sizeof(*payload);
654 	memcpy(secret->raw, payload->raw, secret->size);
655 	err = 0;
656 	goto out_put;
657 
658 bad_key:
659 	err = -EKEYREJECTED;
660 out_put:
661 	key_ref_put(ref);
662 	return err;
663 }
664 
665 /*
666  * Add a master encryption key to the filesystem, causing all files which were
667  * encrypted with it to appear "unlocked" (decrypted) when accessed.
668  *
669  * When adding a key for use by v1 encryption policies, this ioctl is
670  * privileged, and userspace must provide the 'key_descriptor'.
671  *
672  * When adding a key for use by v2+ encryption policies, this ioctl is
673  * unprivileged.  This is needed, in general, to allow non-root users to use
674  * encryption without encountering the visibility problems of process-subscribed
675  * keyrings and the inability to properly remove keys.  This works by having
676  * each key identified by its cryptographically secure hash --- the
677  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
678  * cannot add the wrong key for a given identifier.  Furthermore, each added key
679  * is charged to the appropriate user's quota for the keyrings service, which
680  * prevents a malicious user from adding too many keys.  Finally, we forbid a
681  * user from removing a key while other users have added it too, which prevents
682  * a user who knows another user's key from causing a denial-of-service by
683  * removing it at an inopportune time.  (We tolerate that a user who knows a key
684  * can prevent other users from removing it.)
685  *
686  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
687  * Documentation/filesystems/fscrypt.rst.
688  */
689 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
690 {
691 	struct super_block *sb = file_inode(filp)->i_sb;
692 	struct fscrypt_add_key_arg __user *uarg = _uarg;
693 	struct fscrypt_add_key_arg arg;
694 	struct fscrypt_master_key_secret secret;
695 	int err;
696 
697 	if (copy_from_user(&arg, uarg, sizeof(arg)))
698 		return -EFAULT;
699 
700 	if (!valid_key_spec(&arg.key_spec))
701 		return -EINVAL;
702 
703 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
704 		return -EINVAL;
705 
706 	/*
707 	 * Only root can add keys that are identified by an arbitrary descriptor
708 	 * rather than by a cryptographic hash --- since otherwise a malicious
709 	 * user could add the wrong key.
710 	 */
711 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
712 	    !capable(CAP_SYS_ADMIN))
713 		return -EACCES;
714 
715 	memset(&secret, 0, sizeof(secret));
716 	if (arg.key_id) {
717 		if (arg.raw_size != 0)
718 			return -EINVAL;
719 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
720 		if (err)
721 			goto out_wipe_secret;
722 	} else {
723 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
724 		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
725 			return -EINVAL;
726 		secret.size = arg.raw_size;
727 		err = -EFAULT;
728 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
729 			goto out_wipe_secret;
730 	}
731 
732 	err = add_master_key(sb, &secret, &arg.key_spec);
733 	if (err)
734 		goto out_wipe_secret;
735 
736 	/* Return the key identifier to userspace, if applicable */
737 	err = -EFAULT;
738 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
739 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
740 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
741 		goto out_wipe_secret;
742 	err = 0;
743 out_wipe_secret:
744 	wipe_master_key_secret(&secret);
745 	return err;
746 }
747 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
748 
749 static void
750 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
751 {
752 	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
753 
754 	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
755 
756 	memset(secret, 0, sizeof(*secret));
757 	secret->size = FSCRYPT_MAX_KEY_SIZE;
758 	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
759 }
760 
761 int fscrypt_get_test_dummy_key_identifier(
762 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
763 {
764 	struct fscrypt_master_key_secret secret;
765 	int err;
766 
767 	fscrypt_get_test_dummy_secret(&secret);
768 
769 	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
770 	if (err)
771 		goto out;
772 	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
773 				  NULL, 0, key_identifier,
774 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
775 out:
776 	wipe_master_key_secret(&secret);
777 	return err;
778 }
779 
780 /**
781  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
782  * @sb: the filesystem instance to add the key to
783  * @dummy_policy: the encryption policy for test_dummy_encryption
784  *
785  * If needed, add the key for the test_dummy_encryption mount option to the
786  * filesystem.  To prevent misuse of this mount option, a per-boot random key is
787  * used instead of a hardcoded one.  This makes it so that any encrypted files
788  * created using this option won't be accessible after a reboot.
