1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation 4 * Function"), aka RFC 5869. See also the original paper (Krawczyk 2010): 5 * "Cryptographic Extraction and Key Derivation: The HKDF Scheme". 6 * 7 * This is used to derive keys from the fscrypt master keys. 8 * 9 * Copyright 2019 Google LLC 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/sha2.h> 14 15 #include "fscrypt_private.h" 16 17 /* 18 * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses 19 * SHA-512 because it is well-established, secure, and reasonably efficient. 20 * 21 * HKDF-SHA256 was also considered, as its 256-bit security strength would be 22 * sufficient here. A 512-bit security strength is "nice to have", though. 23 * Also, on 64-bit CPUs, SHA-512 is usually just as fast as SHA-256. In the 24 * common case of deriving an AES-256-XTS key (512 bits), that can result in 25 * HKDF-SHA512 being much faster than HKDF-SHA256, as the longer digest size of 26 * SHA-512 causes HKDF-Expand to only need to do one iteration rather than two. 27 */ 28 #define HKDF_HMAC_ALG "hmac(sha512)" 29 #define HKDF_HASHLEN SHA512_DIGEST_SIZE 30 31 /* 32 * HKDF consists of two steps: 33 * 34 * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from 35 * the input keying material and optional salt. 36 * 2. HKDF-Expand: expand the pseudorandom key into output keying material of 37 * any length, parameterized by an application-specific info string. 38 * 39 * HKDF-Extract can be skipped if the input is already a pseudorandom key of 40 * length HKDF_HASHLEN bytes. However, cipher modes other than AES-256-XTS take 41 * shorter keys, and we don't want to force users of those modes to provide 42 * unnecessarily long master keys. Thus fscrypt still does HKDF-Extract. No 43 * salt is used, since fscrypt master keys should already be pseudorandom and 44 * there's no way to persist a random salt per master key from kernel mode. 45 */ 46 47 /* HKDF-Extract (RFC 5869 section 2.2), unsalted */ 48 static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm, 49 unsigned int ikmlen, u8 prk[HKDF_HASHLEN]) 50 { 51 static const u8 default_salt[HKDF_HASHLEN]; 52 int err; 53 54 err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN); 55 if (err) 56 return err; 57 58 return crypto_shash_tfm_digest(hmac_tfm, ikm, ikmlen, prk); 59 } 60 61 /* 62 * Compute HKDF-Extract using the given master key as the input keying material, 63 * and prepare an HMAC transform object keyed by the resulting pseudorandom key. 64 * 65 * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many 66 * times without having to recompute HKDF-Extract each time. 67 */ 68 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, 69 unsigned int master_key_size) 70 { 71 struct crypto_shash *hmac_tfm; 72 u8 prk[HKDF_HASHLEN]; 73 int err; 74 75 hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0); 76 if (IS_ERR(hmac_tfm)) { 77 fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld", 78 PTR_ERR(hmac_tfm)); 79 return PTR_ERR(hmac_tfm); 80 } 81 82 if (WARN_ON_ONCE(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) { 83 err = -EINVAL; 84 goto err_free_tfm; 85 } 86 87 err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk); 88 if (err) 89 goto err_free_tfm; 90 91 err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk)); 92 if (err) 93 goto err_free_tfm; 94 95 hkdf->hmac_tfm = hmac_tfm; 96 goto out; 97 98 err_free_tfm: 99 crypto_free_shash(hmac_tfm); 100 out: 101 memzero_explicit(prk, sizeof(prk)); 102 return err; 103 } 104 105 /* 106 * HKDF-Expand (RFC 5869 section 2.3). This expands the pseudorandom key, which 107 * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen' 108 * bytes of output keying material parameterized by the application-specific 109 * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context' 110 * byte. This is thread-safe and may be called by multiple threads in parallel. 111 * 112 * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt 113 * adds to its application-specific info strings to guarantee that it doesn't 114 * accidentally repeat an info string when using HKDF for different purposes.) 115 */ 116 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, 117 const u8 *info, unsigned int infolen, 118 u8 *okm, unsigned int okmlen) 119 { 120 SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm); 121 u8 prefix[9]; 122 unsigned int i; 123 int err; 124 const u8 *prev = NULL; 125 u8 counter = 1; 126 u8 tmp[HKDF_HASHLEN]; 127 128 if (WARN_ON_ONCE(okmlen > 255 * HKDF_HASHLEN)) 129 return -EINVAL; 130 131 desc->tfm = hkdf->hmac_tfm; 132 133 memcpy(prefix, "fscrypt\0", 8); 134 prefix[8] = context; 135 136 for (i = 0; i < okmlen; i += HKDF_HASHLEN) { 137 138 err = crypto_shash_init(desc); 139 if (err) 140 goto out; 141 142 if (prev) { 143 err = crypto_shash_update(desc, prev, HKDF_HASHLEN); 144 if (err) 145 goto out; 146 } 147 148 err = crypto_shash_update(desc, prefix, sizeof(prefix)); 149 if (err) 150 goto out; 151 152 err = crypto_shash_update(desc, info, infolen); 153 if (err) 154 goto out; 155 156 BUILD_BUG_ON(sizeof(counter) != 1); 157 if (okmlen - i < HKDF_HASHLEN) { 158 err = crypto_shash_finup(desc, &counter, 1, tmp); 159 if (err) 160 goto out; 161 memcpy(&okm[i], tmp, okmlen - i); 162 memzero_explicit(tmp, sizeof(tmp)); 163 } else { 164 err = crypto_shash_finup(desc, &counter, 1, &okm[i]); 165 if (err) 166 goto out; 167 } 168 counter++; 169 prev = &okm[i]; 170 } 171 err = 0; 172 out: 173 if (unlikely(err)) 174 memzero_explicit(okm, okmlen); /* so caller doesn't need to */ 175 shash_desc_zero(desc); 176 return err; 177 } 178 179 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf) 180 { 181 crypto_free_shash(hkdf->hmac_tfm); 182 } 183