1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt_private.h 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #ifndef _FSCRYPT_PRIVATE_H 12 #define _FSCRYPT_PRIVATE_H 13 14 #include <linux/fscrypt.h> 15 #include <linux/siphash.h> 16 #include <crypto/hash.h> 17 18 #define CONST_STRLEN(str) (sizeof(str) - 1) 19 20 #define FS_KEY_DERIVATION_NONCE_SIZE 16 21 22 #define FSCRYPT_MIN_KEY_SIZE 16 23 24 #define FSCRYPT_CONTEXT_V1 1 25 #define FSCRYPT_CONTEXT_V2 2 26 27 struct fscrypt_context_v1 { 28 u8 version; /* FSCRYPT_CONTEXT_V1 */ 29 u8 contents_encryption_mode; 30 u8 filenames_encryption_mode; 31 u8 flags; 32 u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; 33 u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE]; 34 }; 35 36 struct fscrypt_context_v2 { 37 u8 version; /* FSCRYPT_CONTEXT_V2 */ 38 u8 contents_encryption_mode; 39 u8 filenames_encryption_mode; 40 u8 flags; 41 u8 __reserved[4]; 42 u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]; 43 u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE]; 44 }; 45 46 /* 47 * fscrypt_context - the encryption context of an inode 48 * 49 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each 50 * encrypted file usually in a hidden extended attribute. It contains the 51 * fields from the fscrypt_policy, in order to identify the encryption algorithm 52 * and key with which the file is encrypted. It also contains a nonce that was 53 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak 54 * to cause different files to be encrypted differently. 55 */ 56 union fscrypt_context { 57 u8 version; 58 struct fscrypt_context_v1 v1; 59 struct fscrypt_context_v2 v2; 60 }; 61 62 /* 63 * Return the size expected for the given fscrypt_context based on its version 64 * number, or 0 if the context version is unrecognized. 65 */ 66 static inline int fscrypt_context_size(const union fscrypt_context *ctx) 67 { 68 switch (ctx->version) { 69 case FSCRYPT_CONTEXT_V1: 70 BUILD_BUG_ON(sizeof(ctx->v1) != 28); 71 return sizeof(ctx->v1); 72 case FSCRYPT_CONTEXT_V2: 73 BUILD_BUG_ON(sizeof(ctx->v2) != 40); 74 return sizeof(ctx->v2); 75 } 76 return 0; 77 } 78 79 /* Check whether an fscrypt_context has a recognized version number and size */ 80 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx, 81 int ctx_size) 82 { 83 return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx); 84 } 85 86 /* Retrieve the context's nonce, assuming the context was already validated */ 87 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx) 88 { 89 switch (ctx->version) { 90 case FSCRYPT_CONTEXT_V1: 91 return ctx->v1.nonce; 92 case FSCRYPT_CONTEXT_V2: 93 return ctx->v2.nonce; 94 } 95 WARN_ON(1); 96 return NULL; 97 } 98 99 #undef fscrypt_policy 100 union fscrypt_policy { 101 u8 version; 102 struct fscrypt_policy_v1 v1; 103 struct fscrypt_policy_v2 v2; 104 }; 105 106 /* 107 * Return the size expected for the given fscrypt_policy based on its version 108 * number, or 0 if the policy version is unrecognized. 109 */ 110 static inline int fscrypt_policy_size(const union fscrypt_policy *policy) 111 { 112 switch (policy->version) { 113 case FSCRYPT_POLICY_V1: 114 return sizeof(policy->v1); 115 case FSCRYPT_POLICY_V2: 116 return sizeof(policy->v2); 117 } 118 return 0; 119 } 120 121 /* Return the contents encryption mode of a valid encryption policy */ 122 static inline u8 123 fscrypt_policy_contents_mode(const union fscrypt_policy *policy) 124 { 125 switch (policy->version) { 126 case FSCRYPT_POLICY_V1: 127 return policy->v1.contents_encryption_mode; 128 case FSCRYPT_POLICY_V2: 129 return policy->v2.contents_encryption_mode; 130 } 131 BUG(); 132 } 133 134 /* Return the filenames encryption mode of a valid encryption policy */ 135 static inline u8 136 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy) 137 { 138 switch (policy->version) { 139 case FSCRYPT_POLICY_V1: 140 return policy->v1.filenames_encryption_mode; 141 case FSCRYPT_POLICY_V2: 142 return policy->v2.filenames_encryption_mode; 143 } 144 BUG(); 145 } 146 147 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */ 148 static inline u8 149 fscrypt_policy_flags(const union fscrypt_policy *policy) 150 { 151 switch (policy->version) { 152 case FSCRYPT_POLICY_V1: 153 return policy->v1.flags; 154 case FSCRYPT_POLICY_V2: 155 return policy->v2.flags; 156 } 157 BUG(); 158 } 159 160 /* 161 * For encrypted symlinks, the ciphertext length is stored at the beginning 162 * of the string in little-endian format. 