xref: /openbmc/linux/fs/crypto/hooks.c (revision 4cc1a3e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include <linux/key.h>
9 
10 #include "fscrypt_private.h"
11 
12 /**
13  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14  * @inode: the inode being opened
15  * @filp: the struct file being set up
16  *
17  * Currently, an encrypted regular file can only be opened if its encryption key
18  * is available; access to the raw encrypted contents is not supported.
19  * Therefore, we first set up the inode's encryption key (if not already done)
20  * and return an error if it's unavailable.
21  *
22  * We also verify that if the parent directory (from the path via which the file
23  * is being opened) is encrypted, then the inode being opened uses the same
24  * encryption policy.  This is needed as part of the enforcement that all files
25  * in an encrypted directory tree use the same encryption policy, as a
26  * protection against certain types of offline attacks.  Note that this check is
27  * needed even when opening an *unencrypted* file, since it's forbidden to have
28  * an unencrypted file in an encrypted directory.
29  *
30  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31  */
32 int fscrypt_file_open(struct inode *inode, struct file *filp)
33 {
34 	int err;
35 	struct dentry *dir;
36 
37 	err = fscrypt_require_key(inode);
38 	if (err)
39 		return err;
40 
41 	dir = dget_parent(file_dentry(filp));
42 	if (IS_ENCRYPTED(d_inode(dir)) &&
43 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
44 		fscrypt_warn(inode,
45 			     "Inconsistent encryption context (parent directory: %lu)",
46 			     d_inode(dir)->i_ino);
47 		err = -EPERM;
48 	}
49 	dput(dir);
50 	return err;
51 }
52 EXPORT_SYMBOL_GPL(fscrypt_file_open);
53 
54 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 			   struct dentry *dentry)
56 {
57 	int err;
58 
59 	err = fscrypt_require_key(dir);
60 	if (err)
61 		return err;
62 
63 	/* ... in case we looked up ciphertext name before key was added */
64 	if (dentry->d_flags & DCACHE_ENCRYPTED_NAME)
65 		return -ENOKEY;
66 
67 	if (!fscrypt_has_permitted_context(dir, inode))
68 		return -EXDEV;
69 
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
73 
74 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
75 			     struct inode *new_dir, struct dentry *new_dentry,
76 			     unsigned int flags)
77 {
78 	int err;
79 
80 	err = fscrypt_require_key(old_dir);
81 	if (err)
82 		return err;
83 
84 	err = fscrypt_require_key(new_dir);
85 	if (err)
86 		return err;
87 
88 	/* ... in case we looked up ciphertext name(s) before key was added */
89 	if ((old_dentry->d_flags | new_dentry->d_flags) &
90 	    DCACHE_ENCRYPTED_NAME)
91 		return -ENOKEY;
92 
93 	if (old_dir != new_dir) {
94 		if (IS_ENCRYPTED(new_dir) &&
95 		    !fscrypt_has_permitted_context(new_dir,
96 						   d_inode(old_dentry)))
97 			return -EXDEV;
98 
99 		if ((flags & RENAME_EXCHANGE) &&
100 		    IS_ENCRYPTED(old_dir) &&
101 		    !fscrypt_has_permitted_context(old_dir,
102 						   d_inode(new_dentry)))
103 			return -EXDEV;
104 	}
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
108 
109 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
110 			     struct fscrypt_name *fname)
111 {
112 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
113 
114 	if (err && err != -ENOENT)
115 		return err;
116 
117 	if (fname->is_ciphertext_name) {
118 		spin_lock(&dentry->d_lock);
119 		dentry->d_flags |= DCACHE_ENCRYPTED_NAME;
120 		spin_unlock(&dentry->d_lock);
121 		d_set_d_op(dentry, &fscrypt_d_ops);
122 	}
123 	return err;
124 }
125 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
126 
127 /**
128  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
129  * @inode: the inode on which flags are being changed
130  * @oldflags: the old flags
131  * @flags: the new flags
132  *
133  * The caller should be holding i_rwsem for write.
