xref: /openbmc/linux/fs/crypto/hooks.c (revision 4a4b8721)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include <linux/key.h>
9 
10 #include "fscrypt_private.h"
11 
12 /**
13  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14  * @inode: the inode being opened
15  * @filp: the struct file being set up
16  *
17  * Currently, an encrypted regular file can only be opened if its encryption key
18  * is available; access to the raw encrypted contents is not supported.
19  * Therefore, we first set up the inode's encryption key (if not already done)
20  * and return an error if it's unavailable.
21  *
22  * We also verify that if the parent directory (from the path via which the file
23  * is being opened) is encrypted, then the inode being opened uses the same
24  * encryption policy.  This is needed as part of the enforcement that all files
25  * in an encrypted directory tree use the same encryption policy, as a
26  * protection against certain types of offline attacks.  Note that this check is
27  * needed even when opening an *unencrypted* file, since it's forbidden to have
28  * an unencrypted file in an encrypted directory.
29  *
30  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31  */
32 int fscrypt_file_open(struct inode *inode, struct file *filp)
33 {
34 	int err;
35 	struct dentry *dir;
36 
37 	err = fscrypt_require_key(inode);
38 	if (err)
39 		return err;
40 
41 	dir = dget_parent(file_dentry(filp));
42 	if (IS_ENCRYPTED(d_inode(dir)) &&
43 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
44 		fscrypt_warn(inode,
45 			     "Inconsistent encryption context (parent directory: %lu)",
46 			     d_inode(dir)->i_ino);
47 		err = -EPERM;
48 	}
49 	dput(dir);
50 	return err;
51 }
52 EXPORT_SYMBOL_GPL(fscrypt_file_open);
53 
54 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 			   struct dentry *dentry)
56 {
57 	if (fscrypt_is_nokey_name(dentry))
58 		return -ENOKEY;
59 	/*
60 	 * We don't need to separately check that the directory inode's key is
61 	 * available, as it's implied by the dentry not being a no-key name.
62 	 */
63 
64 	if (!fscrypt_has_permitted_context(dir, inode))
65 		return -EXDEV;
66 
67 	return 0;
68 }
69 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
70 
71 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
72 			     struct inode *new_dir, struct dentry *new_dentry,
73 			     unsigned int flags)
74 {
75 	if (fscrypt_is_nokey_name(old_dentry) ||
76 	    fscrypt_is_nokey_name(new_dentry))
77 		return -ENOKEY;
78 	/*
79 	 * We don't need to separately check that the directory inodes' keys are
80 	 * available, as it's implied by the dentries not being no-key names.
81 	 */
82 
83 	if (old_dir != new_dir) {
84 		if (IS_ENCRYPTED(new_dir) &&
85 		    !fscrypt_has_permitted_context(new_dir,
86 						   d_inode(old_dentry)))
87 			return -EXDEV;
88 
89 		if ((flags & RENAME_EXCHANGE) &&
90 		    IS_ENCRYPTED(old_dir) &&
91 		    !fscrypt_has_permitted_context(old_dir,
92 						   d_inode(new_dentry)))
93 			return -EXDEV;
94 	}
95 	return 0;
96 }
97 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
98 
99 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
100 			     struct fscrypt_name *fname)
101 {
102 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
103 
104 	if (err && err != -ENOENT)
105 		return err;
106 
107 	if (fname->is_nokey_name) {
108 		spin_lock(&dentry->d_lock);
109 		dentry->d_flags |= DCACHE_NOKEY_NAME;
110 		spin_unlock(&dentry->d_lock);
111 		d_set_d_op(dentry, &fscrypt_d_ops);
112 	}
113 	return err;
114 }
115 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
116 
117 /**
118  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
119  * @inode: the inode on which flags are being changed
120  * @oldflags: the old flags
121  * @flags: the new flags
122  *
123  * The caller should be holding i_rwsem for write.
124  *
125  * Return: 0 on success; -errno if the flags change isn't allowed or if
126  *	   another error occurs.
