1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt_private.h 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #ifndef _FSCRYPT_PRIVATE_H 12 #define _FSCRYPT_PRIVATE_H 13 14 #include <linux/fscrypt.h> 15 #include <linux/siphash.h> 16 #include <crypto/hash.h> 17 #include <linux/blk-crypto.h> 18 19 #define CONST_STRLEN(str) (sizeof(str) - 1) 20 21 #define FSCRYPT_FILE_NONCE_SIZE 16 22 23 #define FSCRYPT_MIN_KEY_SIZE 16 24 25 #define FSCRYPT_CONTEXT_V1 1 26 #define FSCRYPT_CONTEXT_V2 2 27 28 struct fscrypt_context_v1 { 29 u8 version; /* FSCRYPT_CONTEXT_V1 */ 30 u8 contents_encryption_mode; 31 u8 filenames_encryption_mode; 32 u8 flags; 33 u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; 34 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 35 }; 36 37 struct fscrypt_context_v2 { 38 u8 version; /* FSCRYPT_CONTEXT_V2 */ 39 u8 contents_encryption_mode; 40 u8 filenames_encryption_mode; 41 u8 flags; 42 u8 __reserved[4]; 43 u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]; 44 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 45 }; 46 47 /* 48 * fscrypt_context - the encryption context of an inode 49 * 50 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each 51 * encrypted file usually in a hidden extended attribute. It contains the 52 * fields from the fscrypt_policy, in order to identify the encryption algorithm 53 * and key with which the file is encrypted. It also contains a nonce that was 54 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak 55 * to cause different files to be encrypted differently. 56 */ 57 union fscrypt_context { 58 u8 version; 59 struct fscrypt_context_v1 v1; 60 struct fscrypt_context_v2 v2; 61 }; 62 63 /* 64 * Return the size expected for the given fscrypt_context based on its version 65 * number, or 0 if the context version is unrecognized. 66 */ 67 static inline int fscrypt_context_size(const union fscrypt_context *ctx) 68 { 69 switch (ctx->version) { 70 case FSCRYPT_CONTEXT_V1: 71 BUILD_BUG_ON(sizeof(ctx->v1) != 28); 72 return sizeof(ctx->v1); 73 case FSCRYPT_CONTEXT_V2: 74 BUILD_BUG_ON(sizeof(ctx->v2) != 40); 75 return sizeof(ctx->v2); 76 } 77 return 0; 78 } 79 80 /* Check whether an fscrypt_context has a recognized version number and size */ 81 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx, 82 int ctx_size) 83 { 84 return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx); 85 } 86 87 /* Retrieve the context's nonce, assuming the context was already validated */ 88 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx) 89 { 90 switch (ctx->version) { 91 case FSCRYPT_CONTEXT_V1: 92 return ctx->v1.nonce; 93 case FSCRYPT_CONTEXT_V2: 94 return ctx->v2.nonce; 95 } 96 WARN_ON(1); 97 return NULL; 98 } 99 100 union fscrypt_policy { 101 u8 version; 102 struct fscrypt_policy_v1 v1; 103 struct fscrypt_policy_v2 v2; 104 }; 105 106 /* 107 * Return the size expected for the given fscrypt_policy based on its version 108 * number, or 0 if the policy version is unrecognized. 109 */ 110 static inline int fscrypt_policy_size(const union fscrypt_policy *policy) 111 { 112 switch (policy->version) { 113 case FSCRYPT_POLICY_V1: 114 return sizeof(policy->v1); 115 case FSCRYPT_POLICY_V2: 116 return sizeof(policy->v2); 117 } 118 return 0; 119 } 120 121 /* Return the contents encryption mode of a valid encryption policy */ 122 static inline u8 123 fscrypt_policy_contents_mode(const union fscrypt_policy *policy) 124 { 125 switch (policy->version) { 126 case FSCRYPT_POLICY_V1: 127 return policy->v1.contents_encryption_mode; 128 case FSCRYPT_POLICY_V2: 129 return policy->v2.contents_encryption_mode; 130 } 131 BUG(); 132 } 133 134 /* Return the filenames encryption mode of a valid encryption policy */ 135 static inline u8 136 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy) 137 { 138 switch (policy->version) { 139 case FSCRYPT_POLICY_V1: 140 return policy->v1.filenames_encryption_mode; 141 case FSCRYPT_POLICY_V2: 142 return policy->v2.filenames_encryption_mode; 143 } 144 BUG(); 145 } 146 147 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */ 148 static inline u8 149 fscrypt_policy_flags(const union fscrypt_policy *policy) 150 { 151 switch (policy->version) { 152 case FSCRYPT_POLICY_V1: 153 return policy->v1.flags; 154 case FSCRYPT_POLICY_V2: 155 return policy->v2.flags; 156 } 157 BUG(); 158 } 159 160 /* 161 * For encrypted symlinks, the ciphertext length is stored at the beginning 162 * of the string in little-endian format. 