xref: /openbmc/linux/fs/crypto/fname.c (revision ddae1423)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This contains functions for filename crypto management
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Uday Savagaonkar, 2014.
9  * Modified by Jaegeuk Kim, 2015.
10  *
11  * This has not yet undergone a rigorous security audit.
12  */
13 
14 #include <linux/namei.h>
15 #include <linux/scatterlist.h>
16 #include <crypto/hash.h>
17 #include <crypto/sha.h>
18 #include <crypto/skcipher.h>
19 #include "fscrypt_private.h"
20 
21 /**
22  * struct fscrypt_nokey_name - identifier for directory entry when key is absent
23  *
24  * When userspace lists an encrypted directory without access to the key, the
25  * filesystem must present a unique "no-key name" for each filename that allows
26  * it to find the directory entry again if requested.  Naively, that would just
27  * mean using the ciphertext filenames.  However, since the ciphertext filenames
28  * can contain illegal characters ('\0' and '/'), they must be encoded in some
29  * way.  We use base64.  But that can cause names to exceed NAME_MAX (255
30  * bytes), so we also need to use a strong hash to abbreviate long names.
31  *
32  * The filesystem may also need another kind of hash, the "dirhash", to quickly
33  * find the directory entry.  Since filesystems normally compute the dirhash
34  * over the on-disk filename (i.e. the ciphertext), it's not computable from
35  * no-key names that abbreviate the ciphertext using the strong hash to fit in
36  * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
37  * plaintext (but it may still be available in the on-disk directory entry);
38  * casefolded directories use this type of dirhash.  At least in these cases,
39  * each no-key name must include the name's dirhash too.
40  *
41  * To meet all these requirements, we base64-encode the following
42  * variable-length structure.  It contains the dirhash, or 0's if the filesystem
43  * didn't provide one; up to 149 bytes of the ciphertext name; and for
44  * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
45  *
46  * This ensures that each no-key name contains everything needed to find the
47  * directory entry again, contains only legal characters, doesn't exceed
48  * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
49  * take the performance hit of SHA-256 on very long filenames (which are rare).
50  */
51 struct fscrypt_nokey_name {
52 	u32 dirhash[2];
53 	u8 bytes[149];
54 	u8 sha256[SHA256_DIGEST_SIZE];
55 }; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
56 
57 /*
58  * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
59  * the strong hash and thus includes the 'sha256' field.  This isn't simply
60  * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
61  */
62 #define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)
63 
64 static struct crypto_shash *sha256_hash_tfm;
65 
66 static int fscrypt_do_sha256(const u8 *data, unsigned int data_len, u8 *result)
67 {
68 	struct crypto_shash *tfm = READ_ONCE(sha256_hash_tfm);
69 
70 	if (unlikely(!tfm)) {
71 		struct crypto_shash *prev_tfm;
72 
73 		tfm = crypto_alloc_shash("sha256", 0, 0);
74 		if (IS_ERR(tfm)) {
75 			fscrypt_err(NULL,
76 				    "Error allocating SHA-256 transform: %ld",
77 				    PTR_ERR(tfm));
78 			return PTR_ERR(tfm);
79 		}
80 		prev_tfm = cmpxchg(&sha256_hash_tfm, NULL, tfm);
81 		if (prev_tfm) {
82 			crypto_free_shash(tfm);
83 			tfm = prev_tfm;
84 		}
85 	}
86 	{
87 		SHASH_DESC_ON_STACK(desc, tfm);
88 
89 		desc->tfm = tfm;
90 
91 		return crypto_shash_digest(desc, data, data_len, result);
92 	}
93 }
94 
95 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
96 {
97 	if (str->len == 1 && str->name[0] == '.')
98 		return true;
99 
100 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
101 		return true;
102 
103 	return false;
104 }
105 
106 /**
107  * fscrypt_fname_encrypt() - encrypt a filename
108  *
109  * The output buffer must be at least as large as the input buffer.
110  * Any extra space is filled with NUL padding before encryption.
