1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This contains functions for filename crypto management 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * Copyright (C) 2015, Motorola Mobility 7 * 8 * Written by Uday Savagaonkar, 2014. 9 * Modified by Jaegeuk Kim, 2015. 10 * 11 * This has not yet undergone a rigorous security audit. 12 */ 13 14 #include <linux/namei.h> 15 #include <linux/scatterlist.h> 16 #include <crypto/hash.h> 17 #include <crypto/sha.h> 18 #include <crypto/skcipher.h> 19 #include "fscrypt_private.h" 20 21 /* 22 * struct fscrypt_nokey_name - identifier for directory entry when key is absent 23 * 24 * When userspace lists an encrypted directory without access to the key, the 25 * filesystem must present a unique "no-key name" for each filename that allows 26 * it to find the directory entry again if requested. Naively, that would just 27 * mean using the ciphertext filenames. However, since the ciphertext filenames 28 * can contain illegal characters ('\0' and '/'), they must be encoded in some 29 * way. We use base64. But that can cause names to exceed NAME_MAX (255 30 * bytes), so we also need to use a strong hash to abbreviate long names. 31 * 32 * The filesystem may also need another kind of hash, the "dirhash", to quickly 33 * find the directory entry. Since filesystems normally compute the dirhash 34 * over the on-disk filename (i.e. the ciphertext), it's not computable from 35 * no-key names that abbreviate the ciphertext using the strong hash to fit in 36 * NAME_MAX. It's also not computable if it's a keyed hash taken over the 37 * plaintext (but it may still be available in the on-disk directory entry); 38 * casefolded directories use this type of dirhash. At least in these cases, 39 * each no-key name must include the name's dirhash too. 40 * 41 * To meet all these requirements, we base64-encode the following 42 * variable-length structure. It contains the dirhash, or 0's if the filesystem 43 * didn't provide one; up to 149 bytes of the ciphertext name; and for 44 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes. 45 * 46 * This ensures that each no-key name contains everything needed to find the 47 * directory entry again, contains only legal characters, doesn't exceed 48 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only 49 * take the performance hit of SHA-256 on very long filenames (which are rare). 50 */ 51 struct fscrypt_nokey_name { 52 u32 dirhash[2]; 53 u8 bytes[149]; 54 u8 sha256[SHA256_DIGEST_SIZE]; 55 }; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */ 56 57 /* 58 * Decoded size of max-size nokey name, i.e. a name that was abbreviated using 59 * the strong hash and thus includes the 'sha256' field. This isn't simply 60 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included. 61 */ 62 #define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256) 63 64 static void fscrypt_do_sha256(const u8 *data, unsigned int data_len, u8 *result) 65 { 66 struct sha256_state sctx; 67 68 sha256_init(&sctx); 69 sha256_update(&sctx, data, data_len); 70 sha256_final(&sctx, result); 71 } 72 73 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str) 74 { 75 if (str->len == 1 && str->name[0] == '.') 76 return true; 77 78 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 79 return true; 80 81 return false; 82 } 83 84 /** 85 * fscrypt_fname_encrypt() - encrypt a filename 86 * @inode: inode of the parent directory (for regular filenames) 87 * or of the symlink (for symlink targets) 88 * @iname: the filename to encrypt 89 * @out: (output) the encrypted filename 90 * @olen: size of the encrypted filename. It must be at least @iname->len. 91 * Any extra space is filled with NUL padding before encryption. 92 * 93 * Return: 0 on success, -errno on failure 94 */ 95 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 96 u8 *out, unsigned int olen) 97 { 98 struct skcipher_request *req = NULL; 99 DECLARE_CRYPTO_WAIT(wait); 100 const struct fscrypt_info *ci = inode->i_crypt_info; 101 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; 102 union fscrypt_iv iv; 103 struct scatterlist sg; 104 int res; 105 106 /* 107 * Copy the filename to the output buffer for encrypting in-place and 108 * pad it with the needed number of NUL bytes. 