789  *
790  * Return: 0 on success, -errno on failure
791  */
792 int fscrypt_add_test_dummy_key(struct super_block *sb,
793 			       const struct fscrypt_dummy_policy *dummy_policy)
794 {
795 	const union fscrypt_policy *policy = dummy_policy->policy;
796 	struct fscrypt_key_specifier key_spec;
797 	struct fscrypt_master_key_secret secret;
798 	int err;
799 
800 	if (!policy)
801 		return 0;
802 	err = fscrypt_policy_to_key_spec(policy, &key_spec);
803 	if (err)
804 		return err;
805 	fscrypt_get_test_dummy_secret(&secret);
806 	err = add_master_key(sb, &secret, &key_spec);
807 	wipe_master_key_secret(&secret);
808 	return err;
809 }
810 EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key);
811 
812 /*
813  * Verify that the current user has added a master key with the given identifier
814  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
815  * their files using some other user's key which they don't actually know.
816  * Cryptographically this isn't much of a problem, but the semantics of this
817  * would be a bit weird, so it's best to just forbid it.
818  *
819  * The system administrator (CAP_FOWNER) can override this, which should be
820  * enough for any use cases where encryption policies are being set using keys
821  * that were chosen ahead of time but aren't available at the moment.
822  *
823  * Note that the key may have already removed by the time this returns, but
824  * that's okay; we just care whether the key was there at some point.
825  *
826  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
827  */
828 int fscrypt_verify_key_added(struct super_block *sb,
829 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
830 {
831 	struct fscrypt_key_specifier mk_spec;
832 	struct fscrypt_master_key *mk;
833 	struct key *mk_user;
834 	int err;
835 
836 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
837 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
838 
839 	mk = fscrypt_find_master_key(sb, &mk_spec);
840 	if (!mk) {
841 		err = -ENOKEY;
842 		goto out;
843 	}
844 	down_read(&mk->mk_sem);
845 	mk_user = find_master_key_user(mk);
846 	if (IS_ERR(mk_user)) {
847 		err = PTR_ERR(mk_user);
848 	} else {
849 		key_put(mk_user);
850 		err = 0;
851 	}
852 	up_read(&mk->mk_sem);
853 	fscrypt_put_master_key(mk);
854 out:
855 	if (err == -ENOKEY && capable(CAP_FOWNER))
856 		err = 0;
857 	return err;
858 }
859 
860 /*
861  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
862  * directory, then it can have at most one dentry; however, that dentry may be
863  * pinned by child dentries, so first try to evict the children too.
864  */
865 static void shrink_dcache_inode(struct inode *inode)
866 {
867 	struct dentry *dentry;
868 
869 	if (S_ISDIR(inode->i_mode)) {
870 		dentry = d_find_any_alias(inode);
871 		if (dentry) {
872 			shrink_dcache_parent(dentry);
873 			dput(dentry);
874 		}
875 	}
876 	d_prune_aliases(inode);
877 }
878 
879 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
880 {
881 	struct fscrypt_info *ci;
882 	struct inode *inode;
883 	struct inode *toput_inode = NULL;
884 
885 	spin_lock(&mk->mk_decrypted_inodes_lock);
886 
887 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
888 		inode = ci->ci_inode;
889 		spin_lock(&inode->i_lock);
890 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
891 			spin_unlock(&inode->i_lock);
892 			continue;
893 		}
894 		__iget(inode);
895 		spin_unlock(&inode->i_lock);
896 		spin_unlock(&mk->mk_decrypted_inodes_lock);
897 
898 		shrink_dcache_inode(inode);
899 		iput(toput_inode);
900 		toput_inode = inode;
901 
902 		spin_lock(&mk->mk_decrypted_inodes_lock);
903 	}
904 
905 	spin_unlock(&mk->mk_decrypted_inodes_lock);
906 	iput(toput_inode);
907 }
908 
909 static int check_for_busy_inodes(struct super_block *sb,
910 				 struct fscrypt_master_key *mk)
911 {
912 	struct list_head *pos;
913 	size_t busy_count = 0;
914 	unsigned long ino;
915 	char ino_str[50] = "";
916 
917 	spin_lock(&mk->mk_decrypted_inodes_lock);
918 
919 	list_for_each(pos, &mk->mk_decrypted_inodes)
920 		busy_count++;
921 
922 	if (busy_count == 0) {
923 		spin_unlock(&mk->mk_decrypted_inodes_lock);
924 		return 0;
925 	}
926 
927 	{
928 		/* select an example file to show for debugging purposes */
929 		struct inode *inode =
930 			list_first_entry(&mk->mk_decrypted_inodes,
931 					 struct fscrypt_info,
932 					 ci_master_key_link)->ci_inode;
933 		ino = inode->i_ino;
934 	}
935 	spin_unlock(&mk->mk_decrypted_inodes_lock);
936 
937 	/* If the inode is currently being created, ino may still be 0. */
938 	if (ino)
939 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
940 
941 	fscrypt_warn(NULL,
942 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
943 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
944 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
945 		     ino_str);
946 	return -EBUSY;
947 }
948 
949 static int try_to_lock_encrypted_files(struct super_block *sb,
950 				       struct fscrypt_master_key *mk)
951 {
952 	int err1;
953 	int err2;
954 
955 	/*
956 	 * An inode can't be evicted while it is dirty or has dirty pages.
