xref: /openbmc/linux/fs/crypto/hooks.c (revision 234f1b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include <linux/key.h>
9 
10 #include "fscrypt_private.h"
11 
12 /**
13  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14  * @inode: the inode being opened
15  * @filp: the struct file being set up
16  *
17  * Currently, an encrypted regular file can only be opened if its encryption key
18  * is available; access to the raw encrypted contents is not supported.
19  * Therefore, we first set up the inode's encryption key (if not already done)
20  * and return an error if it's unavailable.
21  *
22  * We also verify that if the parent directory (from the path via which the file
23  * is being opened) is encrypted, then the inode being opened uses the same
24  * encryption policy.  This is needed as part of the enforcement that all files
25  * in an encrypted directory tree use the same encryption policy, as a
26  * protection against certain types of offline attacks.  Note that this check is
27  * needed even when opening an *unencrypted* file, since it's forbidden to have
28  * an unencrypted file in an encrypted directory.
29  *
30  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31  */
32 int fscrypt_file_open(struct inode *inode, struct file *filp)
33 {
34 	int err;
35 	struct dentry *dir;
36 
37 	err = fscrypt_require_key(inode);
38 	if (err)
39 		return err;
40 
41 	dir = dget_parent(file_dentry(filp));
42 	if (IS_ENCRYPTED(d_inode(dir)) &&
43 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
44 		fscrypt_warn(inode,
45 			     "Inconsistent encryption context (parent directory: %lu)",
46 			     d_inode(dir)->i_ino);
47 		err = -EPERM;
48 	}
49 	dput(dir);
50 	return err;
51 }
52 EXPORT_SYMBOL_GPL(fscrypt_file_open);
53 
54 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 			   struct dentry *dentry)
56 {
57 	if (fscrypt_is_nokey_name(dentry))
58 		return -ENOKEY;
59 	/*
60 	 * We don't need to separately check that the directory inode's key is
61 	 * available, as it's implied by the dentry not being a no-key name.
62 	 */
63 
64 	if (!fscrypt_has_permitted_context(dir, inode))
65 		return -EXDEV;
66 
67 	return 0;
68 }
69 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
70 
71 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
72 			     struct inode *new_dir, struct dentry *new_dentry,
73 			     unsigned int flags)
74 {
75 	if (fscrypt_is_nokey_name(old_dentry) ||
76 	    fscrypt_is_nokey_name(new_dentry))
77 		return -ENOKEY;
78 	/*
79 	 * We don't need to separately check that the directory inodes' keys are
80 	 * available, as it's implied by the dentries not being no-key names.
81 	 */
82 
83 	if (old_dir != new_dir) {
84 		if (IS_ENCRYPTED(new_dir) &&
85 		    !fscrypt_has_permitted_context(new_dir,
86 						   d_inode(old_dentry)))
87 			return -EXDEV;
88 
89 		if ((flags & RENAME_EXCHANGE) &&
90 		    IS_ENCRYPTED(old_dir) &&
91 		    !fscrypt_has_permitted_context(old_dir,
92 						   d_inode(new_dentry)))
93 			return -EXDEV;
94 	}
95 	return 0;
96 }
97 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
98 
99 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
100 			     struct fscrypt_name *fname)
101 {
102 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
103 
104 	if (err && err != -ENOENT)
105 		return err;
106 
107 	if (fname->is_nokey_name) {
108 		spin_lock(&dentry->d_lock);
109 		dentry->d_flags |= DCACHE_NOKEY_NAME;
110 		spin_unlock(&dentry->d_lock);
111 		d_set_d_op(dentry, &fscrypt_d_ops);
112 	}
113 	return err;
114 }
115 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
116 
117 /**
118  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
119  * @inode: the inode on which flags are being changed
120  * @oldflags: the old flags
121  * @flags: the new flags
122  *
123  * The caller should be holding i_rwsem for write.
124  *
125  * Return: 0 on success; -errno if the flags change isn't allowed or if
126  *	   another error occurs.