127  */
128 int fscrypt_prepare_setflags(struct inode *inode,
129 			     unsigned int oldflags, unsigned int flags)
130 {
131 	struct fscrypt_info *ci;
132 	struct key *key;
133 	struct fscrypt_master_key *mk;
134 	int err;
135 
136 	/*
137 	 * When the CASEFOLD flag is set on an encrypted directory, we must
138 	 * derive the secret key needed for the dirhash.  This is only possible
139 	 * if the directory uses a v2 encryption policy.
140 	 */
141 	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
142 		err = fscrypt_require_key(inode);
143 		if (err)
144 			return err;
145 		ci = inode->i_crypt_info;
146 		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
147 			return -EINVAL;
148 		key = ci->ci_master_key;
149 		mk = key->payload.data[0];
150 		down_read(&key->sem);
151 		if (is_master_key_secret_present(&mk->mk_secret))
152 			err = fscrypt_derive_dirhash_key(ci, mk);
153 		else
154 			err = -ENOKEY;
155 		up_read(&key->sem);
156 		return err;
157 	}
158 	return 0;
159 }
160 
161 /**
162  * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
163  * @dir: directory in which the symlink is being created
164  * @target: plaintext symlink target
165  * @len: length of @target excluding null terminator
166  * @max_len: space the filesystem has available to store the symlink target
167  * @disk_link: (out) the on-disk symlink target being prepared
168  *
169  * This function computes the size the symlink target will require on-disk,
170  * stores it in @disk_link->len, and validates it against @max_len.  An
171  * encrypted symlink may be longer than the original.
172  *
173  * Additionally, @disk_link->name is set to @target if the symlink will be
174  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
175  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
176  * on-disk target later.  (The reason for the two-step process is that some
177  * filesystems need to know the size of the symlink target before creating the
178  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
179  *
180  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
181  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
182  * occurred while setting up the encryption key.
183  */
184 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
185 			    unsigned int len, unsigned int max_len,
186 			    struct fscrypt_str *disk_link)
187 {
188 	const union fscrypt_policy *policy;
189 
190 	/*
191 	 * To calculate the size of the encrypted symlink target we need to know
192 	 * the amount of NUL padding, which is determined by the flags set in
193 	 * the encryption policy which will be inherited from the directory.
194 	 */
195 	policy = fscrypt_policy_to_inherit(dir);
196 	if (policy == NULL) {
197 		/* Not encrypted */
198 		disk_link->name = (unsigned char *)target;
199 		disk_link->len = len + 1;
200 		if (disk_link->len > max_len)
201 			return -ENAMETOOLONG;
202 		return 0;
203 	}
204 	if (IS_ERR(policy))
205 		return PTR_ERR(policy);
206 
207 	/*
208 	 * Calculate the size of the encrypted symlink and verify it won't
209 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
210 	 * targets are prefixed with the ciphertext length, despite this
211 	 * actually being redundant with i_size.  This decreases by 2 bytes the
212 	 * longest symlink target we can accept.
213 	 *
214 	 * We could recover 1 byte by not counting a null terminator, but
215 	 * counting it (even though it is meaningless for ciphertext) is simpler
216 	 * for now since filesystems will assume it is there and subtract it.
217 	 */
218 	if (!fscrypt_fname_encrypted_size(policy, len,
219 					  max_len - sizeof(struct fscrypt_symlink_data),
220 					  &disk_link->len))
221 		return -ENAMETOOLONG;
222 	disk_link->len += sizeof(struct fscrypt_symlink_data);
223 
224 	disk_link->name = NULL;
225 	return 0;
226 }
227 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
228 
229 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
230 			      unsigned int len, struct fscrypt_str *disk_link)
231 {
232 	int err;
233 	struct qstr iname = QSTR_INIT(target, len);
234 	struct fscrypt_symlink_data *sd;
235 	unsigned int ciphertext_len;
236 
237 	/*
238 	 * fscrypt_prepare_new_inode() should have already set up the new
239 	 * symlink inode's encryption key.  We don't wait until now to do it,
240 	 * since we may be in a filesystem transaction now.