109 */ 110 if (WARN_ON(olen < iname->len)) 111 return -ENOBUFS; 112 memcpy(out, iname->name, iname->len); 113 memset(out + iname->len, 0, olen - iname->len); 114 115 /* Initialize the IV */ 116 fscrypt_generate_iv(&iv, 0, ci); 117 118 /* Set up the encryption request */ 119 req = skcipher_request_alloc(tfm, GFP_NOFS); 120 if (!req) 121 return -ENOMEM; 122 skcipher_request_set_callback(req, 123 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 124 crypto_req_done, &wait); 125 sg_init_one(&sg, out, olen); 126 skcipher_request_set_crypt(req, &sg, &sg, olen, &iv); 127 128 /* Do the encryption */ 129 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 130 skcipher_request_free(req); 131 if (res < 0) { 132 fscrypt_err(inode, "Filename encryption failed: %d", res); 133 return res; 134 } 135 136 return 0; 137 } 138 139 /** 140 * fname_decrypt() - decrypt a filename 141 * @inode: inode of the parent directory (for regular filenames) 142 * or of the symlink (for symlink targets) 143 * @iname: the encrypted filename to decrypt 144 * @oname: (output) the decrypted filename. The caller must have allocated 145 * enough space for this, e.g. using fscrypt_fname_alloc_buffer(). 146 * 147 * Return: 0 on success, -errno on failure 148 */ 149 static int fname_decrypt(const struct inode *inode, 150 const struct fscrypt_str *iname, 151 struct fscrypt_str *oname) 152 { 153 struct skcipher_request *req = NULL; 154 DECLARE_CRYPTO_WAIT(wait); 155 struct scatterlist src_sg, dst_sg; 156 const struct fscrypt_info *ci = inode->i_crypt_info; 157 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; 158 union fscrypt_iv iv; 159 int res; 160 161 /* Allocate request */ 162 req = skcipher_request_alloc(tfm, GFP_NOFS); 163 if (!req) 164 return -ENOMEM; 165 skcipher_request_set_callback(req, 166 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 167 crypto_req_done, &wait); 168 169 /* Initialize IV */ 170 fscrypt_generate_iv(&iv, 0, ci); 171 172 /* Create decryption request */ 173 sg_init_one(&src_sg, iname->name, iname->len); 174 sg_init_one(&dst_sg, oname->name, oname->len); 175 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv); 176 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); 177 skcipher_request_free(req); 178 if (res < 0) { 179 fscrypt_err(inode, "Filename decryption failed: %d", res); 180 return res; 181 } 182 183 oname->len = strnlen(oname->name, iname->len); 184 return 0; 185 } 186 187 static const char lookup_table[65] = 188 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; 189 190 #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3) 191 192 /** 193 * base64_encode() - base64-encode some bytes 194 * @src: the bytes to encode 195 * @len: number of bytes to encode 196 * @dst: (output) the base64-encoded string. Not NUL-terminated. 197 * 198 * Encodes the input string using characters from the set [A-Za-z0-9+,]. 199 * The encoded string is roughly 4/3 times the size of the input string. 200 * 201 * Return: length of the encoded string 202 */ 203 static int base64_encode(const u8 *src, int len, char *dst) 204 { 205 int i, bits = 0, ac = 0; 206 char *cp = dst; 207 208 for (i = 0; i < len; i++) { 209 ac += src[i] << bits; 210 bits += 8; 211 do { 212 *cp++ = lookup_table[ac & 0x3f]; 213 ac >>= 6; 214 bits -= 6; 215 } while (bits >= 6); 216 } 217 if (bits) 218 *cp++ = lookup_table[ac & 0x3f]; 219 return cp - dst; 220 } 221 222 static int base64_decode(const char *src, int len, u8 *dst) 223 { 224 int i, bits = 0, ac = 0; 225 const char *p; 226 u8 *cp = dst; 227 228 for (i = 0; i < len; i++) { 229 p = strchr(lookup_table, src[i]); 230 if (p == NULL || src[i] == 0) 231 return -2; 232 ac += (p - lookup_table) << bits; 233 bits += 6; 234 if (bits >= 8) { 235 *cp++ = ac & 0xff; 236 ac >>= 8; 237 bits -= 8; 238 } 239 } 240 if (ac) 241 return -1; 242 return cp - dst; 243 } 244 245 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 