111  *
112  * Return: 0 on success, -errno on failure
113  */
114 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
115 			  u8 *out, unsigned int olen)
116 {
117 	struct skcipher_request *req = NULL;
118 	DECLARE_CRYPTO_WAIT(wait);
119 	const struct fscrypt_info *ci = inode->i_crypt_info;
120 	struct crypto_skcipher *tfm = ci->ci_ctfm;
121 	union fscrypt_iv iv;
122 	struct scatterlist sg;
123 	int res;
124 
125 	/*
126 	 * Copy the filename to the output buffer for encrypting in-place and
127 	 * pad it with the needed number of NUL bytes.
128 	 */
129 	if (WARN_ON(olen < iname->len))
130 		return -ENOBUFS;
131 	memcpy(out, iname->name, iname->len);
132 	memset(out + iname->len, 0, olen - iname->len);
133 
134 	/* Initialize the IV */
135 	fscrypt_generate_iv(&iv, 0, ci);
136 
137 	/* Set up the encryption request */
138 	req = skcipher_request_alloc(tfm, GFP_NOFS);
139 	if (!req)
140 		return -ENOMEM;
141 	skcipher_request_set_callback(req,
142 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
143 			crypto_req_done, &wait);
144 	sg_init_one(&sg, out, olen);
145 	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
146 
147 	/* Do the encryption */
148 	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
149 	skcipher_request_free(req);
150 	if (res < 0) {
151 		fscrypt_err(inode, "Filename encryption failed: %d", res);
152 		return res;
153 	}
154 
155 	return 0;
156 }
157 
158 /**
159  * fname_decrypt() - decrypt a filename
160  *
161  * The caller must have allocated sufficient memory for the @oname string.
162  *
163  * Return: 0 on success, -errno on failure
164  */
165 static int fname_decrypt(const struct inode *inode,
166 			 const struct fscrypt_str *iname,
167 			 struct fscrypt_str *oname)
168 {
169 	struct skcipher_request *req = NULL;
170 	DECLARE_CRYPTO_WAIT(wait);
171 	struct scatterlist src_sg, dst_sg;
172 	const struct fscrypt_info *ci = inode->i_crypt_info;
173 	struct crypto_skcipher *tfm = ci->ci_ctfm;
174 	union fscrypt_iv iv;
175 	int res;
176 
177 	/* Allocate request */
178 	req = skcipher_request_alloc(tfm, GFP_NOFS);
179 	if (!req)
180 		return -ENOMEM;
181 	skcipher_request_set_callback(req,
182 		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
183 		crypto_req_done, &wait);
184 
185 	/* Initialize IV */
186 	fscrypt_generate_iv(&iv, 0, ci);
187 
188 	/* Create decryption request */
189 	sg_init_one(&src_sg, iname->name, iname->len);
190 	sg_init_one(&dst_sg, oname->name, oname->len);
191 	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
192 	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
193 	skcipher_request_free(req);
194 	if (res < 0) {
195 		fscrypt_err(inode, "Filename decryption failed: %d", res);
196 		return res;
197 	}
198 
199 	oname->len = strnlen(oname->name, iname->len);
200 	return 0;
201 }
202 
203 static const char lookup_table[65] =
204 	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
205 
206 #define BASE64_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
207 
208 /**
209  * base64_encode() -
210  *
211  * Encodes the input string using characters from the set [A-Za-z0-9+,].
212  * The encoded string is roughly 4/3 times the size of the input string.
