1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <asm/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/seq_file.h> 26 27 #include "fscrypt_private.h" 28 29 /* The master encryption keys for a filesystem (->s_master_keys) */ 30 struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39 }; 40 41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42 { 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45 } 46 47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49 { 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52 } 53 54 static void fscrypt_free_master_key(struct rcu_head *head) 55 { 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65 } 66 67 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68 { 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON(refcount_read(&mk->mk_active_refs) != 0); 77 key_put(mk->mk_users); 78 mk->mk_users = NULL; 79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 80 } 81 82 void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk) 83 { 84 struct super_block *sb = mk->mk_sb; 85 struct fscrypt_keyring *keyring = sb->s_master_keys; 86 size_t i; 87 88 if (!refcount_dec_and_test(&mk->mk_active_refs)) 89 return; 90 /* 91 * No active references left, so complete the full removal of this 92 * fscrypt_master_key struct by removing it from the keyring and 93 * destroying any subkeys embedded in it. 94 */ 95 96 spin_lock(&keyring->lock); 97 hlist_del_rcu(&mk->mk_node); 98 spin_unlock(&keyring->lock); 99 100 /* 101 * ->mk_active_refs == 0 implies that ->mk_secret is not present and 102 * that ->mk_decrypted_inodes is empty. 103 */ 104 WARN_ON(is_master_key_secret_present(&mk->mk_secret)); 105 WARN_ON(!list_empty(&mk->mk_decrypted_inodes)); 106 107 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 108 fscrypt_destroy_prepared_key( 109 sb, &mk->mk_direct_keys[i]); 110 fscrypt_destroy_prepared_key( 111 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 112 fscrypt_destroy_prepared_key( 113 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 114 } 115 memzero_explicit(&mk->mk_ino_hash_key, 116 sizeof(mk->mk_ino_hash_key)); 117 mk->mk_ino_hash_key_initialized = false; 118 119 /* Drop the structural ref associated with the active refs. */ 120 fscrypt_put_master_key(mk); 121 } 122 123 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 124 { 125 if (spec->__reserved) 126 return false; 127 return master_key_spec_len(spec) != 0; 128 } 129 130 static int fscrypt_user_key_instantiate(struct key *key, 131 struct key_preparsed_payload *prep) 132 { 133 /* 134 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 135 * each key, regardless of the exact key size. The amount of memory 136 * actually used is greater than the size of the raw key anyway. 137 */ 138 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 139 } 140 141 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 142 { 143 seq_puts(m, key->description); 144 } 145 146 /* 147 * Type of key in ->mk_users. Each key of this type represents a particular 148 * user who has added a particular master key. 149 * 150 * Note that the name of this key type really should be something like 151 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 152 * mainly for simplicity of presentation in /proc/keys when read by a non-root 153 * user. And it is expected to be rare that a key is actually added by multiple 154 * users, since users should keep their encryption keys confidential. 155 */ 156 static struct key_type key_type_fscrypt_user = { 157 .name = ".fscrypt", 158 .instantiate = fscrypt_user_key_instantiate, 159 .describe = fscrypt_user_key_describe, 160 }; 161 162 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 163 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 164 CONST_STRLEN("-users") + 1) 165 166 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 167 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 168 169 static void format_mk_users_keyring_description( 170 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 171 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 172 { 173 sprintf(description, "fscrypt-%*phN-users", 174 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 175 } 176 177 static void format_mk_user_description( 178 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 179 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 180 { 181 182 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 183 mk_identifier, __kuid_val(current_fsuid())); 184 } 185 186 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 187 static int allocate_filesystem_keyring(struct super_block *sb) 188 { 189 struct fscrypt_keyring *keyring; 190 191 if (sb->s_master_keys) 192 return 0; 193 194 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 195 if (!keyring) 