xref: /openbmc/linux/fs/crypto/hkdf.c (revision adb57164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation
4  * Function"), aka RFC 5869.  See also the original paper (Krawczyk 2010):
5  * "Cryptographic Extraction and Key Derivation: The HKDF Scheme".
6  *
7  * This is used to derive keys from the fscrypt master keys.
8  *
9  * Copyright 2019 Google LLC
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/sha.h>
14 
15 #include "fscrypt_private.h"
16 
17 /*
18  * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses
19  * SHA-512 because it is reasonably secure and efficient; and since it produces
20  * a 64-byte digest, deriving an AES-256-XTS key preserves all 64 bytes of
21  * entropy from the master key and requires only one iteration of HKDF-Expand.
22  */
23 #define HKDF_HMAC_ALG		"hmac(sha512)"
24 #define HKDF_HASHLEN		SHA512_DIGEST_SIZE
25 
26 /*
27  * HKDF consists of two steps:
28  *
29  * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from
30  *    the input keying material and optional salt.
31  * 2. HKDF-Expand: expand the pseudorandom key into output keying material of
32  *    any length, parameterized by an application-specific info string.
33  *
34  * HKDF-Extract can be skipped if the input is already a pseudorandom key of
35  * length HKDF_HASHLEN bytes.  However, cipher modes other than AES-256-XTS take
36  * shorter keys, and we don't want to force users of those modes to provide
37  * unnecessarily long master keys.  Thus fscrypt still does HKDF-Extract.  No
38  * salt is used, since fscrypt master keys should already be pseudorandom and
39  * there's no way to persist a random salt per master key from kernel mode.
40  */
41 
42 /* HKDF-Extract (RFC 5869 section 2.2), unsalted */
43 static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm,
44 			unsigned int ikmlen, u8 prk[HKDF_HASHLEN])
45 {
46 	static const u8 default_salt[HKDF_HASHLEN];
47 	SHASH_DESC_ON_STACK(desc, hmac_tfm);
48 	int err;
49 
50 	err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN);
51 	if (err)
52 		return err;
53 
54 	desc->tfm = hmac_tfm;
55 	err = crypto_shash_digest(desc, ikm, ikmlen, prk);
56 	shash_desc_zero(desc);
57 	return err;
58 }
59 
60 /*
61  * Compute HKDF-Extract using the given master key as the input keying material,
62  * and prepare an HMAC transform object keyed by the resulting pseudorandom key.
63  *
64  * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many
65  * times without having to recompute HKDF-Extract each time.
66  */
67 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
68 		      unsigned int master_key_size)
69 {
70 	struct crypto_shash *hmac_tfm;
71 	u8 prk[HKDF_HASHLEN];
72 	int err;
73 
74 	hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0);
75 	if (IS_ERR(hmac_tfm)) {
76 		fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld",
77 			    PTR_ERR(hmac_tfm));
78 		return PTR_ERR(hmac_tfm);
79 	}
80 
81 	if (WARN_ON(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) {
82 		err = -EINVAL;
83 		goto err_free_tfm;
84 	}
85 
86 	err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk);
87 	if (err)
88 		goto err_free_tfm;
89 
90 	err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk));
91 	if (err)
92 		goto err_free_tfm;
93 
94 	hkdf->hmac_tfm = hmac_tfm;
95 	goto out;
96 
97 err_free_tfm:
98 	crypto_free_shash(hmac_tfm);
99 out:
100 	memzero_explicit(prk, sizeof(prk));
101 	return err;
102 }
103 
104 /*
105  * HKDF-Expand (RFC 5869 section 2.3).  This expands the pseudorandom key, which
106  * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen'
107  * bytes of output keying material parameterized by the application-specific
108  * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context'
109  * byte.  This is thread-safe and may be called by multiple threads in parallel.
110  *
111  * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt
112  * adds to its application-specific info strings to guarantee that it doesn't
113  * accidentally repeat an info string when using HKDF for different purposes.)
114  */
115 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
116 			const u8 *info, unsigned int infolen,
117 			u8 *okm, unsigned int okmlen)
118 {
119 	SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm);
120 	u8 prefix[9];
121 	unsigned int i;
122 	int err;
123 	const u8 *prev = NULL;
124 	u8 counter = 1;
125 	u8 tmp[HKDF_HASHLEN];
126 
127 	if (WARN_ON(okmlen > 255 * HKDF_HASHLEN))
128 		return -EINVAL;
129 
130 	desc->tfm = hkdf->hmac_tfm;
131 
132 	memcpy(prefix, "fscrypt\0", 8);
133 	prefix[8] = context;
134 
135 	for (i = 0; i < okmlen; i += HKDF_HASHLEN) {
136 
137 		err = crypto_shash_init(desc);
138 		if (err)
139 			goto out;
140 
141 		if (prev) {
142 			err = crypto_shash_update(desc, prev, HKDF_HASHLEN);
143 			if (err)
144 				goto out;
145 		}
146 
147 		err = crypto_shash_update(desc, prefix, sizeof(prefix));
148 		if (err)
149 			goto out;
150 
151 		err = crypto_shash_update(desc, info, infolen);
152 		if (err)
153 			goto out;
154 
155 		BUILD_BUG_ON(sizeof(counter) != 1);
156 		if (okmlen - i < HKDF_HASHLEN) {
157 			err = crypto_shash_finup(desc, &counter, 1, tmp);
158 			if (err)
159 				goto out;
160 			memcpy(&okm[i], tmp, okmlen - i);
161 			memzero_explicit(tmp, sizeof(tmp));
162 		} else {
163 			err = crypto_shash_finup(desc, &counter, 1, &okm[i]);
164 			if (err)
165 				goto out;
166 		}
167 		counter++;
168 		prev = &okm[i];
169 	}
170 	err = 0;
171 out:
172 	if (unlikely(err))
173 		memzero_explicit(okm, okmlen); /* so caller doesn't need to */
174 	shash_desc_zero(desc);
175 	return err;
176 }
177 
178 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf)
179 {
180 	crypto_free_shash(hkdf->hmac_tfm);
181 }
182