1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This contains functions for filename crypto management 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * Copyright (C) 2015, Motorola Mobility 7 * 8 * Written by Uday Savagaonkar, 2014. 9 * Modified by Jaegeuk Kim, 2015. 10 * 11 * This has not yet undergone a rigorous security audit. 12 */ 13 14 #include <linux/namei.h> 15 #include <linux/scatterlist.h> 16 #include <crypto/hash.h> 17 #include <crypto/sha.h> 18 #include <crypto/skcipher.h> 19 #include "fscrypt_private.h" 20 21 /* 22 * struct fscrypt_nokey_name - identifier for directory entry when key is absent 23 * 24 * When userspace lists an encrypted directory without access to the key, the 25 * filesystem must present a unique "no-key name" for each filename that allows 26 * it to find the directory entry again if requested. Naively, that would just 27 * mean using the ciphertext filenames. However, since the ciphertext filenames 28 * can contain illegal characters ('\0' and '/'), they must be encoded in some 29 * way. We use base64. But that can cause names to exceed NAME_MAX (255 30 * bytes), so we also need to use a strong hash to abbreviate long names. 31 * 32 * The filesystem may also need another kind of hash, the "dirhash", to quickly 33 * find the directory entry. Since filesystems normally compute the dirhash 34 * over the on-disk filename (i.e. the ciphertext), it's not computable from 35 * no-key names that abbreviate the ciphertext using the strong hash to fit in 36 * NAME_MAX. It's also not computable if it's a keyed hash taken over the 37 * plaintext (but it may still be available in the on-disk directory entry); 38 * casefolded directories use this type of dirhash. At least in these cases, 39 * each no-key name must include the name's dirhash too. 40 * 41 * To meet all these requirements, we base64-encode the following 42 * variable-length structure. It contains the dirhash, or 0's if the filesystem 43 * didn't provide one; up to 149 bytes of the ciphertext name; and for 44 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes. 45 * 46 * This ensures that each no-key name contains everything needed to find the 47 * directory entry again, contains only legal characters, doesn't exceed 48 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only 49 * take the performance hit of SHA-256 on very long filenames (which are rare). 50 */ 51 struct fscrypt_nokey_name { 52 u32 dirhash[2]; 53 u8 bytes[149]; 54 u8 sha256[SHA256_DIGEST_SIZE]; 55 }; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */ 56 57 /* 58 * Decoded size of max-size nokey name, i.e. a name that was abbreviated using 59 * the strong hash and thus includes the 'sha256' field. This isn't simply 60 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included. 61 */ 62 #define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256) 63 64 static struct crypto_shash *sha256_hash_tfm; 65 66 static int fscrypt_do_sha256(const u8 *data, unsigned int data_len, u8 *result) 67 { 68 struct crypto_shash *tfm = READ_ONCE(sha256_hash_tfm); 69 70 if (unlikely(!tfm)) { 71 struct crypto_shash *prev_tfm; 72 73 tfm = crypto_alloc_shash("sha256", 0, 0); 74 if (IS_ERR(tfm)) { 75 fscrypt_err(NULL, 76 "Error allocating SHA-256 transform: %ld", 77 PTR_ERR(tfm)); 78 return PTR_ERR(tfm); 79 } 80 prev_tfm = cmpxchg(&sha256_hash_tfm, NULL, tfm); 81 if (prev_tfm) { 82 crypto_free_shash(tfm); 83 tfm = prev_tfm; 84 } 85 } 86 87 return crypto_shash_tfm_digest(tfm, data, data_len, result); 88 } 89 90 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str) 91 { 92 if (str->len == 1 && str->name[0] == '.') 93 return true; 94 95 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 96 return true; 97 98 return false; 99 } 100 101 /** 102 * fscrypt_fname_encrypt() - encrypt a filename 103 * @inode: inode of the parent directory (for regular filenames) 104 * or of the symlink (for symlink targets) 105 * @iname: the filename to encrypt 106 * @out: (output) the encrypted filename 107 * @olen: size of the encrypted filename. It must be at least @iname->len. 108 * Any extra space is filled with NUL padding before encryption. 109 * 110 * Return: 0 on success, -errno on failure 111 */ 112 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 113 u8 *out, unsigned int olen) 114 { 115 struct skcipher_request *req = NULL; 116 DECLARE_CRYPTO_WAIT(wait); 117 const struct fscrypt_info *ci = inode->i_crypt_info; 118 struct crypto_skcipher *tfm = ci->ci_ctfm; 119 union fscrypt_iv iv; 120 struct scatterlist sg; 121 int res; 122 123 /* 124 * Copy the filename to the output buffer for encrypting in-place and 125 * pad it with the needed number of NUL bytes. 126 */ 127 if (WARN_ON(olen < iname->len)) 128 return -ENOBUFS; 129 memcpy(out, iname->name, iname->len); 130 memset(out + iname->len, 0, olen - iname->len); 131 132 /* Initialize the IV */ 133 fscrypt_generate_iv(&iv, 0, ci); 134 135 /* Set up the encryption request */ 136 req = skcipher_request_alloc(tfm, GFP_NOFS); 137 if (!req) 138 return -ENOMEM; 139 skcipher_request_set_callback(req, 140 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 141 crypto_req_done, &wait); 142 sg_init_one(&sg, out, olen); 143 skcipher_request_set_crypt(req, &sg, &sg, olen, &iv); 144 145 /* Do the encryption */ 146 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 147 skcipher_request_free(req); 148 if (res < 0) { 149 fscrypt_err(inode, "Filename encryption failed: %d", res); 150 return res; 151 } 152 153 return 0; 154 } 155 156 /** 157 * fname_decrypt() - decrypt a filename 158 * @inode: inode of the parent directory (for regular filenames) 159 * or of the symlink (for symlink targets) 160 * @iname: the encrypted filename to decrypt 161 * @oname: (output) the decrypted filename. The caller must have allocated 162 * enough space for this, e.g. using fscrypt_fname_alloc_buffer(). 