196 return -ENOMEM; 197 spin_lock_init(&keyring->lock); 198 /* 199 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 200 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 201 * concurrent tasks can ACQUIRE it. 202 */ 203 smp_store_release(&sb->s_master_keys, keyring); 204 return 0; 205 } 206 207 /* 208 * Release all encryption keys that have been added to the filesystem, along 209 * with the keyring that contains them. 210 * 211 * This is called at unmount time. The filesystem's underlying block device(s) 212 * are still available at this time; this is important because after user file 213 * accesses have been allowed, this function may need to evict keys from the 214 * keyslots of an inline crypto engine, which requires the block device(s). 215 * 216 * This is also called when the super_block is being freed. This is needed to 217 * avoid a memory leak if mounting fails after the "test_dummy_encryption" 218 * option was processed, as in that case the unmount-time call isn't made. 219 */ 220 void fscrypt_destroy_keyring(struct super_block *sb) 221 { 222 struct fscrypt_keyring *keyring = sb->s_master_keys; 223 size_t i; 224 225 if (!keyring) 226 return; 227 228 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 229 struct hlist_head *bucket = &keyring->key_hashtable[i]; 230 struct fscrypt_master_key *mk; 231 struct hlist_node *tmp; 232 233 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 234 /* 235 * Since all inodes were already evicted, every key 236 * remaining in the keyring should have an empty inode 237 * list, and should only still be in the keyring due to 238 * the single active ref associated with ->mk_secret. 239 * There should be no structural refs beyond the one 240 * associated with the active ref. 241 */ 242 WARN_ON(refcount_read(&mk->mk_active_refs) != 1); 243 WARN_ON(refcount_read(&mk->mk_struct_refs) != 1); 244 WARN_ON(!is_master_key_secret_present(&mk->mk_secret)); 245 wipe_master_key_secret(&mk->mk_secret); 246 fscrypt_put_master_key_activeref(mk); 247 } 248 } 249 kfree_sensitive(keyring); 250 sb->s_master_keys = NULL; 251 } 252 253 static struct hlist_head * 254 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 255 const struct fscrypt_key_specifier *mk_spec) 256 { 257 /* 258 * Since key specifiers should be "random" values, it is sufficient to 259 * use a trivial hash function that just takes the first several bits of 260 * the key specifier. 261 */ 262 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 263 264 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 265 } 266 267 /* 268 * Find the specified master key struct in ->s_master_keys and take a structural 269 * ref to it. The structural ref guarantees that the key struct continues to 270 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 271 * the key struct. The structural ref needs to be dropped by 272 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 273 */ 274 struct fscrypt_master_key * 275 fscrypt_find_master_key(struct super_block *sb, 276 const struct fscrypt_key_specifier *mk_spec) 277 { 278 struct fscrypt_keyring *keyring; 279 struct hlist_head *bucket; 280 struct fscrypt_master_key *mk; 281 282 /* 283 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 284 * I.e., another task can publish ->s_master_keys concurrently, 285 * executing a RELEASE barrier. We need to use smp_load_acquire() here 286 * to safely ACQUIRE the memory the other task published. 287 */ 288 keyring = smp_load_acquire(&sb->s_master_keys); 289 if (keyring == NULL) 290 return NULL; /* No keyring yet, so no keys yet. */ 291 292 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 293 rcu_read_lock(); 294 switch (mk_spec->type) { 295 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 296 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 297 if (mk->mk_spec.type == 298 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 299 memcmp(mk->mk_spec.u.descriptor, 300 mk_spec->u.descriptor, 301 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 302 refcount_inc_not_zero(&mk->mk_struct_refs)) 303 goto out; 304 } 305 break; 306 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 307 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 308 if (mk->mk_spec.type == 309 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 310 memcmp(mk->mk_spec.u.identifier, 311 mk_spec->u.identifier, 312 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 313 refcount_inc_not_zero(&mk->mk_struct_refs)) 314 goto out; 315 } 316 break; 317 } 318 mk = NULL; 319 out: 320 rcu_read_unlock(); 321 return mk; 322 } 323 324 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 325 { 326 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 327 struct key *keyring; 328 329 format_mk_users_keyring_description(description, 330 mk->mk_spec.u.identifier); 331 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 332 current_cred(), KEY_POS_SEARCH | 333 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 334 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 335 if (IS_ERR(keyring)) 336 return PTR_ERR(keyring); 337 338 mk->mk_users = keyring; 339 return 0; 340 } 341 342 /* 343 * Find the current user's "key" in the master key's ->mk_users. 