134  *
135  * Return: 0 on success; -errno if the flags change isn't allowed or if
136  *	   another error occurs.
137  */
138 int fscrypt_prepare_setflags(struct inode *inode,
139 			     unsigned int oldflags, unsigned int flags)
140 {
141 	struct fscrypt_info *ci;
142 	struct fscrypt_master_key *mk;
143 	int err;
144 
145 	/*
146 	 * When the CASEFOLD flag is set on an encrypted directory, we must
147 	 * derive the secret key needed for the dirhash.  This is only possible
148 	 * if the directory uses a v2 encryption policy.
149 	 */
150 	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
151 		err = fscrypt_require_key(inode);
152 		if (err)
153 			return err;
154 		ci = inode->i_crypt_info;
155 		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
156 			return -EINVAL;
157 		mk = ci->ci_master_key->payload.data[0];
158 		down_read(&mk->mk_secret_sem);
159 		if (is_master_key_secret_present(&mk->mk_secret))
160 			err = fscrypt_derive_dirhash_key(ci, mk);
161 		else
162 			err = -ENOKEY;
163 		up_read(&mk->mk_secret_sem);
164 		return err;
165 	}
166 	return 0;
167 }
168 
169 int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
170 			      unsigned int max_len,
171 			      struct fscrypt_str *disk_link)
172 {
173 	int err;
174 
175 	/*
176 	 * To calculate the size of the encrypted symlink target we need to know
177 	 * the amount of NUL padding, which is determined by the flags set in
178 	 * the encryption policy which will be inherited from the directory.
179 	 * The easiest way to get access to this is to just load the directory's
180 	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
181 	 *
182 	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
183 	 */
184 	err = fscrypt_get_encryption_info(dir);
185 	if (err)
186 		return err;
187 	if (!fscrypt_has_encryption_key(dir))
188 		return -ENOKEY;
189 
190 	/*
191 	 * Calculate the size of the encrypted symlink and verify it won't
192 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
193 	 * targets are prefixed with the ciphertext length, despite this
194 	 * actually being redundant with i_size.  This decreases by 2 bytes the
195 	 * longest symlink target we can accept.
196 	 *
197 	 * We could recover 1 byte by not counting a null terminator, but
198 	 * counting it (even though it is meaningless for ciphertext) is simpler
199 	 * for now since filesystems will assume it is there and subtract it.
200 	 */
201 	if (!fscrypt_fname_encrypted_size(dir, len,
202 					  max_len - sizeof(struct fscrypt_symlink_data),
203 					  &disk_link->len))
204 		return -ENAMETOOLONG;
205 	disk_link->len += sizeof(struct fscrypt_symlink_data);
206 
207 	disk_link->name = NULL;
208 	return 0;
209 }
210 EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
211 
212 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
213 			      unsigned int len, struct fscrypt_str *disk_link)
214 {
215 	int err;
216 	struct qstr iname = QSTR_INIT(target, len);
217 	struct fscrypt_symlink_data *sd;
218 	unsigned int ciphertext_len;
219 
220 	/*
221 	 * fscrypt_prepare_new_inode() should have already set up the new
222 	 * symlink inode's encryption key.  We don't wait until now to do it,
223 	 * since we may be in a filesystem transaction now.
224 	 */
225 	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
226 		return -ENOKEY;
227 
228 	if (disk_link->name) {
229 		/* filesystem-provided buffer */
230 		sd = (struct fscrypt_symlink_data *)disk_link->name;
231 	} else {
232 		sd = kmalloc(disk_link->len, GFP_NOFS);
233 		if (!sd)
234 			return -ENOMEM;
235 	}
236 	ciphertext_len = disk_link->len - sizeof(*sd);
237 	sd->len = cpu_to_le16(ciphertext_len);
238 
239 	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
240 				    ciphertext_len);
241 	if (err)
242 		goto err_free_sd;
243 
244 	/*
245 	 * Null-terminating the ciphertext doesn't make sense, but we still
246 	 * count the null terminator in the length, so we might as well
247 	 * initialize it just in case the filesystem writes it out.