163 */ 164 struct fscrypt_symlink_data { 165 __le16 len; 166 char encrypted_path[1]; 167 } __packed; 168 169 /* 170 * fscrypt_info - the "encryption key" for an inode 171 * 172 * When an encrypted file's key is made available, an instance of this struct is 173 * allocated and stored in ->i_crypt_info. Once created, it remains until the 174 * inode is evicted. 175 */ 176 struct fscrypt_info { 177 178 /* The actual crypto transform used for encryption and decryption */ 179 struct crypto_skcipher *ci_ctfm; 180 181 /* True if the key should be freed when this fscrypt_info is freed */ 182 bool ci_owns_key; 183 184 /* 185 * Encryption mode used for this inode. It corresponds to either the 186 * contents or filenames encryption mode, depending on the inode type. 187 */ 188 struct fscrypt_mode *ci_mode; 189 190 /* Back-pointer to the inode */ 191 struct inode *ci_inode; 192 193 /* 194 * The master key with which this inode was unlocked (decrypted). This 195 * will be NULL if the master key was found in a process-subscribed 196 * keyring rather than in the filesystem-level keyring. 197 */ 198 struct key *ci_master_key; 199 200 /* 201 * Link in list of inodes that were unlocked with the master key. 202 * Only used when ->ci_master_key is set. 203 */ 204 struct list_head ci_master_key_link; 205 206 /* 207 * If non-NULL, then encryption is done using the master key directly 208 * and ci_ctfm will equal ci_direct_key->dk_ctfm. 209 */ 210 struct fscrypt_direct_key *ci_direct_key; 211 212 /* 213 * This inode's hash key for filenames. This is a 128-bit SipHash-2-4 214 * key. This is only set for directories that use a keyed dirhash over 215 * the plaintext filenames -- currently just casefolded directories. 216 */ 217 siphash_key_t ci_dirhash_key; 218 bool ci_dirhash_key_initialized; 219 220 /* The encryption policy used by this inode */ 221 union fscrypt_policy ci_policy; 222 223 /* This inode's nonce, copied from the fscrypt_context */ 224 u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE]; 225 226 /* Hashed inode number. Only set for IV_INO_LBLK_32 */ 227 u32 ci_hashed_ino; 228 }; 229 230 typedef enum { 231 FS_DECRYPT = 0, 232 FS_ENCRYPT, 233 } fscrypt_direction_t; 234 235 /* crypto.c */ 236 extern struct kmem_cache *fscrypt_info_cachep; 237 int fscrypt_initialize(unsigned int cop_flags); 238 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw, 239 u64 lblk_num, struct page *src_page, 240 struct page *dest_page, unsigned int len, 241 unsigned int offs, gfp_t gfp_flags); 242 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags); 243 244 void __printf(3, 4) __cold 245 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...); 246 247 #define fscrypt_warn(inode, fmt, ...) \ 248 fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__) 249 #define fscrypt_err(inode, fmt, ...) \ 250 fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__) 251 252 #define FSCRYPT_MAX_IV_SIZE 32 253 254 union fscrypt_iv { 255 struct { 256 /* logical block number within the file */ 257 __le64 lblk_num; 258 259 /* per-file nonce; only set in DIRECT_KEY mode */ 260 u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE]; 261 }; 262 u8 raw[FSCRYPT_MAX_IV_SIZE]; 263 }; 264 265 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, 266 const struct fscrypt_info *ci); 267 268 /* fname.c */ 269 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 270 u8 *out, unsigned int olen); 271 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 272 u32 max_len, u32 *encrypted_len_ret); 273 extern const struct dentry_operations fscrypt_d_ops; 274 275 /* hkdf.c */ 276 277 struct fscrypt_hkdf { 278 struct crypto_shash *hmac_tfm; 279 }; 280 281 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, 282 unsigned int master_key_size); 283 284 /* 285 * The list of contexts in which fscrypt uses HKDF. These values are used as 286 * the first byte of the HKDF application-specific info string to guarantee that 287 * info strings are never repeated between contexts. This ensures that all HKDF 288 * outputs are unique and cryptographically isolated, i.e. knowledge of one 289 * output doesn't reveal another. 290 */ 291 #define HKDF_CONTEXT_KEY_IDENTIFIER 1 292 #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 293 #define HKDF_CONTEXT_DIRECT_KEY 3 294 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 295 #define HKDF_CONTEXT_DIRHASH_KEY 5 296 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 297 #define HKDF_CONTEXT_INODE_HASH_KEY 7 298 299 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, 300 const u8 *info, unsigned int infolen, 301 u8 *okm, unsigned int okmlen); 302 303 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf); 304 305 /* keyring.c */ 306 307 /* 308 * fscrypt_master_key_secret - secret key material of an in-use master key 309 */ 310 struct fscrypt_master_key_secret { 311 312 /* 313 * For v2 policy keys: HKDF context keyed by this master key. 314 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL). 315 */ 316 struct fscrypt_hkdf hkdf; 317 318 /* Size of the raw key in bytes. Set even if ->raw isn't set. */ 319 u32 size; 320 321 /* For v1 policy keys: the raw key. Wiped for v2 policy keys. */ 322 u8 raw[FSCRYPT_MAX_KEY_SIZE]; 323 324 } __randomize_layout; 325 326 /* 327 * fscrypt_master_key - an in-use master key 328 * 329 * This represents a master encryption key which has been added to the 330 * filesystem and can be used to "unlock" the encrypted files which were 331 * encrypted with it. 332 */ 333 struct fscrypt_master_key { 334 335 /* 336 * The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is 337 * executed, this is wiped and no new inodes can be unlocked with this 338 * key; however, there may still be inodes in ->mk_decrypted_inodes 339 * which could not be evicted. As long as some inodes still remain, 340 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or 341 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again. 342 * 343 * Locking: protected by key->sem (outer) and mk_secret_sem (inner). 344 * The reason for two locks is that key->sem also protects modifying 345 * mk_users, which ranks it above the semaphore for the keyring key 346 * type, which is in turn above page faults (via keyring_read). But 347 * sometimes filesystems call fscrypt_get_encryption_info() from within 348 * a transaction, which ranks it below page faults. So we need a 349 * separate lock which protects mk_secret but not also mk_users. 350 */ 351 struct fscrypt_master_key_secret mk_secret; 352 struct rw_semaphore mk_secret_sem; 353 354 /* 355 * For v1 policy keys: an arbitrary key descriptor which was assigned by 356 * userspace (->descriptor). 357 * 358 * For v2 policy keys: a cryptographic hash of this key (->identifier). 359 */ 360 struct fscrypt_key_specifier mk_spec; 361 362 /* 363 * Keyring which contains a key of type 'key_type_fscrypt_user' for each 364 * user who has added this key. Normally each key will be added by just 365 * one user, but it's possible that multiple users share a key, and in 366 * that case we need to keep track of those users so that one user can't 367 * remove the key before the others want it removed too. 368 * 369 * This is NULL for v1 policy keys; those can only be added by root. 370 * 371 * Locking: in addition to this keyrings own semaphore, this is 372 * protected by the master key's key->sem, so we can do atomic 373 * search+insert. It can also be searched without taking any locks, but 374 * in that case the returned key may have already been removed. 