344 * Returns ERR_PTR(-ENOKEY) if not found. 345 */ 346 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 347 { 348 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 349 key_ref_t keyref; 350 351 format_mk_user_description(description, mk->mk_spec.u.identifier); 352 353 /* 354 * We need to mark the keyring reference as "possessed" so that we 355 * acquire permission to search it, via the KEY_POS_SEARCH permission. 356 */ 357 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 358 &key_type_fscrypt_user, description, false); 359 if (IS_ERR(keyref)) { 360 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 361 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 362 keyref = ERR_PTR(-ENOKEY); 363 return ERR_CAST(keyref); 364 } 365 return key_ref_to_ptr(keyref); 366 } 367 368 /* 369 * Give the current user a "key" in ->mk_users. This charges the user's quota 370 * and marks the master key as added by the current user, so that it cannot be 371 * removed by another user with the key. Either ->mk_sem must be held for 372 * write, or the master key must be still undergoing initialization. 373 */ 374 static int add_master_key_user(struct fscrypt_master_key *mk) 375 { 376 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 377 struct key *mk_user; 378 int err; 379 380 format_mk_user_description(description, mk->mk_spec.u.identifier); 381 mk_user = key_alloc(&key_type_fscrypt_user, description, 382 current_fsuid(), current_gid(), current_cred(), 383 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 384 if (IS_ERR(mk_user)) 385 return PTR_ERR(mk_user); 386 387 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 388 key_put(mk_user); 389 return err; 390 } 391 392 /* 393 * Remove the current user's "key" from ->mk_users. 394 * ->mk_sem must be held for write. 395 * 396 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 397 */ 398 static int remove_master_key_user(struct fscrypt_master_key *mk) 399 { 400 struct key *mk_user; 401 int err; 402 403 mk_user = find_master_key_user(mk); 404 if (IS_ERR(mk_user)) 405 return PTR_ERR(mk_user); 406 err = key_unlink(mk->mk_users, mk_user); 407 key_put(mk_user); 408 return err; 409 } 410 411 /* 412 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 413 * insert it into sb->s_master_keys. 414 */ 415 static int add_new_master_key(struct super_block *sb, 416 struct fscrypt_master_key_secret *secret, 417 const struct fscrypt_key_specifier *mk_spec) 418 { 419 struct fscrypt_keyring *keyring = sb->s_master_keys; 420 struct fscrypt_master_key *mk; 421 int err; 422 423 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 424 if (!mk) 425 return -ENOMEM; 426 427 mk->mk_sb = sb; 428 init_rwsem(&mk->mk_sem); 429 refcount_set(&mk->mk_struct_refs, 1); 430 mk->mk_spec = *mk_spec; 431 432 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 433 spin_lock_init(&mk->mk_decrypted_inodes_lock); 434 435 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 436 err = allocate_master_key_users_keyring(mk); 437 if (err) 438 goto out_put; 439 err = add_master_key_user(mk); 440 if (err) 441 goto out_put; 442 } 443 444 move_master_key_secret(&mk->mk_secret, secret); 445 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */ 446 447 spin_lock(&keyring->lock); 448 hlist_add_head_rcu(&mk->mk_node, 449 fscrypt_mk_hash_bucket(keyring, mk_spec)); 450 spin_unlock(&keyring->lock); 451 return 0; 452 453 out_put: 454 fscrypt_put_master_key(mk); 455 return err; 456 } 457 458 #define KEY_DEAD 1 459 460 static int add_existing_master_key(struct fscrypt_master_key *mk, 461 struct fscrypt_master_key_secret *secret) 462 { 463 int err; 464 465 /* 466 * If the current user is already in ->mk_users, then there's nothing to 467 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 468 * applicable for v1 policy keys, which have NULL ->mk_users.) 