127  */
128 int fscrypt_prepare_setflags(struct inode *inode,
129 			     unsigned int oldflags, unsigned int flags)
130 {
131 	struct fscrypt_info *ci;
132 	struct fscrypt_master_key *mk;
133 	int err;
134 
135 	/*
136 	 * When the CASEFOLD flag is set on an encrypted directory, we must
137 	 * derive the secret key needed for the dirhash.  This is only possible
138 	 * if the directory uses a v2 encryption policy.
139 	 */
140 	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
141 		err = fscrypt_require_key(inode);
142 		if (err)
143 			return err;
144 		ci = inode->i_crypt_info;
145 		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
146 			return -EINVAL;
147 		mk = ci->ci_master_key->payload.data[0];
148 		down_read(&mk->mk_secret_sem);
149 		if (is_master_key_secret_present(&mk->mk_secret))
150 			err = fscrypt_derive_dirhash_key(ci, mk);
151 		else
152 			err = -ENOKEY;
153 		up_read(&mk->mk_secret_sem);
154 		return err;
155 	}
156 	return 0;
157 }
158 
159 /**
160  * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
161  * @dir: directory in which the symlink is being created
162  * @target: plaintext symlink target
163  * @len: length of @target excluding null terminator
164  * @max_len: space the filesystem has available to store the symlink target
165  * @disk_link: (out) the on-disk symlink target being prepared
166  *
167  * This function computes the size the symlink target will require on-disk,
168  * stores it in @disk_link->len, and validates it against @max_len.  An
169  * encrypted symlink may be longer than the original.
170  *
171  * Additionally, @disk_link->name is set to @target if the symlink will be
172  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
173  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
174  * on-disk target later.  (The reason for the two-step process is that some
175  * filesystems need to know the size of the symlink target before creating the
176  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
177  *
178  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
179  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
180  * occurred while setting up the encryption key.
181  */
182 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
183 			    unsigned int len, unsigned int max_len,
184 			    struct fscrypt_str *disk_link)
185 {
186 	const union fscrypt_policy *policy;
187 
188 	/*
189 	 * To calculate the size of the encrypted symlink target we need to know
190 	 * the amount of NUL padding, which is determined by the flags set in
191 	 * the encryption policy which will be inherited from the directory.
192 	 */
193 	policy = fscrypt_policy_to_inherit(dir);
194 	if (policy == NULL) {
195 		/* Not encrypted */
196 		disk_link->name = (unsigned char *)target;
197 		disk_link->len = len + 1;
198 		if (disk_link->len > max_len)
199 			return -ENAMETOOLONG;
200 		return 0;
201 	}
202 	if (IS_ERR(policy))
203 		return PTR_ERR(policy);
204 
205 	/*
206 	 * Calculate the size of the encrypted symlink and verify it won't
207 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
208 	 * targets are prefixed with the ciphertext length, despite this
209 	 * actually being redundant with i_size.  This decreases by 2 bytes the
210 	 * longest symlink target we can accept.
211 	 *
212 	 * We could recover 1 byte by not counting a null terminator, but
213 	 * counting it (even though it is meaningless for ciphertext) is simpler
214 	 * for now since filesystems will assume it is there and subtract it.
215 	 */
216 	if (!fscrypt_fname_encrypted_size(policy, len,
217 					  max_len - sizeof(struct fscrypt_symlink_data),
218 					  &disk_link->len))
219 		return -ENAMETOOLONG;
220 	disk_link->len += sizeof(struct fscrypt_symlink_data);
221 
222 	disk_link->name = NULL;
223 	return 0;
224 }
225 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
226 
227 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
228 			      unsigned int len, struct fscrypt_str *disk_link)
229 {
230 	int err;
231 	struct qstr iname = QSTR_INIT(target, len);
232 	struct fscrypt_symlink_data *sd;
233 	unsigned int ciphertext_len;
234 
235 	/*
236 	 * fscrypt_prepare_new_inode() should have already set up the new
237 	 * symlink inode's encryption key.  We don't wait until now to do it,
238 	 * since we may be in a filesystem transaction now.
