xref: /openbmc/linux/fs/crypto/hooks.c (revision 76e81d6d)
1 /*
2  * fs/crypto/hooks.c
3  *
4  * Encryption hooks for higher-level filesystem operations.
5  */
6 
7 #include <linux/ratelimit.h>
8 #include "fscrypt_private.h"
9 
10 /**
11  * fscrypt_file_open - prepare to open a possibly-encrypted regular file
12  * @inode: the inode being opened
13  * @filp: the struct file being set up
14  *
15  * Currently, an encrypted regular file can only be opened if its encryption key
16  * is available; access to the raw encrypted contents is not supported.
17  * Therefore, we first set up the inode's encryption key (if not already done)
18  * and return an error if it's unavailable.
19  *
20  * We also verify that if the parent directory (from the path via which the file
21  * is being opened) is encrypted, then the inode being opened uses the same
22  * encryption policy.  This is needed as part of the enforcement that all files
23  * in an encrypted directory tree use the same encryption policy, as a
24  * protection against certain types of offline attacks.  Note that this check is
25  * needed even when opening an *unencrypted* file, since it's forbidden to have
26  * an unencrypted file in an encrypted directory.
27  *
28  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29  */
30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32 	int err;
33 	struct dentry *dir;
34 
35 	err = fscrypt_require_key(inode);
36 	if (err)
37 		return err;
38 
39 	dir = dget_parent(file_dentry(filp));
40 	if (IS_ENCRYPTED(d_inode(dir)) &&
41 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 		pr_warn_ratelimited("fscrypt: inconsistent encryption contexts: %lu/%lu",
43 				    d_inode(dir)->i_ino, inode->i_ino);
44 		err = -EPERM;
45 	}
46 	dput(dir);
47 	return err;
48 }
49 EXPORT_SYMBOL_GPL(fscrypt_file_open);
50 
51 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir)
52 {
53 	int err;
54 
55 	err = fscrypt_require_key(dir);
56 	if (err)
57 		return err;
58 
59 	if (!fscrypt_has_permitted_context(dir, inode))
60 		return -EPERM;
61 
62 	return 0;
63 }
64 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
65 
66 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
67 			     struct inode *new_dir, struct dentry *new_dentry,
68 			     unsigned int flags)
69 {
70 	int err;
71 
72 	err = fscrypt_require_key(old_dir);
73 	if (err)
74 		return err;
75 
76 	err = fscrypt_require_key(new_dir);
77 	if (err)
78 		return err;
79 
80 	if (old_dir != new_dir) {
81 		if (IS_ENCRYPTED(new_dir) &&
82 		    !fscrypt_has_permitted_context(new_dir,
83 						   d_inode(old_dentry)))
84 			return -EPERM;
85 
86 		if ((flags & RENAME_EXCHANGE) &&
87 		    IS_ENCRYPTED(old_dir) &&
88 		    !fscrypt_has_permitted_context(old_dir,
89 						   d_inode(new_dentry)))
90 			return -EPERM;
91 	}
92 	return 0;
93 }
94 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
95 
96 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry)
97 {
98 	int err = fscrypt_get_encryption_info(dir);
99 
100 	if (err)
101 		return err;
102 
103 	if (fscrypt_has_encryption_key(dir)) {
104 		spin_lock(&dentry->d_lock);
105 		dentry->d_flags |= DCACHE_ENCRYPTED_WITH_KEY;
106 		spin_unlock(&dentry->d_lock);
107 	}
108 
109 	d_set_d_op(dentry, &fscrypt_d_ops);
110 	return 0;
111 }
112 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113 
114 int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
115 			      unsigned int max_len,
116 			      struct fscrypt_str *disk_link)
117 {
118 	int err;
119 
120 	/*
121 	 * To calculate the size of the encrypted symlink target we need to know
122 	 * the amount of NUL padding, which is determined by the flags set in
123 	 * the encryption policy which will be inherited from the directory.
124 	 * The easiest way to get access to this is to just load the directory's
125 	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
126 	 *
127 	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
128 	 */
129 	err = fscrypt_get_encryption_info(dir);
130 	if (err)
131 		return err;
132 	if (!fscrypt_has_encryption_key(dir))
133 		return -ENOKEY;
134 
135 	/*
136 	 * Calculate the size of the encrypted symlink and verify it won't
137 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
138 	 * targets are prefixed with the ciphertext length, despite this
139 	 * actually being redundant with i_size.  This decreases by 2 bytes the
140 	 * longest symlink target we can accept.
141 	 *
142 	 * We could recover 1 byte by not counting a null terminator, but
143 	 * counting it (even though it is meaningless for ciphertext) is simpler
144 	 * for now since filesystems will assume it is there and subtract it.
145 	 */
146 	if (sizeof(struct fscrypt_symlink_data) + len > max_len)
147 		return -ENAMETOOLONG;
148 	disk_link->len = min_t(unsigned int,
149 			       sizeof(struct fscrypt_symlink_data) +
150 					fscrypt_fname_encrypted_size(dir, len),
151 			       max_len);
152 	disk_link->name = NULL;
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
156 
157 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
158 			      unsigned int len, struct fscrypt_str *disk_link)
159 {
160 	int err;
161 	struct qstr iname = { .name = target, .len = len };
162 	struct fscrypt_symlink_data *sd;
163 	unsigned int ciphertext_len;
164 	struct fscrypt_str oname;
165 
166 	err = fscrypt_require_key(inode);
167 	if (err)
168 		return err;
169 
170 	if (disk_link->name) {
171 		/* filesystem-provided buffer */
172 		sd = (struct fscrypt_symlink_data *)disk_link->name;
173 	} else {
174 		sd = kmalloc(disk_link->len, GFP_NOFS);
175 		if (!sd)
176 			return -ENOMEM;
177 	}
178 	ciphertext_len = disk_link->len - sizeof(*sd);
179 	sd->len = cpu_to_le16(ciphertext_len);
180 
181 	oname.name = sd->encrypted_path;
182 	oname.len = ciphertext_len;
183 	err = fname_encrypt(inode, &iname, &oname);
184 	if (err) {
185 		if (!disk_link->name)
186 			kfree(sd);
187 		return err;
188 	}
189 	BUG_ON(oname.len != ciphertext_len);
190 
191 	/*
192 	 * Null-terminating the ciphertext doesn't make sense, but we still
193 	 * count the null terminator in the length, so we might as well
194 	 * initialize it just in case the filesystem writes it out.
195 	 */
196 	sd->encrypted_path[ciphertext_len] = '\0';
197 
198 	if (!disk_link->name)
199 		disk_link->name = (unsigned char *)sd;
200 	return 0;
201 }
202 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
203