469 */ 470 if (mk->mk_users) { 471 struct key *mk_user = find_master_key_user(mk); 472 473 if (mk_user != ERR_PTR(-ENOKEY)) { 474 if (IS_ERR(mk_user)) 475 return PTR_ERR(mk_user); 476 key_put(mk_user); 477 return 0; 478 } 479 err = add_master_key_user(mk); 480 if (err) 481 return err; 482 } 483 484 /* Re-add the secret if needed. */ 485 if (!is_master_key_secret_present(&mk->mk_secret)) { 486 if (!refcount_inc_not_zero(&mk->mk_active_refs)) 487 return KEY_DEAD; 488 move_master_key_secret(&mk->mk_secret, secret); 489 } 490 491 return 0; 492 } 493 494 static int do_add_master_key(struct super_block *sb, 495 struct fscrypt_master_key_secret *secret, 496 const struct fscrypt_key_specifier *mk_spec) 497 { 498 static DEFINE_MUTEX(fscrypt_add_key_mutex); 499 struct fscrypt_master_key *mk; 500 int err; 501 502 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 503 504 mk = fscrypt_find_master_key(sb, mk_spec); 505 if (!mk) { 506 /* Didn't find the key in ->s_master_keys. Add it. */ 507 err = allocate_filesystem_keyring(sb); 508 if (!err) 509 err = add_new_master_key(sb, secret, mk_spec); 510 } else { 511 /* 512 * Found the key in ->s_master_keys. Re-add the secret if 513 * needed, and add the user to ->mk_users if needed. 514 */ 515 down_write(&mk->mk_sem); 516 err = add_existing_master_key(mk, secret); 517 up_write(&mk->mk_sem); 518 if (err == KEY_DEAD) { 519 /* 520 * We found a key struct, but it's already been fully 521 * removed. Ignore the old struct and add a new one. 522 * fscrypt_add_key_mutex means we don't need to worry 523 * about concurrent adds. 524 */ 525 err = add_new_master_key(sb, secret, mk_spec); 526 } 527 fscrypt_put_master_key(mk); 528 } 529 mutex_unlock(&fscrypt_add_key_mutex); 530 return err; 531 } 532 533 static int add_master_key(struct super_block *sb, 534 struct fscrypt_master_key_secret *secret, 535 struct fscrypt_key_specifier *key_spec) 536 { 537 int err; 538 539 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 540 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 541 secret->size); 542 if (err) 543 return err; 544 545 /* 546 * Now that the HKDF context is initialized, the raw key is no 547 * longer needed. 548 */ 549 memzero_explicit(secret->raw, secret->size); 550 551 /* Calculate the key identifier */ 552 err = fscrypt_hkdf_expand(&secret->hkdf, 553 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 554 key_spec->u.identifier, 555 FSCRYPT_KEY_IDENTIFIER_SIZE); 556 if (err) 557 return err; 558 } 559 return do_add_master_key(sb, secret, key_spec); 560 } 561 562 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 563 { 564 const struct fscrypt_provisioning_key_payload *payload = prep->data; 565 566 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 567 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 568 return -EINVAL; 569 570 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 571 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 572 return -EINVAL; 573 574 if (payload->__reserved) 575 return -EINVAL; 576 577 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 578 if (!prep->payload.data[0]) 579 return -ENOMEM; 580 581 prep->quotalen = prep->datalen; 582 return 0; 583 } 584 585 static void fscrypt_provisioning_key_free_preparse( 586 struct key_preparsed_payload *prep) 587 { 588 kfree_sensitive(prep->payload.data[0]); 589 } 590 591 static void fscrypt_provisioning_key_describe(const struct key *key, 592 struct seq_file *m) 593 { 594 seq_puts(m, key->description); 595 if (key_is_positive(key)) { 596 const struct fscrypt_provisioning_key_payload *payload = 597 key->payload.data[0]; 598 599 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 600 } 601 } 602 603 static void fscrypt_provisioning_key_destroy(struct key *key) 604 { 605 kfree_sensitive(key->payload.data[0]); 606 } 607 608 static struct key_type key_type_fscrypt_provisioning = { 609 .name = "fscrypt-provisioning", 610 .preparse = fscrypt_provisioning_key_preparse, 611 .free_preparse = fscrypt_provisioning_key_free_preparse, 612 .instantiate = generic_key_instantiate, 613 .describe = fscrypt_provisioning_key_describe, 614 .destroy = fscrypt_provisioning_key_destroy, 615 }; 616 617 /* 618 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 619 * store it into 'secret'. 620 * 621 * The key must be of type "fscrypt-provisioning" and must have the field 622 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 623 * only usable with fscrypt with the particular KDF version identified by 624 * 'type'. We don't use the "logon" key type because there's no way to 625 * completely restrict the use of such keys; they can be used by any kernel API 626 * that accepts "logon" keys and doesn't require a specific service prefix. 627 * 628 * The ability to specify the key via Linux keyring key is intended for cases 629 * where userspace needs to re-add keys after the filesystem is unmounted and 630 * re-mounted. Most users should just provide the raw key directly instead. 