xref: /openbmc/linux/fs/crypto/hooks.c (revision eb96b740192b2a09720aaed8a8c132e6a29d5bdb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include "fscrypt_private.h"
9 
10 /**
11  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12  * @inode: the inode being opened
13  * @filp: the struct file being set up
14  *
15  * Currently, an encrypted regular file can only be opened if its encryption key
16  * is available; access to the raw encrypted contents is not supported.
17  * Therefore, we first set up the inode's encryption key (if not already done)
18  * and return an error if it's unavailable.
19  *
20  * We also verify that if the parent directory (from the path via which the file
21  * is being opened) is encrypted, then the inode being opened uses the same
22  * encryption policy.  This is needed as part of the enforcement that all files
23  * in an encrypted directory tree use the same encryption policy, as a
24  * protection against certain types of offline attacks.  Note that this check is
25  * needed even when opening an *unencrypted* file, since it's forbidden to have
26  * an unencrypted file in an encrypted directory.
27  *
28  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29  */
30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32 	int err;
33 	struct dentry *dir;
34 
35 	err = fscrypt_require_key(inode);
36 	if (err)
37 		return err;
38 
39 	dir = dget_parent(file_dentry(filp));
40 	if (IS_ENCRYPTED(d_inode(dir)) &&
41 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 		fscrypt_warn(inode,
43 			     "Inconsistent encryption context (parent directory: %lu)",
44 			     d_inode(dir)->i_ino);
45 		err = -EPERM;
46 	}
47 	dput(dir);
48 	return err;
49 }
50 EXPORT_SYMBOL_GPL(fscrypt_file_open);
51 
52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53 			   struct dentry *dentry)
54 {
55 	if (fscrypt_is_nokey_name(dentry))
56 		return -ENOKEY;
57 	/*
58 	 * We don't need to separately check that the directory inode's key is
59 	 * available, as it's implied by the dentry not being a no-key name.
60 	 */
61 
62 	if (!fscrypt_has_permitted_context(dir, inode))
63 		return -EXDEV;
64 
65 	return 0;
66 }
67 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
68 
69 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
70 			     struct inode *new_dir, struct dentry *new_dentry,
71 			     unsigned int flags)
72 {
73 	if (fscrypt_is_nokey_name(old_dentry) ||
74 	    fscrypt_is_nokey_name(new_dentry))
75 		return -ENOKEY;
76 	/*
77 	 * We don't need to separately check that the directory inodes' keys are
78 	 * available, as it's implied by the dentries not being no-key names.
79 	 */
80 
81 	if (old_dir != new_dir) {
82 		if (IS_ENCRYPTED(new_dir) &&
83 		    !fscrypt_has_permitted_context(new_dir,
84 						   d_inode(old_dentry)))
85 			return -EXDEV;
86 
87 		if ((flags & RENAME_EXCHANGE) &&
88 		    IS_ENCRYPTED(old_dir) &&
89 		    !fscrypt_has_permitted_context(old_dir,
90 						   d_inode(new_dentry)))
91 			return -EXDEV;
92 	}
93 	return 0;
94 }
95 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
96 
97 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
98 			     struct fscrypt_name *fname)
99 {
100 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
101 
102 	if (err && err != -ENOENT)
103 		return err;
104 
105 	if (fname->is_nokey_name) {
106 		spin_lock(&dentry->d_lock);
107 		dentry->d_flags |= DCACHE_NOKEY_NAME;
108 		spin_unlock(&dentry->d_lock);
109 	}
110 	return err;
111 }
112 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113 
114 int __fscrypt_prepare_readdir(struct inode *dir)
115 {
116 	return fscrypt_get_encryption_info(dir, true);
117 }
118 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
119 
120 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
121 {
122 	if (attr->ia_valid & ATTR_SIZE)
123 		return fscrypt_require_key(d_inode(dentry));
124 	return 0;
125 }
126 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
127 
128 /**
129  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
130  * @inode: the inode on which flags are being changed
131  * @oldflags: the old flags
132  * @flags: the new flags
133  *
134  * The caller should be holding i_rwsem for write.
135  *
136  * Return: 0 on success; -errno if the flags change isn't allowed or if
137  *	   another error occurs.
138  */
139 int fscrypt_prepare_setflags(struct inode *inode,
140 			     unsigned int oldflags, unsigned int flags)
141 {
142 	struct fscrypt_info *ci;
143 	struct fscrypt_master_key *mk;
144 	int err;
145 
146 	/*
147 	 * When the CASEFOLD flag is set on an encrypted directory, we must
148 	 * derive the secret key needed for the dirhash.  This is only possible
149 	 * if the directory uses a v2 encryption policy.