213  *
214  * Return: length of the encoded string
215  */
216 static int base64_encode(const u8 *src, int len, char *dst)
217 {
218 	int i, bits = 0, ac = 0;
219 	char *cp = dst;
220 
221 	for (i = 0; i < len; i++) {
222 		ac += src[i] << bits;
223 		bits += 8;
224 		do {
225 			*cp++ = lookup_table[ac & 0x3f];
226 			ac >>= 6;
227 			bits -= 6;
228 		} while (bits >= 6);
229 	}
230 	if (bits)
231 		*cp++ = lookup_table[ac & 0x3f];
232 	return cp - dst;
233 }
234 
235 static int base64_decode(const char *src, int len, u8 *dst)
236 {
237 	int i, bits = 0, ac = 0;
238 	const char *p;
239 	u8 *cp = dst;
240 
241 	for (i = 0; i < len; i++) {
242 		p = strchr(lookup_table, src[i]);
243 		if (p == NULL || src[i] == 0)
244 			return -2;
245 		ac += (p - lookup_table) << bits;
246 		bits += 6;
247 		if (bits >= 8) {
248 			*cp++ = ac & 0xff;
249 			ac >>= 8;
250 			bits -= 8;
251 		}
252 	}
253 	if (ac)
254 		return -1;
255 	return cp - dst;
256 }
257 
258 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
259 				  u32 max_len, u32 *encrypted_len_ret)
260 {
261 	const struct fscrypt_info *ci = inode->i_crypt_info;
262 	int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) &
263 			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
264 	u32 encrypted_len;
265 
266 	if (orig_len > max_len)
267 		return false;
268 	encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
269 	encrypted_len = round_up(encrypted_len, padding);
270 	*encrypted_len_ret = min(encrypted_len, max_len);
271 	return true;
272 }
273 
274 /**
275  * fscrypt_fname_alloc_buffer - allocate a buffer for presented filenames
276  *
277  * Allocate a buffer that is large enough to hold any decrypted or encoded
278  * filename (null-terminated), for the given maximum encrypted filename length.
279  *
280  * Return: 0 on success, -errno on failure
281  */
282 int fscrypt_fname_alloc_buffer(const struct inode *inode,
283 			       u32 max_encrypted_len,
284 			       struct fscrypt_str *crypto_str)
285 {
286 	const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
287 	u32 max_presented_len;
288 
289 	max_presented_len = max(max_encoded_len, max_encrypted_len);
290 
291 	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
292 	if (!crypto_str->name)
293 		return -ENOMEM;
294 	crypto_str->len = max_presented_len;
295 	return 0;
296 }
297 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
298 
299 /**
300  * fscrypt_fname_free_buffer - free the buffer for presented filenames
301  *
302  * Free the buffer allocated by fscrypt_fname_alloc_buffer().
303  */
304 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
305 {
306 	if (!crypto_str)
307 		return;
308 	kfree(crypto_str->name);
309 	crypto_str->name = NULL;
310 }
311 EXPORT_SYMBOL(fscrypt_fname_free_buffer);
312 
313 /**
314  * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
315  * space
316  *
317  * The caller must have allocated sufficient memory for the @oname string.
318  *
319  * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
320  * encode it for presentation in fscrypt_nokey_name format.
321  * See struct fscrypt_nokey_name for details.
322  *
323  * Return: 0 on success, -errno on failure
324  */
325 int fscrypt_fname_disk_to_usr(const struct inode *inode,
326 			      u32 hash, u32 minor_hash,
327 			      const struct fscrypt_str *iname,
328 			      struct fscrypt_str *oname)
329 {
330 	const struct qstr qname = FSTR_TO_QSTR(iname);
331 	struct fscrypt_nokey_name nokey_name;
332 	u32 size; /* size of the unencoded no-key name */
333 	int err;
334 
335 	if (fscrypt_is_dot_dotdot(&qname)) {
336 		oname->name[0] = '.';
337 		oname->name[iname->len - 1] = '.';
338 		oname->len = iname->len;
339 		return 0;
340 	}
341 
342 	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
343 		return -EUCLEAN;
344 
345 	if (fscrypt_has_encryption_key(inode))
346 		return fname_decrypt(inode, iname, oname);
347 
348 	/*
349 	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
350 	 * between fields and that its encoded size never exceeds NAME_MAX.