631 */ 632 static int get_keyring_key(u32 key_id, u32 type, 633 struct fscrypt_master_key_secret *secret) 634 { 635 key_ref_t ref; 636 struct key *key; 637 const struct fscrypt_provisioning_key_payload *payload; 638 int err; 639 640 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 641 if (IS_ERR(ref)) 642 return PTR_ERR(ref); 643 key = key_ref_to_ptr(ref); 644 645 if (key->type != &key_type_fscrypt_provisioning) 646 goto bad_key; 647 payload = key->payload.data[0]; 648 649 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 650 if (payload->type != type) 651 goto bad_key; 652 653 secret->size = key->datalen - sizeof(*payload); 654 memcpy(secret->raw, payload->raw, secret->size); 655 err = 0; 656 goto out_put; 657 658 bad_key: 659 err = -EKEYREJECTED; 660 out_put: 661 key_ref_put(ref); 662 return err; 663 } 664 665 /* 666 * Add a master encryption key to the filesystem, causing all files which were 667 * encrypted with it to appear "unlocked" (decrypted) when accessed. 668 * 669 * When adding a key for use by v1 encryption policies, this ioctl is 670 * privileged, and userspace must provide the 'key_descriptor'. 671 * 672 * When adding a key for use by v2+ encryption policies, this ioctl is 673 * unprivileged. This is needed, in general, to allow non-root users to use 674 * encryption without encountering the visibility problems of process-subscribed 675 * keyrings and the inability to properly remove keys. This works by having 676 * each key identified by its cryptographically secure hash --- the 677 * 'key_identifier'. The cryptographic hash ensures that a malicious user 678 * cannot add the wrong key for a given identifier. Furthermore, each added key 679 * is charged to the appropriate user's quota for the keyrings service, which 680 * prevents a malicious user from adding too many keys. Finally, we forbid a 681 * user from removing a key while other users have added it too, which prevents 682 * a user who knows another user's key from causing a denial-of-service by 683 * removing it at an inopportune time. (We tolerate that a user who knows a key 684 * can prevent other users from removing it.) 685 * 686 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 687 * Documentation/filesystems/fscrypt.rst. 688 */ 689 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 690 { 691 struct super_block *sb = file_inode(filp)->i_sb; 692 struct fscrypt_add_key_arg __user *uarg = _uarg; 693 struct fscrypt_add_key_arg arg; 694 struct fscrypt_master_key_secret secret; 695 int err; 696 697 if (copy_from_user(&arg, uarg, sizeof(arg))) 698 return -EFAULT; 699 700 if (!valid_key_spec(&arg.key_spec)) 701 return -EINVAL; 702 703 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 704 return -EINVAL; 705 706 /* 707 * Only root can add keys that are identified by an arbitrary descriptor 708 * rather than by a cryptographic hash --- since otherwise a malicious 709 * user could add the wrong key. 710 */ 711 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 712 !capable(CAP_SYS_ADMIN)) 713 return -EACCES; 714 715 memset(&secret, 0, sizeof(secret)); 716 if (arg.key_id) { 717 if (arg.raw_size != 0) 718 return -EINVAL; 719 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 720 if (err) 721 goto out_wipe_secret; 722 } else { 723 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 724 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 725 return -EINVAL; 726 secret.size = arg.raw_size; 727 err = -EFAULT; 728 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 729 goto out_wipe_secret; 730 } 731 732 err = add_master_key(sb, &secret, &arg.key_spec); 733 if (err) 734 goto out_wipe_secret; 735 736 /* Return the key identifier to userspace, if applicable */ 737 err = -EFAULT; 738 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 739 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 740 FSCRYPT_KEY_IDENTIFIER_SIZE)) 741 goto out_wipe_secret; 742 err = 0; 743 out_wipe_secret: 744 wipe_master_key_secret(&secret); 745 return err; 746 } 747 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 748 749 static void 750 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 751 { 752 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 753 754 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 755 756 memset(secret, 0, sizeof(*secret)); 757 secret->size = FSCRYPT_MAX_KEY_SIZE; 758 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 759 } 760 761 int fscrypt_get_test_dummy_key_identifier( 762 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 763 { 764 struct fscrypt_master_key_secret secret; 765 int err; 766 767 fscrypt_get_test_dummy_secret(&secret); 768 769 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 770 if (err) 771 goto out; 772 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 773 NULL, 0, key_identifier, 774 FSCRYPT_KEY_IDENTIFIER_SIZE); 775 out: 776 wipe_master_key_secret(&secret); 777 return err; 778 } 779 780 /** 781 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 782 * @sb: the filesystem instance to add the key to 783 * @dummy_policy: the encryption policy for test_dummy_encryption 784 * 785 * If needed, add the key for the test_dummy_encryption mount option to the 786 * filesystem. To prevent misuse of this mount option, a per-boot random key is 787 * used instead of a hardcoded one. This makes it so that any encrypted files 788 * created using this option won't be accessible after a reboot. 