150 	 */
151 	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
152 		err = fscrypt_require_key(inode);
153 		if (err)
154 			return err;
155 		ci = inode->i_crypt_info;
156 		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
157 			return -EINVAL;
158 		mk = ci->ci_master_key;
159 		down_read(&mk->mk_sem);
160 		if (is_master_key_secret_present(&mk->mk_secret))
161 			err = fscrypt_derive_dirhash_key(ci, mk);
162 		else
163 			err = -ENOKEY;
164 		up_read(&mk->mk_sem);
165 		return err;
166 	}
167 	return 0;
168 }
169 
170 /**
171  * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
172  * @dir: directory in which the symlink is being created
173  * @target: plaintext symlink target
174  * @len: length of @target excluding null terminator
175  * @max_len: space the filesystem has available to store the symlink target
176  * @disk_link: (out) the on-disk symlink target being prepared
177  *
178  * This function computes the size the symlink target will require on-disk,
179  * stores it in @disk_link->len, and validates it against @max_len.  An
180  * encrypted symlink may be longer than the original.
181  *
182  * Additionally, @disk_link->name is set to @target if the symlink will be
183  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
184  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
185  * on-disk target later.  (The reason for the two-step process is that some
186  * filesystems need to know the size of the symlink target before creating the
187  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
188  *
189  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
190  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
191  * occurred while setting up the encryption key.
192  */
193 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
194 			    unsigned int len, unsigned int max_len,
195 			    struct fscrypt_str *disk_link)
196 {
197 	const union fscrypt_policy *policy;
198 
199 	/*
200 	 * To calculate the size of the encrypted symlink target we need to know
201 	 * the amount of NUL padding, which is determined by the flags set in
202 	 * the encryption policy which will be inherited from the directory.
203 	 */
204 	policy = fscrypt_policy_to_inherit(dir);
205 	if (policy == NULL) {
206 		/* Not encrypted */
207 		disk_link->name = (unsigned char *)target;
208 		disk_link->len = len + 1;
209 		if (disk_link->len > max_len)
210 			return -ENAMETOOLONG;
211 		return 0;
212 	}
213 	if (IS_ERR(policy))
214 		return PTR_ERR(policy);
215 
216 	/*
217 	 * Calculate the size of the encrypted symlink and verify it won't
218 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
219 	 * targets are prefixed with the ciphertext length, despite this
220 	 * actually being redundant with i_size.  This decreases by 2 bytes the
221 	 * longest symlink target we can accept.
222 	 *
223 	 * We could recover 1 byte by not counting a null terminator, but
224 	 * counting it (even though it is meaningless for ciphertext) is simpler
225 	 * for now since filesystems will assume it is there and subtract it.
226 	 */
227 	if (!__fscrypt_fname_encrypted_size(policy, len,
228 					    max_len - sizeof(struct fscrypt_symlink_data),
229 					    &disk_link->len))
230 		return -ENAMETOOLONG;
231 	disk_link->len += sizeof(struct fscrypt_symlink_data);
232 
233 	disk_link->name = NULL;
234 	return 0;
235 }
236 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
237 
238 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
239 			      unsigned int len, struct fscrypt_str *disk_link)
240 {
241 	int err;
242 	struct qstr iname = QSTR_INIT(target, len);
243 	struct fscrypt_symlink_data *sd;
244 	unsigned int ciphertext_len;
245 
246 	/*
247 	 * fscrypt_prepare_new_inode() should have already set up the new
248 	 * symlink inode's encryption key.  We don't wait until now to do it,
249 	 * since we may be in a filesystem transaction now.
250 	 */
251 	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
252 		return -ENOKEY;
253 
254 	if (disk_link->name) {
255 		/* filesystem-provided buffer */
256 		sd = (struct fscrypt_symlink_data *)disk_link->name;
257 	} else {
258 		sd = kmalloc(disk_link->len, GFP_NOFS);
259 		if (!sd)
260 			return -ENOMEM;
261 	}
262 	ciphertext_len = disk_link->len - sizeof(*sd);
263 	sd->len = cpu_to_le16(ciphertext_len);
264 
265 	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
266 				    ciphertext_len);
267 	if (err)
268 		goto err_free_sd;
269 
270 	/*
271 	 * Null-terminating the ciphertext doesn't make sense, but we still
272 	 * count the null terminator in the length, so we might as well
273 	 * initialize it just in case the filesystem writes it out.
274 	 */
275 	sd->encrypted_path[ciphertext_len] = '\0';
276 
277 	/* Cache the plaintext symlink target for later use by get_link() */
278 	err = -ENOMEM;
279 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
280 	if (!inode->i_link)
281 		goto err_free_sd;
282 
283 	if (!disk_link->name)
284 		disk_link->name = (unsigned char *)sd;
285 	return 0;
286 
287 err_free_sd:
288 	if (!disk_link->name)
289 		kfree(sd);
290 	return err;
291 }
292 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
293 
294 /**
295  * fscrypt_get_symlink() - get the target of an encrypted symlink
296  * @inode: the symlink inode
297  * @caddr: the on-disk contents of the symlink
298  * @max_size: size of @caddr buffer
299  * @done: if successful, will be set up to free the returned target if needed
300  *
301  * If the symlink's encryption key is available, we decrypt its target.