957 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
958 	 *
959 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
960 	 * it works, and it's more important to minimize the amount of caches we
961 	 * drop than the amount of data we sync.  Also, unprivileged users can
962 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
963 	 */
964 	down_read(&sb->s_umount);
965 	err1 = sync_filesystem(sb);
966 	up_read(&sb->s_umount);
967 	/* If a sync error occurs, still try to evict as much as possible. */
968 
969 	/*
970 	 * Inodes are pinned by their dentries, so we have to evict their
971 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
972 	 * and inappropriate for use by unprivileged users.  So instead go
973 	 * through the inodes' alias lists and try to evict each dentry.
974 	 */
975 	evict_dentries_for_decrypted_inodes(mk);
976 
977 	/*
978 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
979 	 * the list; any inodes for which that dropped the last reference will
980 	 * have been evicted due to fscrypt_drop_inode() detecting the key
981 	 * removal and telling the VFS to evict the inode.  So to finish, we
982 	 * just need to check whether any inodes couldn't be evicted.
983 	 */
984 	err2 = check_for_busy_inodes(sb, mk);
985 
986 	return err1 ?: err2;
987 }
988 
989 /*
990  * Try to remove an fscrypt master encryption key.
991  *
992  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
993  * claim to the key, then removes the key itself if no other users have claims.
994  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
995  * key itself.
996  *
997  * To "remove the key itself", first we wipe the actual master key secret, so
998  * that no more inodes can be unlocked with it.  Then we try to evict all cached
999  * inodes that had been unlocked with the key.
1000  *
1001  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1002  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1003  * state (without the actual secret key) where it tracks the list of remaining
1004  * inodes.  Userspace can execute the ioctl again later to retry eviction, or
1005  * alternatively can re-add the secret key again.
1006  *
1007  * For more details, see the "Removing keys" section of
1008  * Documentation/filesystems/fscrypt.rst.
1009  */
1010 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1011 {
1012 	struct super_block *sb = file_inode(filp)->i_sb;
1013 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1014 	struct fscrypt_remove_key_arg arg;
1015 	struct fscrypt_master_key *mk;
1016 	u32 status_flags = 0;
1017 	int err;
1018 	bool inodes_remain;
1019 
1020 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1021 		return -EFAULT;
1022 
1023 	if (!valid_key_spec(&arg.key_spec))
1024 		return -EINVAL;
1025 
1026 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1027 		return -EINVAL;
1028 
1029 	/*
1030 	 * Only root can add and remove keys that are identified by an arbitrary
1031 	 * descriptor rather than by a cryptographic hash.
1032 	 */
1033 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1034 	    !capable(CAP_SYS_ADMIN))
1035 		return -EACCES;
1036 
1037 	/* Find the key being removed. */
1038 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1039 	if (!mk)
1040 		return -ENOKEY;
1041 	down_write(&mk->mk_sem);
1042 
1043 	/* If relevant, remove current user's (or all users) claim to the key */
1044 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1045 		if (all_users)
1046 			err = keyring_clear(mk->mk_users);
1047 		else
1048 			err = remove_master_key_user(mk);
1049 		if (err) {
1050 			up_write(&mk->mk_sem);
1051 			goto out_put_key;
1052 		}
1053 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1054 			/*
1055 			 * Other users have still added the key too.  We removed
1056 			 * the current user's claim to the key, but we still
1057 			 * can't remove the key itself.