789 * 790 * Return: 0 on success, -errno on failure 791 */ 792 int fscrypt_add_test_dummy_key(struct super_block *sb, 793 const struct fscrypt_dummy_policy *dummy_policy) 794 { 795 const union fscrypt_policy *policy = dummy_policy->policy; 796 struct fscrypt_key_specifier key_spec; 797 struct fscrypt_master_key_secret secret; 798 int err; 799 800 if (!policy) 801 return 0; 802 err = fscrypt_policy_to_key_spec(policy, &key_spec); 803 if (err) 804 return err; 805 fscrypt_get_test_dummy_secret(&secret); 806 err = add_master_key(sb, &secret, &key_spec); 807 wipe_master_key_secret(&secret); 808 return err; 809 } 810 EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key); 811 812 /* 813 * Verify that the current user has added a master key with the given identifier 814 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 815 * their files using some other user's key which they don't actually know. 816 * Cryptographically this isn't much of a problem, but the semantics of this 817 * would be a bit weird, so it's best to just forbid it. 818 * 819 * The system administrator (CAP_FOWNER) can override this, which should be 820 * enough for any use cases where encryption policies are being set using keys 821 * that were chosen ahead of time but aren't available at the moment. 822 * 823 * Note that the key may have already removed by the time this returns, but 824 * that's okay; we just care whether the key was there at some point. 825 * 826 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 827 */ 828 int fscrypt_verify_key_added(struct super_block *sb, 829 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 830 { 831 struct fscrypt_key_specifier mk_spec; 832 struct fscrypt_master_key *mk; 833 struct key *mk_user; 834 int err; 835 836 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 837 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 838 839 mk = fscrypt_find_master_key(sb, &mk_spec); 840 if (!mk) { 841 err = -ENOKEY; 842 goto out; 843 } 844 down_read(&mk->mk_sem); 845 mk_user = find_master_key_user(mk); 846 if (IS_ERR(mk_user)) { 847 err = PTR_ERR(mk_user); 848 } else { 849 key_put(mk_user); 850 err = 0; 851 } 852 up_read(&mk->mk_sem); 853 fscrypt_put_master_key(mk); 854 out: 855 if (err == -ENOKEY && capable(CAP_FOWNER)) 856 err = 0; 857 return err; 858 } 859 860 /* 861 * Try to evict the inode's dentries from the dentry cache. If the inode is a 862 * directory, then it can have at most one dentry; however, that dentry may be 863 * pinned by child dentries, so first try to evict the children too. 864 */ 865 static void shrink_dcache_inode(struct inode *inode) 866 { 867 struct dentry *dentry; 868 869 if (S_ISDIR(inode->i_mode)) { 870 dentry = d_find_any_alias(inode); 871 if (dentry) { 872 shrink_dcache_parent(dentry); 873 dput(dentry); 874 } 875 } 876 d_prune_aliases(inode); 877 } 878 879 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 880 { 881 struct fscrypt_info *ci; 882 struct inode *inode; 883 struct inode *toput_inode = NULL; 884 885 spin_lock(&mk->mk_decrypted_inodes_lock); 886 887 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 888 inode = ci->ci_inode; 889 spin_lock(&inode->i_lock); 890 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 891 spin_unlock(&inode->i_lock); 892 continue; 893 } 894 __iget(inode); 895 spin_unlock(&inode->i_lock); 896 spin_unlock(&mk->mk_decrypted_inodes_lock); 897 898 shrink_dcache_inode(inode); 899 iput(toput_inode); 900 toput_inode = inode; 901 902 spin_lock(&mk->mk_decrypted_inodes_lock); 903 } 904 905 spin_unlock(&mk->mk_decrypted_inodes_lock); 906 iput(toput_inode); 907 } 908 909 static int check_for_busy_inodes(struct super_block *sb, 910 struct fscrypt_master_key *mk) 911 { 912 struct list_head *pos; 913 size_t busy_count = 0; 914 unsigned long ino; 915 char ino_str[50] = ""; 916 917 spin_lock(&mk->mk_decrypted_inodes_lock); 918 919 list_for_each(pos, &mk->mk_decrypted_inodes) 920 busy_count++; 921 922 if (busy_count == 0) { 923 spin_unlock(&mk->mk_decrypted_inodes_lock); 924 return 0; 925 } 926 927 { 928 /* select an example file to show for debugging purposes */ 929 struct inode *inode = 930 list_first_entry(&mk->mk_decrypted_inodes, 931 struct fscrypt_info, 932 ci_master_key_link)->ci_inode; 933 ino = inode->i_ino; 934 } 935 spin_unlock(&mk->mk_decrypted_inodes_lock); 936 937 /* If the inode is currently being created, ino may still be 0. */ 938 if (ino) 939 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 940 941 fscrypt_warn(NULL, 942 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 943 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 944 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 945 ino_str); 946 return -EBUSY; 947 } 948 949 static int try_to_lock_encrypted_files(struct super_block *sb, 950 struct fscrypt_master_key *mk) 951 { 952 int err1; 953 int err2; 954 955 /* 956 * An inode can't be evicted while it is dirty or has dirty pages. 