302  * Otherwise, we encode its target for presentation.
303  *
304  * This may sleep, so the filesystem must have dropped out of RCU mode already.
305  *
306  * Return: the presentable symlink target or an ERR_PTR()
307  */
308 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
309 				unsigned int max_size,
310 				struct delayed_call *done)
311 {
312 	const struct fscrypt_symlink_data *sd;
313 	struct fscrypt_str cstr, pstr;
314 	bool has_key;
315 	int err;
316 
317 	/* This is for encrypted symlinks only */
318 	if (WARN_ON(!IS_ENCRYPTED(inode)))
319 		return ERR_PTR(-EINVAL);
320 
321 	/* If the decrypted target is already cached, just return it. */
322 	pstr.name = READ_ONCE(inode->i_link);
323 	if (pstr.name)
324 		return pstr.name;
325 
326 	/*
327 	 * Try to set up the symlink's encryption key, but we can continue
328 	 * regardless of whether the key is available or not.
329 	 */
330 	err = fscrypt_get_encryption_info(inode, false);
331 	if (err)
332 		return ERR_PTR(err);
333 	has_key = fscrypt_has_encryption_key(inode);
334 
335 	/*
336 	 * For historical reasons, encrypted symlink targets are prefixed with
337 	 * the ciphertext length, even though this is redundant with i_size.
338 	 */
339 
340 	if (max_size < sizeof(*sd))
341 		return ERR_PTR(-EUCLEAN);
342 	sd = caddr;
343 	cstr.name = (unsigned char *)sd->encrypted_path;
344 	cstr.len = le16_to_cpu(sd->len);
345 
346 	if (cstr.len == 0)
347 		return ERR_PTR(-EUCLEAN);
348 
349 	if (cstr.len + sizeof(*sd) - 1 > max_size)
350 		return ERR_PTR(-EUCLEAN);
351 
352 	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
353 	if (err)
354 		return ERR_PTR(err);
355 
356 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
357 	if (err)
358 		goto err_kfree;
359 
360 	err = -EUCLEAN;
361 	if (pstr.name[0] == '\0')
362 		goto err_kfree;
363 
364 	pstr.name[pstr.len] = '\0';
365 
366 	/*
367 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
368 	 * symlink targets encoded without the key, since those become outdated
369 	 * once the key is added.  This pairs with the READ_ONCE() above and in
370 	 * the VFS path lookup code.
371 	 */
372 	if (!has_key ||
373 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
374 		set_delayed_call(done, kfree_link, pstr.name);
375 
376 	return pstr.name;
377 
378 err_kfree:
379 	kfree(pstr.name);
380 	return ERR_PTR(err);
381 }
382 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
383 
384 /**
385  * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
386  * @path: the path for the encrypted symlink being queried
387  * @stat: the struct being filled with the symlink's attributes
388  *
389  * Override st_size of encrypted symlinks to be the length of the decrypted
390  * symlink target (or the no-key encoded symlink target, if the key is
391  * unavailable) rather than the length of the encrypted symlink target.  This is
392  * necessary for st_size to match the symlink target that userspace actually
393  * sees.  POSIX requires this, and some userspace programs depend on it.
394  *
395  * This requires reading the symlink target from disk if needed, setting up the
396  * inode's encryption key if possible, and then decrypting or encoding the
397  * symlink target.  This makes lstat() more heavyweight than is normally the
398  * case.  However, decrypted symlink targets will be cached in ->i_link, so
399  * usually the symlink won't have to be read and decrypted again later if/when
400  * it is actually followed, readlink() is called, or lstat() is called again.
401  *
402  * Return: 0 on success, -errno on failure
403  */
404 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
405 {
406 	struct dentry *dentry = path->dentry;
407 	struct inode *inode = d_inode(dentry);
408 	const char *link;
409 	DEFINE_DELAYED_CALL(done);
410 
411 	/*
412 	 * To get the symlink target that userspace will see (whether it's the
413 	 * decrypted target or the no-key encoded target), we can just get it in
414 	 * the same way the VFS does during path resolution and readlink().
415 	 */
416 	link = READ_ONCE(inode->i_link);
417 	if (!link) {
418 		link = inode->i_op->get_link(dentry, inode, &done);
419 		if (IS_ERR(link))
420 			return PTR_ERR(link);
421 	}
422 	stat->size = strlen(link);
423 	do_delayed_call(&done);
424 	return 0;
425 }
426 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
427