163 */ 164 struct fscrypt_symlink_data { 165 __le16 len; 166 char encrypted_path[1]; 167 } __packed; 168 169 /** 170 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption 171 * @tfm: crypto API transform object 172 * @blk_key: key for blk-crypto 173 * 174 * Normally only one of the fields will be non-NULL. 175 */ 176 struct fscrypt_prepared_key { 177 struct crypto_skcipher *tfm; 178 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 179 struct fscrypt_blk_crypto_key *blk_key; 180 #endif 181 }; 182 183 /* 184 * fscrypt_info - the "encryption key" for an inode 185 * 186 * When an encrypted file's key is made available, an instance of this struct is 187 * allocated and stored in ->i_crypt_info. Once created, it remains until the 188 * inode is evicted. 189 */ 190 struct fscrypt_info { 191 192 /* The key in a form prepared for actual encryption/decryption */ 193 struct fscrypt_prepared_key ci_enc_key; 194 195 /* True if ci_enc_key should be freed when this fscrypt_info is freed */ 196 bool ci_owns_key; 197 198 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 199 /* 200 * True if this inode will use inline encryption (blk-crypto) instead of 201 * the traditional filesystem-layer encryption. 202 */ 203 bool ci_inlinecrypt; 204 #endif 205 206 /* 207 * Encryption mode used for this inode. It corresponds to either the 208 * contents or filenames encryption mode, depending on the inode type. 209 */ 210 struct fscrypt_mode *ci_mode; 211 212 /* Back-pointer to the inode */ 213 struct inode *ci_inode; 214 215 /* 216 * The master key with which this inode was unlocked (decrypted). This 217 * will be NULL if the master key was found in a process-subscribed 218 * keyring rather than in the filesystem-level keyring. 219 */ 220 struct key *ci_master_key; 221 222 /* 223 * Link in list of inodes that were unlocked with the master key. 224 * Only used when ->ci_master_key is set. 225 */ 226 struct list_head ci_master_key_link; 227 228 /* 229 * If non-NULL, then encryption is done using the master key directly 230 * and ci_enc_key will equal ci_direct_key->dk_key. 231 */ 232 struct fscrypt_direct_key *ci_direct_key; 233 234 /* 235 * This inode's hash key for filenames. This is a 128-bit SipHash-2-4 236 * key. This is only set for directories that use a keyed dirhash over 237 * the plaintext filenames -- currently just casefolded directories. 238 */ 239 siphash_key_t ci_dirhash_key; 240 bool ci_dirhash_key_initialized; 241 242 /* The encryption policy used by this inode */ 243 union fscrypt_policy ci_policy; 244 245 /* This inode's nonce, copied from the fscrypt_context */ 246 u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE]; 247 248 /* Hashed inode number. Only set for IV_INO_LBLK_32 */ 249 u32 ci_hashed_ino; 250 }; 251 252 typedef enum { 253 FS_DECRYPT = 0, 254 FS_ENCRYPT, 255 } fscrypt_direction_t; 256 257 /* crypto.c */ 258 extern struct kmem_cache *fscrypt_info_cachep; 259 int fscrypt_initialize(unsigned int cop_flags); 260 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw, 261 u64 lblk_num, struct page *src_page, 262 struct page *dest_page, unsigned int len, 263 unsigned int offs, gfp_t gfp_flags); 264 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags); 265 266 void __printf(3, 4) __cold 267 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...); 268 269 #define fscrypt_warn(inode, fmt, ...) \ 270 fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__) 271 #define fscrypt_err(inode, fmt, ...) \ 272 fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__) 273 274 #define FSCRYPT_MAX_IV_SIZE 32 275 276 union fscrypt_iv { 277 struct { 278 /* logical block number within the file */ 279 __le64 lblk_num; 280 281 /* per-file nonce; only set in DIRECT_KEY mode */ 282 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 283 }; 284 u8 raw[FSCRYPT_MAX_IV_SIZE]; 285 __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)]; 286 }; 287 288 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, 289 const struct fscrypt_info *ci); 290 291 /* fname.c */ 292 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 293 u8 *out, unsigned int olen); 294 bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, 295 u32 orig_len, u32 max_len, 296 u32 *encrypted_len_ret); 297 extern const struct dentry_operations fscrypt_d_ops; 298 299 /* hkdf.c */ 300 301 struct fscrypt_hkdf { 302 struct crypto_shash *hmac_tfm; 303 }; 304 305 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, 306 unsigned int master_key_size); 307 308 /* 309 * The list of contexts in which fscrypt uses HKDF. These values are used as 310 * the first byte of the HKDF application-specific info string to guarantee that 311 * info strings are never repeated between contexts. This ensures that all HKDF 312 * outputs are unique and cryptographically isolated, i.e. knowledge of one 313 * output doesn't reveal another. 