957 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 958 * 959 * Just do it the easy way: call sync_filesystem(). It's overkill, but 960 * it works, and it's more important to minimize the amount of caches we 961 * drop than the amount of data we sync. Also, unprivileged users can 962 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 963 */ 964 down_read(&sb->s_umount); 965 err1 = sync_filesystem(sb); 966 up_read(&sb->s_umount); 967 /* If a sync error occurs, still try to evict as much as possible. */ 968 969 /* 970 * Inodes are pinned by their dentries, so we have to evict their 971 * dentries. shrink_dcache_sb() would suffice, but would be overkill 972 * and inappropriate for use by unprivileged users. So instead go 973 * through the inodes' alias lists and try to evict each dentry. 974 */ 975 evict_dentries_for_decrypted_inodes(mk); 976 977 /* 978 * evict_dentries_for_decrypted_inodes() already iput() each inode in 979 * the list; any inodes for which that dropped the last reference will 980 * have been evicted due to fscrypt_drop_inode() detecting the key 981 * removal and telling the VFS to evict the inode. So to finish, we 982 * just need to check whether any inodes couldn't be evicted. 983 */ 984 err2 = check_for_busy_inodes(sb, mk); 985 986 return err1 ?: err2; 987 } 988 989 /* 990 * Try to remove an fscrypt master encryption key. 991 * 992 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 993 * claim to the key, then removes the key itself if no other users have claims. 994 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 995 * key itself. 996 * 997 * To "remove the key itself", first we wipe the actual master key secret, so 998 * that no more inodes can be unlocked with it. Then we try to evict all cached 999 * inodes that had been unlocked with the key. 1000 * 1001 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 1002 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 1003 * state (without the actual secret key) where it tracks the list of remaining 1004 * inodes. Userspace can execute the ioctl again later to retry eviction, or 1005 * alternatively can re-add the secret key again. 1006 * 1007 * For more details, see the "Removing keys" section of 1008 * Documentation/filesystems/fscrypt.rst. 1009 */ 1010 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1011 { 1012 struct super_block *sb = file_inode(filp)->i_sb; 1013 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1014 struct fscrypt_remove_key_arg arg; 1015 struct fscrypt_master_key *mk; 1016 u32 status_flags = 0; 1017 int err; 1018 bool inodes_remain; 1019 1020 if (copy_from_user(&arg, uarg, sizeof(arg))) 1021 return -EFAULT; 1022 1023 if (!valid_key_spec(&arg.key_spec)) 1024 return -EINVAL; 1025 1026 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1027 return -EINVAL; 1028 1029 /* 1030 * Only root can add and remove keys that are identified by an arbitrary 1031 * descriptor rather than by a cryptographic hash. 1032 */ 1033 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1034 !capable(CAP_SYS_ADMIN)) 1035 return -EACCES; 1036 1037 /* Find the key being removed. */ 1038 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1039 if (!mk) 1040 return -ENOKEY; 1041 down_write(&mk->mk_sem); 1042 1043 /* If relevant, remove current user's (or all users) claim to the key */ 1044 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1045 if (all_users) 1046 err = keyring_clear(mk->mk_users); 1047 else 1048 err = remove_master_key_user(mk); 1049 if (err) { 1050 up_write(&mk->mk_sem); 1051 goto out_put_key; 1052 } 1053 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1054 /* 1055 * Other users have still added the key too. We removed 1056 * the current user's claim to the key, but we still 1057 * can't remove the key itself. 