248 	 */
249 	sd->encrypted_path[ciphertext_len] = '\0';
250 
251 	/* Cache the plaintext symlink target for later use by get_link() */
252 	err = -ENOMEM;
253 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
254 	if (!inode->i_link)
255 		goto err_free_sd;
256 
257 	if (!disk_link->name)
258 		disk_link->name = (unsigned char *)sd;
259 	return 0;
260 
261 err_free_sd:
262 	if (!disk_link->name)
263 		kfree(sd);
264 	return err;
265 }
266 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
267 
268 /**
269  * fscrypt_get_symlink() - get the target of an encrypted symlink
270  * @inode: the symlink inode
271  * @caddr: the on-disk contents of the symlink
272  * @max_size: size of @caddr buffer
273  * @done: if successful, will be set up to free the returned target if needed
274  *
275  * If the symlink's encryption key is available, we decrypt its target.
276  * Otherwise, we encode its target for presentation.
277  *
278  * This may sleep, so the filesystem must have dropped out of RCU mode already.
279  *
280  * Return: the presentable symlink target or an ERR_PTR()
281  */
282 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
283 				unsigned int max_size,
284 				struct delayed_call *done)
285 {
286 	const struct fscrypt_symlink_data *sd;
287 	struct fscrypt_str cstr, pstr;
288 	bool has_key;
289 	int err;
290 
291 	/* This is for encrypted symlinks only */
292 	if (WARN_ON(!IS_ENCRYPTED(inode)))
293 		return ERR_PTR(-EINVAL);
294 
295 	/* If the decrypted target is already cached, just return it. */
296 	pstr.name = READ_ONCE(inode->i_link);
297 	if (pstr.name)
298 		return pstr.name;
299 
300 	/*
301 	 * Try to set up the symlink's encryption key, but we can continue
302 	 * regardless of whether the key is available or not.
303 	 */
304 	err = fscrypt_get_encryption_info(inode);
305 	if (err)
306 		return ERR_PTR(err);
307 	has_key = fscrypt_has_encryption_key(inode);
308 
309 	/*
310 	 * For historical reasons, encrypted symlink targets are prefixed with
311 	 * the ciphertext length, even though this is redundant with i_size.
312 	 */
313 
314 	if (max_size < sizeof(*sd))
315 		return ERR_PTR(-EUCLEAN);
316 	sd = caddr;
317 	cstr.name = (unsigned char *)sd->encrypted_path;
318 	cstr.len = le16_to_cpu(sd->len);
319 
320 	if (cstr.len == 0)
321 		return ERR_PTR(-EUCLEAN);
322 
323 	if (cstr.len + sizeof(*sd) - 1 > max_size)
324 		return ERR_PTR(-EUCLEAN);
325 
326 	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
327 	if (err)
328 		return ERR_PTR(err);
329 
330 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
331 	if (err)
332 		goto err_kfree;
333 
334 	err = -EUCLEAN;
335 	if (pstr.name[0] == '\0')
336 		goto err_kfree;
337 
338 	pstr.name[pstr.len] = '\0';
339 
340 	/*
341 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
342 	 * symlink targets encoded without the key, since those become outdated
343 	 * once the key is added.  This pairs with the READ_ONCE() above and in
344 	 * the VFS path lookup code.
345 	 */
346 	if (!has_key ||
347 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
348 		set_delayed_call(done, kfree_link, pstr.name);
349 
350 	return pstr.name;
351 
352 err_kfree:
353 	kfree(pstr.name);
354 	return ERR_PTR(err);
355 }
356 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
357