241 	 */
242 	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
243 		return -ENOKEY;
244 
245 	if (disk_link->name) {
246 		/* filesystem-provided buffer */
247 		sd = (struct fscrypt_symlink_data *)disk_link->name;
248 	} else {
249 		sd = kmalloc(disk_link->len, GFP_NOFS);
250 		if (!sd)
251 			return -ENOMEM;
252 	}
253 	ciphertext_len = disk_link->len - sizeof(*sd);
254 	sd->len = cpu_to_le16(ciphertext_len);
255 
256 	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
257 				    ciphertext_len);
258 	if (err)
259 		goto err_free_sd;
260 
261 	/*
262 	 * Null-terminating the ciphertext doesn't make sense, but we still
263 	 * count the null terminator in the length, so we might as well
264 	 * initialize it just in case the filesystem writes it out.
265 	 */
266 	sd->encrypted_path[ciphertext_len] = '\0';
267 
268 	/* Cache the plaintext symlink target for later use by get_link() */
269 	err = -ENOMEM;
270 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
271 	if (!inode->i_link)
272 		goto err_free_sd;
273 
274 	if (!disk_link->name)
275 		disk_link->name = (unsigned char *)sd;
276 	return 0;
277 
278 err_free_sd:
279 	if (!disk_link->name)
280 		kfree(sd);
281 	return err;
282 }
283 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
284 
285 /**
286  * fscrypt_get_symlink() - get the target of an encrypted symlink
287  * @inode: the symlink inode
288  * @caddr: the on-disk contents of the symlink
289  * @max_size: size of @caddr buffer
290  * @done: if successful, will be set up to free the returned target if needed
291  *
292  * If the symlink's encryption key is available, we decrypt its target.
293  * Otherwise, we encode its target for presentation.
294  *
295  * This may sleep, so the filesystem must have dropped out of RCU mode already.
296  *
297  * Return: the presentable symlink target or an ERR_PTR()
298  */
299 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
300 				unsigned int max_size,
301 				struct delayed_call *done)
302 {
303 	const struct fscrypt_symlink_data *sd;
304 	struct fscrypt_str cstr, pstr;
305 	bool has_key;
306 	int err;
307 
308 	/* This is for encrypted symlinks only */
309 	if (WARN_ON(!IS_ENCRYPTED(inode)))
310 		return ERR_PTR(-EINVAL);
311 
312 	/* If the decrypted target is already cached, just return it. */
313 	pstr.name = READ_ONCE(inode->i_link);
314 	if (pstr.name)
315 		return pstr.name;
316 
317 	/*
318 	 * Try to set up the symlink's encryption key, but we can continue
319 	 * regardless of whether the key is available or not.
320 	 */
321 	err = fscrypt_get_encryption_info(inode);
322 	if (err)
323 		return ERR_PTR(err);
324 	has_key = fscrypt_has_encryption_key(inode);
325 
326 	/*
327 	 * For historical reasons, encrypted symlink targets are prefixed with
328 	 * the ciphertext length, even though this is redundant with i_size.
329 	 */
330 
331 	if (max_size < sizeof(*sd))
332 		return ERR_PTR(-EUCLEAN);
333 	sd = caddr;
334 	cstr.name = (unsigned char *)sd->encrypted_path;
335 	cstr.len = le16_to_cpu(sd->len);
336 
337 	if (cstr.len == 0)
338 		return ERR_PTR(-EUCLEAN);
339 
340 	if (cstr.len + sizeof(*sd) - 1 > max_size)
341 		return ERR_PTR(-EUCLEAN);
342 
343 	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
344 	if (err)
345 		return ERR_PTR(err);
346 
347 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
348 	if (err)
349 		goto err_kfree;
350 
351 	err = -EUCLEAN;
352 	if (pstr.name[0] == '\0')
353 		goto err_kfree;
354 
355 	pstr.name[pstr.len] = '\0';
356 
357 	/*
358 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
359 	 * symlink targets encoded without the key, since those become outdated
360 	 * once the key is added.  This pairs with the READ_ONCE() above and in
361 	 * the VFS path lookup code.
362 	 */
363 	if (!has_key ||
364 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
365 		set_delayed_call(done, kfree_link, pstr.name);
366 
367 	return pstr.name;
368 
369 err_kfree:
370 	kfree(pstr.name);
371 	return ERR_PTR(err);
372 }
373 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
374