351 	 */
352 	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
353 		     offsetof(struct fscrypt_nokey_name, bytes));
354 	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
355 		     offsetof(struct fscrypt_nokey_name, sha256));
356 	BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
357 
358 	if (hash) {
359 		nokey_name.dirhash[0] = hash;
360 		nokey_name.dirhash[1] = minor_hash;
361 	} else {
362 		nokey_name.dirhash[0] = 0;
363 		nokey_name.dirhash[1] = 0;
364 	}
365 	if (iname->len <= sizeof(nokey_name.bytes)) {
366 		memcpy(nokey_name.bytes, iname->name, iname->len);
367 		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
368 	} else {
369 		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
370 		/* Compute strong hash of remaining part of name. */
371 		err = fscrypt_do_sha256(&iname->name[sizeof(nokey_name.bytes)],
372 					iname->len - sizeof(nokey_name.bytes),
373 					nokey_name.sha256);
374 		if (err)
375 			return err;
376 		size = FSCRYPT_NOKEY_NAME_MAX;
377 	}
378 	oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
379 	return 0;
380 }
381 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
382 
383 /**
384  * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
385  * @dir: the directory that will be searched
386  * @iname: the user-provided filename being searched for
387  * @lookup: 1 if we're allowed to proceed without the key because it's
388  *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
389  *	proceed without the key because we're going to create the dir_entry.
390  * @fname: the filename information to be filled in
391  *
392  * Given a user-provided filename @iname, this function sets @fname->disk_name
393  * to the name that would be stored in the on-disk directory entry, if possible.
394  * If the directory is unencrypted this is simply @iname.  Else, if we have the
395  * directory's encryption key, then @iname is the plaintext, so we encrypt it to
396  * get the disk_name.
397  *
398  * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
399  * we decode it to get the fscrypt_nokey_name.  Non-@lookup operations will be
400  * impossible in this case, so we fail them with ENOKEY.
401  *
402  * If successful, fscrypt_free_filename() must be called later to clean up.
403  *
404  * Return: 0 on success, -errno on failure
405  */
406 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
407 			      int lookup, struct fscrypt_name *fname)
408 {
409 	struct fscrypt_nokey_name *nokey_name;
410 	int ret;
411 
412 	memset(fname, 0, sizeof(struct fscrypt_name));
413 	fname->usr_fname = iname;
414 
415 	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
416 		fname->disk_name.name = (unsigned char *)iname->name;
417 		fname->disk_name.len = iname->len;
418 		return 0;
419 	}
420 	ret = fscrypt_get_encryption_info(dir);
421 	if (ret)
422 		return ret;
423 
424 	if (fscrypt_has_encryption_key(dir)) {
425 		if (!fscrypt_fname_encrypted_size(dir, iname->len,
426 						  dir->i_sb->s_cop->max_namelen,
427 						  &fname->crypto_buf.len))
428 			return -ENAMETOOLONG;
429 		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
430 						 GFP_NOFS);
431 		if (!fname->crypto_buf.name)
432 			return -ENOMEM;
433 
434 		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
435 					    fname->crypto_buf.len);
436 		if (ret)
437 			goto errout;
438 		fname->disk_name.name = fname->crypto_buf.name;
439 		fname->disk_name.len = fname->crypto_buf.len;
440 		return 0;
441 	}
442 	if (!lookup)
443 		return -ENOKEY;
444 	fname->is_ciphertext_name = true;
445 
446 	/*
447 	 * We don't have the key and we are doing a lookup; decode the
448 	 * user-supplied name
449 	 */
450 
451 	if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
452 		return -ENOENT;
453 
454 	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
455 	if (fname->crypto_buf.name == NULL)
456 		return -ENOMEM;
457 
458 	ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
459 	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
460 	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
461 	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
462 		ret = -ENOENT;
463 		goto errout;
464 	}
465 	fname->crypto_buf.len = ret;
466 
467 	nokey_name = (void *)fname->crypto_buf.name;
468 	fname->hash = nokey_name->dirhash[0];
469 	fname->minor_hash = nokey_name->dirhash[1];
470 	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
471 		/* The full ciphertext filename is available. */
472 		fname->disk_name.name = nokey_name->bytes;
473 		fname->disk_name.len =
474 			ret - offsetof(struct fscrypt_nokey_name, bytes);
475 	}
476 	return 0;
477 
478 errout:
479 	kfree(fname->crypto_buf.name);
480 	return ret;
481 }
482 EXPORT_SYMBOL(fscrypt_setup_filename);
483 
484 /**
485  * fscrypt_match_name() - test whether the given name matches a directory entry
486  * @fname: the name being searched for
487  * @de_name: the name from the directory entry
488  * @de_name_len: the length of @de_name in bytes
489  *
490  * Normally @fname->disk_name will be set, and in that case we simply compare
491  * that to the name stored in the directory entry.  The only exception is that
492  * if we don't have the key for an encrypted directory and the name we're
493  * looking for is very long, then we won't have the full disk_name and instead
494  * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
495  *
496  * Return: %true if the name matches, otherwise %false.