239 	 */
240 	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
241 		return -ENOKEY;
242 
243 	if (disk_link->name) {
244 		/* filesystem-provided buffer */
245 		sd = (struct fscrypt_symlink_data *)disk_link->name;
246 	} else {
247 		sd = kmalloc(disk_link->len, GFP_NOFS);
248 		if (!sd)
249 			return -ENOMEM;
250 	}
251 	ciphertext_len = disk_link->len - sizeof(*sd);
252 	sd->len = cpu_to_le16(ciphertext_len);
253 
254 	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
255 				    ciphertext_len);
256 	if (err)
257 		goto err_free_sd;
258 
259 	/*
260 	 * Null-terminating the ciphertext doesn't make sense, but we still
261 	 * count the null terminator in the length, so we might as well
262 	 * initialize it just in case the filesystem writes it out.
263 	 */
264 	sd->encrypted_path[ciphertext_len] = '\0';
265 
266 	/* Cache the plaintext symlink target for later use by get_link() */
267 	err = -ENOMEM;
268 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
269 	if (!inode->i_link)
270 		goto err_free_sd;
271 
272 	if (!disk_link->name)
273 		disk_link->name = (unsigned char *)sd;
274 	return 0;
275 
276 err_free_sd:
277 	if (!disk_link->name)
278 		kfree(sd);
279 	return err;
280 }
281 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
282 
283 /**
284  * fscrypt_get_symlink() - get the target of an encrypted symlink
285  * @inode: the symlink inode
286  * @caddr: the on-disk contents of the symlink
287  * @max_size: size of @caddr buffer
288  * @done: if successful, will be set up to free the returned target if needed
289  *
290  * If the symlink's encryption key is available, we decrypt its target.
291  * Otherwise, we encode its target for presentation.
292  *
293  * This may sleep, so the filesystem must have dropped out of RCU mode already.
294  *
295  * Return: the presentable symlink target or an ERR_PTR()
296  */
297 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
298 				unsigned int max_size,
299 				struct delayed_call *done)
300 {
301 	const struct fscrypt_symlink_data *sd;
302 	struct fscrypt_str cstr, pstr;
303 	bool has_key;
304 	int err;
305 
306 	/* This is for encrypted symlinks only */
307 	if (WARN_ON(!IS_ENCRYPTED(inode)))
308 		return ERR_PTR(-EINVAL);
309 
310 	/* If the decrypted target is already cached, just return it. */
311 	pstr.name = READ_ONCE(inode->i_link);
312 	if (pstr.name)
313 		return pstr.name;
314 
315 	/*
316 	 * Try to set up the symlink's encryption key, but we can continue
317 	 * regardless of whether the key is available or not.
318 	 */
319 	err = fscrypt_get_encryption_info(inode);
320 	if (err)
321 		return ERR_PTR(err);
322 	has_key = fscrypt_has_encryption_key(inode);
323 
324 	/*
325 	 * For historical reasons, encrypted symlink targets are prefixed with
326 	 * the ciphertext length, even though this is redundant with i_size.
327 	 */
328 
329 	if (max_size < sizeof(*sd))
330 		return ERR_PTR(-EUCLEAN);
331 	sd = caddr;
332 	cstr.name = (unsigned char *)sd->encrypted_path;
333 	cstr.len = le16_to_cpu(sd->len);
334 
335 	if (cstr.len == 0)
336 		return ERR_PTR(-EUCLEAN);
337 
338 	if (cstr.len + sizeof(*sd) - 1 > max_size)
339 		return ERR_PTR(-EUCLEAN);
340 
341 	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
342 	if (err)
343 		return ERR_PTR(err);
344 
345 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
346 	if (err)
347 		goto err_kfree;
348 
349 	err = -EUCLEAN;
350 	if (pstr.name[0] == '\0')
351 		goto err_kfree;
352 
353 	pstr.name[pstr.len] = '\0';
354 
355 	/*
356 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
357 	 * symlink targets encoded without the key, since those become outdated
358 	 * once the key is added.  This pairs with the READ_ONCE() above and in
359 	 * the VFS path lookup code.
360 	 */
361 	if (!has_key ||
362 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
363 		set_delayed_call(done, kfree_link, pstr.name);
364 
365 	return pstr.name;
366 
367 err_kfree:
368 	kfree(pstr.name);
369 	return ERR_PTR(err);
370 }
371 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
372