246 u32 max_len, u32 *encrypted_len_ret) 247 { 248 const struct fscrypt_info *ci = inode->i_crypt_info; 249 int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) & 250 FSCRYPT_POLICY_FLAGS_PAD_MASK); 251 u32 encrypted_len; 252 253 if (orig_len > max_len) 254 return false; 255 encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE); 256 encrypted_len = round_up(encrypted_len, padding); 257 *encrypted_len_ret = min(encrypted_len, max_len); 258 return true; 259 } 260 261 /** 262 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames 263 * @inode: inode of the parent directory (for regular filenames) 264 * or of the symlink (for symlink targets) 265 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be 266 * used to present 267 * @crypto_str: (output) buffer to allocate 268 * 269 * Allocate a buffer that is large enough to hold any decrypted or encoded 270 * filename (null-terminated), for the given maximum encrypted filename length. 271 * 272 * Return: 0 on success, -errno on failure 273 */ 274 int fscrypt_fname_alloc_buffer(const struct inode *inode, 275 u32 max_encrypted_len, 276 struct fscrypt_str *crypto_str) 277 { 278 const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX); 279 u32 max_presented_len; 280 281 max_presented_len = max(max_encoded_len, max_encrypted_len); 282 283 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS); 284 if (!crypto_str->name) 285 return -ENOMEM; 286 crypto_str->len = max_presented_len; 287 return 0; 288 } 289 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); 290 291 /** 292 * fscrypt_fname_free_buffer() - free a buffer for presented filenames 293 * @crypto_str: the buffer to free 294 * 295 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer(). 296 */ 297 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 298 { 299 if (!crypto_str) 300 return; 301 kfree(crypto_str->name); 302 crypto_str->name = NULL; 303 } 304 EXPORT_SYMBOL(fscrypt_fname_free_buffer); 305 306 /** 307 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to 308 * user-presentable form 309 * @inode: inode of the parent directory (for regular filenames) 310 * or of the symlink (for symlink targets) 311 * @hash: first part of the name's dirhash, if applicable. This only needs to 312 * be provided if the filename is located in an indexed directory whose 313 * encryption key may be unavailable. Not needed for symlink targets. 314 * @minor_hash: second part of the name's dirhash, if applicable 315 * @iname: encrypted filename to convert. May also be "." or "..", which 316 * aren't actually encrypted. 317 * @oname: output buffer for the user-presentable filename. The caller must 318 * have allocated enough space for this, e.g. using 319 * fscrypt_fname_alloc_buffer(). 320 * 321 * If the key is available, we'll decrypt the disk name. Otherwise, we'll 322 * encode it for presentation in fscrypt_nokey_name format. 323 * See struct fscrypt_nokey_name for details. 324 * 325 * Return: 0 on success, -errno on failure 326 */ 327 int fscrypt_fname_disk_to_usr(const struct inode *inode, 328 u32 hash, u32 minor_hash, 329 const struct fscrypt_str *iname, 330 struct fscrypt_str *oname) 331 { 332 const struct qstr qname = FSTR_TO_QSTR(iname); 333 struct fscrypt_nokey_name nokey_name; 334 u32 size; /* size of the unencoded no-key name */ 335 336 if (fscrypt_is_dot_dotdot(&qname)) { 337 oname->name[0] = '.'; 338 oname->name[iname->len - 1] = '.'; 339 oname->len = iname->len; 340 return 0; 341 } 342 343 if (iname->len < FS_CRYPTO_BLOCK_SIZE) 344 return -EUCLEAN; 345 346 if (fscrypt_has_encryption_key(inode)) 347 return fname_decrypt(inode, iname, oname); 348 349 /* 350 * Sanity check that struct fscrypt_nokey_name doesn't have padding 351 * between fields and that its encoded size never exceeds NAME_MAX. 352 */ 353 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) != 354 offsetof(struct fscrypt_nokey_name, bytes)); 355 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) != 356 offsetof(struct fscrypt_nokey_name, sha256)); 357 BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX); 