497  */
498 bool fscrypt_match_name(const struct fscrypt_name *fname,
499 			const u8 *de_name, u32 de_name_len)
500 {
501 	const struct fscrypt_nokey_name *nokey_name =
502 		(const void *)fname->crypto_buf.name;
503 	u8 sha256[SHA256_DIGEST_SIZE];
504 
505 	if (likely(fname->disk_name.name)) {
506 		if (de_name_len != fname->disk_name.len)
507 			return false;
508 		return !memcmp(de_name, fname->disk_name.name, de_name_len);
509 	}
510 	if (de_name_len <= sizeof(nokey_name->bytes))
511 		return false;
512 	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
513 		return false;
514 	if (fscrypt_do_sha256(&de_name[sizeof(nokey_name->bytes)],
515 			      de_name_len - sizeof(nokey_name->bytes), sha256))
516 		return false;
517 	return !memcmp(sha256, nokey_name->sha256, sizeof(sha256));
518 }
519 EXPORT_SYMBOL_GPL(fscrypt_match_name);
520 
521 /**
522  * fscrypt_fname_siphash() - calculate the SipHash of a filename
523  * @dir: the parent directory
524  * @name: the filename to calculate the SipHash of
525  *
526  * Given a plaintext filename @name and a directory @dir which uses SipHash as
527  * its dirhash method and has had its fscrypt key set up, this function
528  * calculates the SipHash of that name using the directory's secret dirhash key.
529  *
530  * Return: the SipHash of @name using the hash key of @dir
531  */
532 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
533 {
534 	const struct fscrypt_info *ci = dir->i_crypt_info;
535 
536 	WARN_ON(!ci->ci_dirhash_key_initialized);
537 
538 	return siphash(name->name, name->len, &ci->ci_dirhash_key);
539 }
540 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
541 
542 /*
543  * Validate dentries in encrypted directories to make sure we aren't potentially
544  * caching stale dentries after a key has been added.
545  */
546 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
547 {
548 	struct dentry *dir;
549 	int err;
550 	int valid;
551 
552 	/*
553 	 * Plaintext names are always valid, since fscrypt doesn't support
554 	 * reverting to ciphertext names without evicting the directory's inode
555 	 * -- which implies eviction of the dentries in the directory.
556 	 */
557 	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
558 		return 1;
559 
560 	/*
561 	 * Ciphertext name; valid if the directory's key is still unavailable.
562 	 *
563 	 * Although fscrypt forbids rename() on ciphertext names, we still must
564 	 * use dget_parent() here rather than use ->d_parent directly.  That's
565 	 * because a corrupted fs image may contain directory hard links, which
566 	 * the VFS handles by moving the directory's dentry tree in the dcache
567 	 * each time ->lookup() finds the directory and it already has a dentry
568 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
569 	 * a reference to some ->d_parent to prevent it from being freed.
570 	 */
571 
572 	if (flags & LOOKUP_RCU)
573 		return -ECHILD;
574 
575 	dir = dget_parent(dentry);
576 	err = fscrypt_get_encryption_info(d_inode(dir));
577 	valid = !fscrypt_has_encryption_key(d_inode(dir));
578 	dput(dir);
579 
580 	if (err < 0)
581 		return err;
582 
583 	return valid;
584 }
585 
586 const struct dentry_operations fscrypt_d_ops = {
587 	.d_revalidate = fscrypt_d_revalidate,
588 };
589