314 */ 315 #define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */ 316 #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */ 317 #define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */ 318 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */ 319 #define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */ 320 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */ 321 #define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */ 322 323 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, 324 const u8 *info, unsigned int infolen, 325 u8 *okm, unsigned int okmlen); 326 327 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf); 328 329 /* inline_crypt.c */ 330 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 331 int fscrypt_select_encryption_impl(struct fscrypt_info *ci); 332 333 static inline bool 334 fscrypt_using_inline_encryption(const struct fscrypt_info *ci) 335 { 336 return ci->ci_inlinecrypt; 337 } 338 339 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, 340 const u8 *raw_key, 341 const struct fscrypt_info *ci); 342 343 void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key); 344 345 /* 346 * Check whether the crypto transform or blk-crypto key has been allocated in 347 * @prep_key, depending on which encryption implementation the file will use. 348 */ 349 static inline bool 350 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, 351 const struct fscrypt_info *ci) 352 { 353 /* 354 * The two smp_load_acquire()'s here pair with the smp_store_release()'s 355 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key(). 356 * I.e., in some cases (namely, if this prep_key is a per-mode 357 * encryption key) another task can publish blk_key or tfm concurrently, 358 * executing a RELEASE barrier. We need to use smp_load_acquire() here 359 * to safely ACQUIRE the memory the other task published. 360 */ 361 if (fscrypt_using_inline_encryption(ci)) 362 return smp_load_acquire(&prep_key->blk_key) != NULL; 363 return smp_load_acquire(&prep_key->tfm) != NULL; 364 } 365 366 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 367 368 static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci) 369 { 370 return 0; 371 } 372 373 static inline bool 374 fscrypt_using_inline_encryption(const struct fscrypt_info *ci) 375 { 376 return false; 377 } 378 379 static inline int 380 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, 381 const u8 *raw_key, 382 const struct fscrypt_info *ci) 383 { 384 WARN_ON(1); 385 return -EOPNOTSUPP; 386 } 387 388 static inline void 389 fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key) 390 { 391 } 392 393 static inline bool 394 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, 395 const struct fscrypt_info *ci) 396 { 397 return smp_load_acquire(&prep_key->tfm) != NULL; 398 } 399 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 400 401 /* keyring.c */ 402 403 /* 404 * fscrypt_master_key_secret - secret key material of an in-use master key 405 */ 406 struct fscrypt_master_key_secret { 407 408 /* 409 * For v2 policy keys: HKDF context keyed by this master key. 410 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL). 411 */ 412 struct fscrypt_hkdf hkdf; 413 414 /* Size of the raw key in bytes. Set even if ->raw isn't set. */ 415 u32 size; 416 417 /* For v1 policy keys: the raw key. Wiped for v2 policy keys. */ 418 u8 raw[FSCRYPT_MAX_KEY_SIZE]; 419 420 } __randomize_layout; 421 422 /* 423 * fscrypt_master_key - an in-use master key 424 * 425 * This represents a master encryption key which has been added to the 426 * filesystem and can be used to "unlock" the encrypted files which were 427 * encrypted with it. 428 */ 429 struct fscrypt_master_key { 430 431 /* 432 * The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is 433 * executed, this is wiped and no new inodes can be unlocked with this 434 * key; however, there may still be inodes in ->mk_decrypted_inodes 435 * which could not be evicted. As long as some inodes still remain, 436 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or 437 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again. 438 * 439 * Locking: protected by key->sem (outer) and mk_secret_sem (inner). 440 * The reason for two locks is that key->sem also protects modifying 441 * mk_users, which ranks it above the semaphore for the keyring key 442 * type, which is in turn above page faults (via keyring_read). But 443 * sometimes filesystems call fscrypt_get_encryption_info() from within 444 * a transaction, which ranks it below page faults. So we need a 445 * separate lock which protects mk_secret but not also mk_users. 446 */ 447 struct fscrypt_master_key_secret mk_secret; 448 struct rw_semaphore mk_secret_sem; 449 450 /* 451 * For v1 policy keys: an arbitrary key descriptor which was assigned by 452 * userspace (->descriptor). 453 * 454 * For v2 policy keys: a cryptographic hash of this key (->identifier). 