358 359 if (hash) { 360 nokey_name.dirhash[0] = hash; 361 nokey_name.dirhash[1] = minor_hash; 362 } else { 363 nokey_name.dirhash[0] = 0; 364 nokey_name.dirhash[1] = 0; 365 } 366 if (iname->len <= sizeof(nokey_name.bytes)) { 367 memcpy(nokey_name.bytes, iname->name, iname->len); 368 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]); 369 } else { 370 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes)); 371 /* Compute strong hash of remaining part of name. */ 372 fscrypt_do_sha256(&iname->name[sizeof(nokey_name.bytes)], 373 iname->len - sizeof(nokey_name.bytes), 374 nokey_name.sha256); 375 size = FSCRYPT_NOKEY_NAME_MAX; 376 } 377 oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name); 378 return 0; 379 } 380 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); 381 382 /** 383 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory 384 * @dir: the directory that will be searched 385 * @iname: the user-provided filename being searched for 386 * @lookup: 1 if we're allowed to proceed without the key because it's 387 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot 388 * proceed without the key because we're going to create the dir_entry. 389 * @fname: the filename information to be filled in 390 * 391 * Given a user-provided filename @iname, this function sets @fname->disk_name 392 * to the name that would be stored in the on-disk directory entry, if possible. 393 * If the directory is unencrypted this is simply @iname. Else, if we have the 394 * directory's encryption key, then @iname is the plaintext, so we encrypt it to 395 * get the disk_name. 396 * 397 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so 398 * we decode it to get the fscrypt_nokey_name. Non-@lookup operations will be 399 * impossible in this case, so we fail them with ENOKEY. 400 * 401 * If successful, fscrypt_free_filename() must be called later to clean up. 402 * 403 * Return: 0 on success, -errno on failure 404 */ 405 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, 406 int lookup, struct fscrypt_name *fname) 407 { 408 struct fscrypt_nokey_name *nokey_name; 409 int ret; 410 411 memset(fname, 0, sizeof(struct fscrypt_name)); 412 fname->usr_fname = iname; 413 414 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) { 415 fname->disk_name.name = (unsigned char *)iname->name; 416 fname->disk_name.len = iname->len; 417 return 0; 418 } 419 ret = fscrypt_get_encryption_info(dir); 420 if (ret) 421 return ret; 422 423 if (fscrypt_has_encryption_key(dir)) { 424 if (!fscrypt_fname_encrypted_size(dir, iname->len, 425 dir->i_sb->s_cop->max_namelen, 426 &fname->crypto_buf.len)) 427 return -ENAMETOOLONG; 428 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len, 429 GFP_NOFS); 430 if (!fname->crypto_buf.name) 431 return -ENOMEM; 432 433 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name, 434 fname->crypto_buf.len); 435 if (ret) 436 goto errout; 437 fname->disk_name.name = fname->crypto_buf.name; 438 fname->disk_name.len = fname->crypto_buf.len; 439 return 0; 440 } 441 if (!lookup) 442 return -ENOKEY; 443 fname->is_ciphertext_name = true; 444 445 /* 446 * We don't have the key and we are doing a lookup; decode the 447 * user-supplied name 448 */ 449 450 if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX)) 451 return -ENOENT; 452 453 fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL); 454 if (fname->crypto_buf.name == NULL) 455 return -ENOMEM; 456 457 ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name); 458 if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) || 459 (ret > offsetof(struct fscrypt_nokey_name, sha256) && 460 ret != FSCRYPT_NOKEY_NAME_MAX)) { 461 ret = -ENOENT; 462 goto errout; 463 } 464 fname->crypto_buf.len = ret; 465 466 nokey_name = (void *)fname->crypto_buf.name; 467 fname->hash = nokey_name->dirhash[0]; 468 fname->minor_hash = nokey_name->dirhash[1]; 469 if (ret != FSCRYPT_NOKEY_NAME_MAX) { 470 /* The full ciphertext filename is available. */ 471 fname->disk_name.name = nokey_name->bytes; 472 fname->disk_name.len = 473 ret - offsetof(struct fscrypt_nokey_name, bytes); 474 } 475 return 0; 476 477 errout: 478 kfree(fname->crypto_buf.name); 479 return ret; 480 } 481 EXPORT_SYMBOL(fscrypt_setup_filename); 482 483 /** 484 * fscrypt_match_name() - test whether the given name matches a directory entry 485 * @fname: the name being searched for 486 * @de_name: the name from the directory entry 487 * @de_name_len: the length of @de_name in bytes 488 * 489 * Normally @fname->disk_name will be set, and in that case we simply compare 490 * that to the name stored in the directory entry. The only exception is that 491 * if we don't have the key for an encrypted directory and the name we're 492 * looking for is very long, then we won't have the full disk_name and instead 493 * we'll need to match against a fscrypt_nokey_name that includes a strong hash. 494 * 495 * Return: %true if the name matches, otherwise %false. 496 */ 497 bool fscrypt_match_name(const struct fscrypt_name *fname, 498 const u8 *de_name, u32 de_name_len) 499 { 500 const struct fscrypt_nokey_name *nokey_name = 501 (const void *)fname->crypto_buf.name; 502 u8 sha256[SHA256_DIGEST_SIZE]; 503 504 if (likely(fname->disk_name.name)) { 505 if (de_name_len != fname->disk_name.len) 506 return false; 507 return !memcmp(de_name, fname->disk_name.name, de_name_len); 508 } 509 if (de_name_len <= sizeof(nokey_name->bytes)) 510 return false; 511 if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes))) 512 return false; 513 fscrypt_do_sha256(&de_name[sizeof(nokey_name->bytes)], 514 de_name_len - sizeof(nokey_name->bytes), sha256); 515 return !memcmp(sha256, nokey_name->sha256, sizeof(sha256)); 516 } 517 EXPORT_SYMBOL_GPL(fscrypt_match_name); 518 519 /** 520 * fscrypt_fname_siphash() - calculate the SipHash of a filename 521 * @dir: the parent directory 522 * @name: the filename to calculate the SipHash of 523 * 524 * Given a plaintext filename @name and a directory @dir which uses SipHash as 525 * its dirhash method and has had its fscrypt key set up, this function 526 * calculates the SipHash of that name using the directory's secret dirhash key. 527 * 528 * Return: the SipHash of @name using the hash key of @dir 529 */ 530 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) 531 { 532 const struct fscrypt_info *ci = dir->i_crypt_info; 533 534 WARN_ON(!ci->ci_dirhash_key_initialized); 535 536 return siphash(name->name, name->len, &ci->ci_dirhash_key); 537 } 538 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash); 539 540 /* 541 * Validate dentries in encrypted directories to make sure we aren't potentially 542 * caching stale dentries after a key has been added. 543 */ 544 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 545 { 546 struct dentry *dir; 547 int err; 548 int valid; 549 550 /* 551 * Plaintext names are always valid, since fscrypt doesn't support 552 * reverting to ciphertext names without evicting the directory's inode 553 * -- which implies eviction of the dentries in the directory. 554 */ 555 if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME)) 556 return 1; 557 558 /* 559 * Ciphertext name; valid if the directory's key is still unavailable. 560 * 561 * Although fscrypt forbids rename() on ciphertext names, we still must 562 * use dget_parent() here rather than use ->d_parent directly. That's 563 * because a corrupted fs image may contain directory hard links, which 564 * the VFS handles by moving the directory's dentry tree in the dcache 565 * each time ->lookup() finds the directory and it already has a dentry 566 * elsewhere. Thus ->d_parent can be changing, and we must safely grab 567 * a reference to some ->d_parent to prevent it from being freed. 568 */ 569 570 if (flags & LOOKUP_RCU) 571 return -ECHILD; 572 573 dir = dget_parent(dentry); 574 err = fscrypt_get_encryption_info(d_inode(dir)); 575 valid = !fscrypt_has_encryption_key(d_inode(dir)); 576 dput(dir); 577 578 if (err < 0) 579 return err; 580 581 return valid; 582 } 583 584 const struct dentry_operations fscrypt_d_ops = { 585 .d_revalidate = fscrypt_d_revalidate, 586 }; 587