1058 			 */
1059 			status_flags |=
1060 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1061 			err = 0;
1062 			up_write(&mk->mk_sem);
1063 			goto out_put_key;
1064 		}
1065 	}
1066 
1067 	/* No user claims remaining.  Go ahead and wipe the secret. */
1068 	err = -ENOKEY;
1069 	if (is_master_key_secret_present(&mk->mk_secret)) {
1070 		wipe_master_key_secret(&mk->mk_secret);
1071 		fscrypt_put_master_key_activeref(mk);
1072 		err = 0;
1073 	}
1074 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1075 	up_write(&mk->mk_sem);
1076 
1077 	if (inodes_remain) {
1078 		/* Some inodes still reference this key; try to evict them. */
1079 		err = try_to_lock_encrypted_files(sb, mk);
1080 		if (err == -EBUSY) {
1081 			status_flags |=
1082 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1083 			err = 0;
1084 		}
1085 	}
1086 	/*
1087 	 * We return 0 if we successfully did something: removed a claim to the
1088 	 * key, wiped the secret, or tried locking the files again.  Users need
1089 	 * to check the informational status flags if they care whether the key
1090 	 * has been fully removed including all files locked.
1091 	 */
1092 out_put_key:
1093 	fscrypt_put_master_key(mk);
1094 	if (err == 0)
1095 		err = put_user(status_flags, &uarg->removal_status_flags);
1096 	return err;
1097 }
1098 
1099 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1100 {
1101 	return do_remove_key(filp, uarg, false);
1102 }
1103 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1104 
1105 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1106 {
1107 	if (!capable(CAP_SYS_ADMIN))
1108 		return -EACCES;
1109 	return do_remove_key(filp, uarg, true);
1110 }
1111 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1112 
1113 /*
1114  * Retrieve the status of an fscrypt master encryption key.
1115  *
1116  * We set ->status to indicate whether the key is absent, present, or
1117  * incompletely removed.  "Incompletely removed" means that the master key
1118  * secret has been removed, but some files which had been unlocked with it are
1119  * still in use.  This field allows applications to easily determine the state
1120  * of an encrypted directory without using a hack such as trying to open a
1121  * regular file in it (which can confuse the "incompletely removed" state with
1122  * absent or present).
1123  *
1124  * In addition, for v2 policy keys we allow applications to determine, via
1125  * ->status_flags and ->user_count, whether the key has been added by the
1126  * current user, by other users, or by both.  Most applications should not need
1127  * this, since ordinarily only one user should know a given key.  However, if a
1128  * secret key is shared by multiple users, applications may wish to add an
1129  * already-present key to prevent other users from removing it.  This ioctl can
1130  * be used to check whether that really is the case before the work is done to
1131  * add the key --- which might e.g. require prompting the user for a passphrase.
1132  *
1133  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1134  * Documentation/filesystems/fscrypt.rst.
1135  */
1136 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1137 {
1138 	struct super_block *sb = file_inode(filp)->i_sb;
1139 	struct fscrypt_get_key_status_arg arg;
1140 	struct fscrypt_master_key *mk;
1141 	int err;
1142 
1143 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1144 		return -EFAULT;
1145 
1146 	if (!valid_key_spec(&arg.key_spec))
1147 		return -EINVAL;
1148 
1149 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1150 		return -EINVAL;
1151 
1152 	arg.status_flags = 0;
1153 	arg.user_count = 0;
1154 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1155 
1156 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1157 	if (!mk) {
1158 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1159 		err = 0;
1160 		goto out;
1161 	}
1162 	down_read(&mk->mk_sem);
1163 
1164 	if (!is_master_key_secret_present(&mk->mk_secret)) {
1165 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1166 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1167 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1168 		err = 0;
1169 		goto out_release_key;
1170 	}
1171 
1172 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1173 	if (mk->mk_users) {
1174 		struct key *mk_user;
1175 
1176 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1177 		mk_user = find_master_key_user(mk);
1178 		if (!IS_ERR(mk_user)) {
1179 			arg.status_flags |=
1180 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1181 			key_put(mk_user);
1182 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1183 			err = PTR_ERR(mk_user);
1184 			goto out_release_key;
1185 		}
1186 	}
1187 	err = 0;
1188 out_release_key:
1189 	up_read(&mk->mk_sem);
1190 	fscrypt_put_master_key(mk);
1191 out:
1192 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1193 		err = -EFAULT;
1194 	return err;
1195 }
1196 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1197 
1198 int __init fscrypt_init_keyring(void)
1199 {
1200 	int err;
1201 
1202 	err = register_key_type(&key_type_fscrypt_user);
1203 	if (err)
1204 		return err;
1205 
1206 	err = register_key_type(&key_type_fscrypt_provisioning);
1207 	if (err)
1208 		goto err_unregister_fscrypt_user;
1209 
1210 	return 0;
1211 
1212 err_unregister_fscrypt_user:
1213 	unregister_key_type(&key_type_fscrypt_user);
1214 	return err;
1215 }
1216