455 */ 456 struct fscrypt_key_specifier mk_spec; 457 458 /* 459 * Keyring which contains a key of type 'key_type_fscrypt_user' for each 460 * user who has added this key. Normally each key will be added by just 461 * one user, but it's possible that multiple users share a key, and in 462 * that case we need to keep track of those users so that one user can't 463 * remove the key before the others want it removed too. 464 * 465 * This is NULL for v1 policy keys; those can only be added by root. 466 * 467 * Locking: in addition to this keyrings own semaphore, this is 468 * protected by the master key's key->sem, so we can do atomic 469 * search+insert. It can also be searched without taking any locks, but 470 * in that case the returned key may have already been removed. 471 */ 472 struct key *mk_users; 473 474 /* 475 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present. 476 * Once this goes to 0, the master key is removed from ->s_master_keys. 477 * The 'struct fscrypt_master_key' will continue to live as long as the 478 * 'struct key' whose payload it is, but we won't let this reference 479 * count rise again. 480 */ 481 refcount_t mk_refcount; 482 483 /* 484 * List of inodes that were unlocked using this key. This allows the 485 * inodes to be evicted efficiently if the key is removed. 486 */ 487 struct list_head mk_decrypted_inodes; 488 spinlock_t mk_decrypted_inodes_lock; 489 490 /* 491 * Per-mode encryption keys for the various types of encryption policies 492 * that use them. Allocated and derived on-demand. 493 */ 494 struct fscrypt_prepared_key mk_direct_keys[__FSCRYPT_MODE_MAX + 1]; 495 struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[__FSCRYPT_MODE_MAX + 1]; 496 struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[__FSCRYPT_MODE_MAX + 1]; 497 498 /* Hash key for inode numbers. Initialized only when needed. */ 499 siphash_key_t mk_ino_hash_key; 500 bool mk_ino_hash_key_initialized; 501 502 } __randomize_layout; 503 504 static inline bool 505 is_master_key_secret_present(const struct fscrypt_master_key_secret *secret) 506 { 507 /* 508 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and 509 * fscrypt_key_describe(). These run in atomic context, so they can't 510 * take ->mk_secret_sem and thus 'secret' can change concurrently which 511 * would be a data race. But they only need to know whether the secret 512 * *was* present at the time of check, so READ_ONCE() suffices. 513 */ 514 return READ_ONCE(secret->size) != 0; 515 } 516 517 static inline const char *master_key_spec_type( 518 const struct fscrypt_key_specifier *spec) 519 { 520 switch (spec->type) { 521 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 522 return "descriptor"; 523 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 524 return "identifier"; 525 } 526 return "[unknown]"; 527 } 528 529 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec) 530 { 531 switch (spec->type) { 532 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 533 return FSCRYPT_KEY_DESCRIPTOR_SIZE; 534 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 535 return FSCRYPT_KEY_IDENTIFIER_SIZE; 536 } 537 return 0; 538 } 539 540 struct key * 541 fscrypt_find_master_key(struct super_block *sb, 542 const struct fscrypt_key_specifier *mk_spec); 543 544 int fscrypt_add_test_dummy_key(struct super_block *sb, 545 struct fscrypt_key_specifier *key_spec); 546 547 int fscrypt_verify_key_added(struct super_block *sb, 548 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); 549 550 int __init fscrypt_init_keyring(void); 551 552 /* keysetup.c */ 553 554 struct fscrypt_mode { 555 const char *friendly_name; 556 const char *cipher_str; 557 int keysize; 558 int ivsize; 559 int logged_impl_name; 560 enum blk_crypto_mode_num blk_crypto_mode; 561 }; 562 563 extern struct fscrypt_mode fscrypt_modes[]; 564 565 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 566 const u8 *raw_key, const struct fscrypt_info *ci); 567 568 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key); 569 570 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key); 571 572 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 573 const struct fscrypt_master_key *mk); 574 575 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 576 const struct fscrypt_master_key *mk); 577 578 /* keysetup_v1.c */ 579 580 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk); 581 582 int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, 583 const u8 *raw_master_key); 584 585 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci); 586 587 /* policy.c */ 588 589 bool fscrypt_policies_equal(const union fscrypt_policy *policy1, 590 const union fscrypt_policy *policy2); 591 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u, 592 const struct inode *inode); 593 int fscrypt_policy_from_context(union fscrypt_policy *policy_u, 594 const union fscrypt_context *ctx_u, 595 int ctx_size); 596 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir); 597 598 #endif /* _FSCRYPT_PRIVATE_H */ 599