375 */ 376 struct key *mk_users; 377 378 /* 379 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present. 380 * Once this goes to 0, the master key is removed from ->s_master_keys. 381 * The 'struct fscrypt_master_key' will continue to live as long as the 382 * 'struct key' whose payload it is, but we won't let this reference 383 * count rise again. 384 */ 385 refcount_t mk_refcount; 386 387 /* 388 * List of inodes that were unlocked using this key. This allows the 389 * inodes to be evicted efficiently if the key is removed. 390 */ 391 struct list_head mk_decrypted_inodes; 392 spinlock_t mk_decrypted_inodes_lock; 393 394 /* 395 * Per-mode encryption keys for the various types of encryption policies 396 * that use them. Allocated and derived on-demand. 397 */ 398 struct crypto_skcipher *mk_direct_keys[__FSCRYPT_MODE_MAX + 1]; 399 struct crypto_skcipher *mk_iv_ino_lblk_64_keys[__FSCRYPT_MODE_MAX + 1]; 400 struct crypto_skcipher *mk_iv_ino_lblk_32_keys[__FSCRYPT_MODE_MAX + 1]; 401 402 /* Hash key for inode numbers. Initialized only when needed. */ 403 siphash_key_t mk_ino_hash_key; 404 bool mk_ino_hash_key_initialized; 405 406 } __randomize_layout; 407 408 static inline bool 409 is_master_key_secret_present(const struct fscrypt_master_key_secret *secret) 410 { 411 /* 412 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and 413 * fscrypt_key_describe(). These run in atomic context, so they can't 414 * take ->mk_secret_sem and thus 'secret' can change concurrently which 415 * would be a data race. But they only need to know whether the secret 416 * *was* present at the time of check, so READ_ONCE() suffices. 417 */ 418 return READ_ONCE(secret->size) != 0; 419 } 420 421 static inline const char *master_key_spec_type( 422 const struct fscrypt_key_specifier *spec) 423 { 424 switch (spec->type) { 425 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 426 return "descriptor"; 427 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 428 return "identifier"; 429 } 430 return "[unknown]"; 431 } 432 433 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec) 434 { 435 switch (spec->type) { 436 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 437 return FSCRYPT_KEY_DESCRIPTOR_SIZE; 438 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 439 return FSCRYPT_KEY_IDENTIFIER_SIZE; 440 } 441 return 0; 442 } 443 444 struct key * 445 fscrypt_find_master_key(struct super_block *sb, 446 const struct fscrypt_key_specifier *mk_spec); 447 448 int fscrypt_add_test_dummy_key(struct super_block *sb, 449 struct fscrypt_key_specifier *key_spec); 450 451 int fscrypt_verify_key_added(struct super_block *sb, 452 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); 453 454 int __init fscrypt_init_keyring(void); 455 456 /* keysetup.c */ 457 458 struct fscrypt_mode { 459 const char *friendly_name; 460 const char *cipher_str; 461 int keysize; 462 int ivsize; 463 int logged_impl_name; 464 }; 465 466 extern struct fscrypt_mode fscrypt_modes[]; 467 468 struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode, 469 const u8 *raw_key, 470 const struct inode *inode); 471 472 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key); 473 474 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 475 const struct fscrypt_master_key *mk); 476 477 /* keysetup_v1.c */ 478 479 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk); 480 481 int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, 482 const u8 *raw_master_key); 483 484 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci); 485 486 /* policy.c */ 487 488 bool fscrypt_policies_equal(const union fscrypt_policy *policy1, 489 const union fscrypt_policy *policy2); 490 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u, 491 const struct inode *inode); 492 int fscrypt_policy_from_context(union fscrypt_policy *policy_u, 493 const union fscrypt_context *ctx_u, 494 int ctx_size); 495 496 #endif /* _FSCRYPT_PRIVATE_H */ 497