1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation 4 * Function"), aka RFC 5869. See also the original paper (Krawczyk 2010): 5 * "Cryptographic Extraction and Key Derivation: The HKDF Scheme". 6 * 7 * This is used to derive keys from the fscrypt master keys. 8 * 9 * Copyright 2019 Google LLC 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/sha.h> 14 15 #include "fscrypt_private.h" 16 17 /* 18 * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses 19 * SHA-512 because it is reasonably secure and efficient; and since it produces 20 * a 64-byte digest, deriving an AES-256-XTS key preserves all 64 bytes of 21 * entropy from the master key and requires only one iteration of HKDF-Expand. 22 */ 23 #define HKDF_HMAC_ALG "hmac(sha512)" 24 #define HKDF_HASHLEN SHA512_DIGEST_SIZE 25 26 /* 27 * HKDF consists of two steps: 28 * 29 * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from 30 * the input keying material and optional salt. 31 * 2. HKDF-Expand: expand the pseudorandom key into output keying material of 32 * any length, parameterized by an application-specific info string. 33 * 34 * HKDF-Extract can be skipped if the input is already a pseudorandom key of 35 * length HKDF_HASHLEN bytes. However, cipher modes other than AES-256-XTS take 36 * shorter keys, and we don't want to force users of those modes to provide 37 * unnecessarily long master keys. Thus fscrypt still does HKDF-Extract. No 38 * salt is used, since fscrypt master keys should already be pseudorandom and 39 * there's no way to persist a random salt per master key from kernel mode. 40 */ 41 42 /* HKDF-Extract (RFC 5869 section 2.2), unsalted */ 43 static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm, 44 unsigned int ikmlen, u8 prk[HKDF_HASHLEN]) 45 { 46 static const u8 default_salt[HKDF_HASHLEN]; 47 SHASH_DESC_ON_STACK(desc, hmac_tfm); 48 int err; 49 50 err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN); 51 if (err) 52 return err; 53 54 desc->tfm = hmac_tfm; 55 err = crypto_shash_digest(desc, ikm, ikmlen, prk); 56 shash_desc_zero(desc); 57 return err; 58 } 59 60 /* 61 * Compute HKDF-Extract using the given master key as the input keying material, 62 * and prepare an HMAC transform object keyed by the resulting pseudorandom key. 63 * 64 * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many 65 * times without having to recompute HKDF-Extract each time. 66 */ 67 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, 68 unsigned int master_key_size) 69 { 70 struct crypto_shash *hmac_tfm; 71 u8 prk[HKDF_HASHLEN]; 72 int err; 73 74 hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0); 75 if (IS_ERR(hmac_tfm)) { 76 fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld", 77 PTR_ERR(hmac_tfm)); 78 return PTR_ERR(hmac_tfm); 79 } 80 81 if (WARN_ON(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) { 82 err = -EINVAL; 83 goto err_free_tfm; 84 } 85 86 err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk); 87 if (err) 88 goto err_free_tfm; 89 90 err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk)); 91 if (err) 92 goto err_free_tfm; 93 94 hkdf->hmac_tfm = hmac_tfm; 95 goto out; 96 97 err_free_tfm: 98 crypto_free_shash(hmac_tfm); 99 out: 100 memzero_explicit(prk, sizeof(prk)); 101 return err; 102 } 103 104 /* 105 * HKDF-Expand (RFC 5869 section 2.3). This expands the pseudorandom key, which 106 * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen' 107 * bytes of output keying material parameterized by the application-specific 108 * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context' 109 * byte. This is thread-safe and may be called by multiple threads in parallel. 110 * 111 * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt 112 * adds to its application-specific info strings to guarantee that it doesn't 113 * accidentally repeat an info string when using HKDF for different purposes.) 114 */ 115 int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context, 116 const u8 *info, unsigned int infolen, 117 u8 *okm, unsigned int okmlen) 118 { 119 SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm); 120 u8 prefix[9]; 121 unsigned int i; 122 int err; 123 const u8 *prev = NULL; 124 u8 counter = 1; 125 u8 tmp[HKDF_HASHLEN]; 126 127 if (WARN_ON(okmlen > 255 * HKDF_HASHLEN)) 128 return -EINVAL; 129 130 desc->tfm = hkdf->hmac_tfm; 131 132 memcpy(prefix, "fscrypt\0", 8); 133 prefix[8] = context; 134 135 for (i = 0; i < okmlen; i += HKDF_HASHLEN) { 136 137 err = crypto_shash_init(desc); 138 if (err) 139 goto out; 140 141 if (prev) { 142 err = crypto_shash_update(desc, prev, HKDF_HASHLEN); 143 if (err) 144 goto out; 145 } 146 147 err = crypto_shash_update(desc, prefix, sizeof(prefix)); 148 if (err) 149 goto out; 150 151 err = crypto_shash_update(desc, info, infolen); 152 if (err) 153 goto out; 154 155 BUILD_BUG_ON(sizeof(counter) != 1); 156 if (okmlen - i < HKDF_HASHLEN) { 157 err = crypto_shash_finup(desc, &counter, 1, tmp); 158 if (err) 159 goto out; 160 memcpy(&okm[i], tmp, okmlen - i); 161 memzero_explicit(tmp, sizeof(tmp)); 162 } else { 163 err = crypto_shash_finup(desc, &counter, 1, &okm[i]); 164 if (err) 165 goto out; 166 } 167 counter++; 168 prev = &okm[i]; 169 } 170 err = 0; 171 out: 172 if (unlikely(err)) 173 memzero_explicit(okm, okmlen); /* so caller doesn't need to */ 174 shash_desc_zero(desc); 175 return err; 176 } 177 178 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf) 179 { 180 crypto_free_shash(hkdf->hmac_tfm); 181 } 182