1058 */ 1059 status_flags |= 1060 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1061 err = 0; 1062 up_write(&mk->mk_sem); 1063 goto out_put_key; 1064 } 1065 } 1066 1067 /* No user claims remaining. Go ahead and wipe the secret. */ 1068 err = -ENOKEY; 1069 if (is_master_key_secret_present(&mk->mk_secret)) { 1070 wipe_master_key_secret(&mk->mk_secret); 1071 fscrypt_put_master_key_activeref(mk); 1072 err = 0; 1073 } 1074 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1075 up_write(&mk->mk_sem); 1076 1077 if (inodes_remain) { 1078 /* Some inodes still reference this key; try to evict them. */ 1079 err = try_to_lock_encrypted_files(sb, mk); 1080 if (err == -EBUSY) { 1081 status_flags |= 1082 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1083 err = 0; 1084 } 1085 } 1086 /* 1087 * We return 0 if we successfully did something: removed a claim to the 1088 * key, wiped the secret, or tried locking the files again. Users need 1089 * to check the informational status flags if they care whether the key 1090 * has been fully removed including all files locked. 1091 */ 1092 out_put_key: 1093 fscrypt_put_master_key(mk); 1094 if (err == 0) 1095 err = put_user(status_flags, &uarg->removal_status_flags); 1096 return err; 1097 } 1098 1099 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1100 { 1101 return do_remove_key(filp, uarg, false); 1102 } 1103 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1104 1105 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1106 { 1107 if (!capable(CAP_SYS_ADMIN)) 1108 return -EACCES; 1109 return do_remove_key(filp, uarg, true); 1110 } 1111 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1112 1113 /* 1114 * Retrieve the status of an fscrypt master encryption key. 1115 * 1116 * We set ->status to indicate whether the key is absent, present, or 1117 * incompletely removed. "Incompletely removed" means that the master key 1118 * secret has been removed, but some files which had been unlocked with it are 1119 * still in use. This field allows applications to easily determine the state 1120 * of an encrypted directory without using a hack such as trying to open a 1121 * regular file in it (which can confuse the "incompletely removed" state with 1122 * absent or present). 1123 * 1124 * In addition, for v2 policy keys we allow applications to determine, via 1125 * ->status_flags and ->user_count, whether the key has been added by the 1126 * current user, by other users, or by both. Most applications should not need 1127 * this, since ordinarily only one user should know a given key. However, if a 1128 * secret key is shared by multiple users, applications may wish to add an 1129 * already-present key to prevent other users from removing it. This ioctl can 1130 * be used to check whether that really is the case before the work is done to 1131 * add the key --- which might e.g. require prompting the user for a passphrase. 1132 * 1133 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1134 * Documentation/filesystems/fscrypt.rst. 1135 */ 1136 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1137 { 1138 struct super_block *sb = file_inode(filp)->i_sb; 1139 struct fscrypt_get_key_status_arg arg; 1140 struct fscrypt_master_key *mk; 1141 int err; 1142 1143 if (copy_from_user(&arg, uarg, sizeof(arg))) 1144 return -EFAULT; 1145 1146 if (!valid_key_spec(&arg.key_spec)) 1147 return -EINVAL; 1148 1149 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1150 return -EINVAL; 1151 1152 arg.status_flags = 0; 1153 arg.user_count = 0; 1154 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1155 1156 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1157 if (!mk) { 1158 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1159 err = 0; 1160 goto out; 1161 } 1162 down_read(&mk->mk_sem); 1163 1164 if (!is_master_key_secret_present(&mk->mk_secret)) { 1165 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1166 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1167 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1168 err = 0; 1169 goto out_release_key; 1170 } 1171 1172 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1173 if (mk->mk_users) { 1174 struct key *mk_user; 1175 1176 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1177 mk_user = find_master_key_user(mk); 1178 if (!IS_ERR(mk_user)) { 1179 arg.status_flags |= 1180 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1181 key_put(mk_user); 1182 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1183 err = PTR_ERR(mk_user); 1184 goto out_release_key; 1185 } 1186 } 1187 err = 0; 1188 out_release_key: 1189 up_read(&mk->mk_sem); 1190 fscrypt_put_master_key(mk); 1191 out: 1192 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1193 err = -EFAULT; 1194 return err; 1195 } 1196 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1197 1198 int __init fscrypt_init_keyring(void) 1199 { 1200 int err; 1201 1202 err = register_key_type(&key_type_fscrypt_user); 1203 if (err) 1204 return err; 1205 1206 err = register_key_type(&key_type_fscrypt_provisioning); 1207 if (err) 1208 goto err_unregister_fscrypt_user; 1209 1210 return 0; 1211 1212 err_unregister_fscrypt_user: 1213 unregister_key_type(&key_type_fscrypt_user); 1214 return err; 1215 } 1216