163 * 164 * Return: 0 on success, -errno on failure 165 */ 166 static int fname_decrypt(const struct inode *inode, 167 const struct fscrypt_str *iname, 168 struct fscrypt_str *oname) 169 { 170 struct skcipher_request *req = NULL; 171 DECLARE_CRYPTO_WAIT(wait); 172 struct scatterlist src_sg, dst_sg; 173 const struct fscrypt_info *ci = inode->i_crypt_info; 174 struct crypto_skcipher *tfm = ci->ci_ctfm; 175 union fscrypt_iv iv; 176 int res; 177 178 /* Allocate request */ 179 req = skcipher_request_alloc(tfm, GFP_NOFS); 180 if (!req) 181 return -ENOMEM; 182 skcipher_request_set_callback(req, 183 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 184 crypto_req_done, &wait); 185 186 /* Initialize IV */ 187 fscrypt_generate_iv(&iv, 0, ci); 188 189 /* Create decryption request */ 190 sg_init_one(&src_sg, iname->name, iname->len); 191 sg_init_one(&dst_sg, oname->name, oname->len); 192 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv); 193 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); 194 skcipher_request_free(req); 195 if (res < 0) { 196 fscrypt_err(inode, "Filename decryption failed: %d", res); 197 return res; 198 } 199 200 oname->len = strnlen(oname->name, iname->len); 201 return 0; 202 } 203 204 static const char lookup_table[65] = 205 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; 206 207 #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3) 208 209 /** 210 * base64_encode() - base64-encode some bytes 211 * @src: the bytes to encode 212 * @len: number of bytes to encode 213 * @dst: (output) the base64-encoded string. Not NUL-terminated. 214 * 215 * Encodes the input string using characters from the set [A-Za-z0-9+,]. 216 * The encoded string is roughly 4/3 times the size of the input string. 217 * 218 * Return: length of the encoded string 219 */ 220 static int base64_encode(const u8 *src, int len, char *dst) 221 { 222 int i, bits = 0, ac = 0; 223 char *cp = dst; 224 225 for (i = 0; i < len; i++) { 226 ac += src[i] << bits; 227 bits += 8; 228 do { 229 *cp++ = lookup_table[ac & 0x3f]; 230 ac >>= 6; 231 bits -= 6; 232 } while (bits >= 6); 233 } 234 if (bits) 235 *cp++ = lookup_table[ac & 0x3f]; 236 return cp - dst; 237 } 238 239 static int base64_decode(const char *src, int len, u8 *dst) 240 { 241 int i, bits = 0, ac = 0; 242 const char *p; 243 u8 *cp = dst; 244 245 for (i = 0; i < len; i++) { 246 p = strchr(lookup_table, src[i]); 247 if (p == NULL || src[i] == 0) 248 return -2; 249 ac += (p - lookup_table) << bits; 250 bits += 6; 251 if (bits >= 8) { 252 *cp++ = ac & 0xff; 253 ac >>= 8; 254 bits -= 8; 255 } 256 } 257 if (ac) 258 return -1; 259 return cp - dst; 260 } 261 262 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 263 u32 max_len, u32 *encrypted_len_ret) 264 { 265 const struct fscrypt_info *ci = inode->i_crypt_info; 266 int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) & 267 FSCRYPT_POLICY_FLAGS_PAD_MASK); 268 u32 encrypted_len; 269 270 if (orig_len > max_len) 271 return false; 272 encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE); 273 encrypted_len = round_up(encrypted_len, padding); 274 *encrypted_len_ret = min(encrypted_len, max_len); 275 return true; 276 } 277 278 /** 279 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames 280 * @inode: inode of the parent directory (for regular filenames) 281 * or of the symlink (for symlink targets) 282 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be 283 * used to present 284 * @crypto_str: (output) buffer to allocate 285 * 286 * Allocate a buffer that is large enough to hold any decrypted or encoded 287 * filename (null-terminated), for the given maximum encrypted filename length. 288 * 289 * Return: 0 on success, -errno on failure 290 */ 291 int fscrypt_fname_alloc_buffer(const struct inode *inode, 292 u32 max_encrypted_len, 293 struct fscrypt_str *crypto_str) 294 { 295 const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX); 296 u32 max_presented_len; 297 298 max_presented_len = max(max_encoded_len, max_encrypted_len); 299 300 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS); 301 if (!crypto_str->name) 302 return -ENOMEM; 303 crypto_str->len = max_presented_len; 304 return 0; 305 } 306 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); 307 308 /** 309 * fscrypt_fname_free_buffer() - free a buffer for presented filenames 310 * @crypto_str: the buffer to free 311 * 312 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer(). 313 */ 314 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 315 { 316 if (!crypto_str) 317 return; 318 kfree(crypto_str->name); 319 crypto_str->name = NULL; 320 } 321 EXPORT_SYMBOL(fscrypt_fname_free_buffer); 322 323 /** 324 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to 325 * user-presentable form 326 * @inode: inode of the parent directory (for regular filenames) 327 * or of the symlink (for symlink targets) 328 * @hash: first part of the name's dirhash, if applicable. This only needs to 329 * be provided if the filename is located in an indexed directory whose 330 * encryption key may be unavailable. Not needed for symlink targets. 331 * @minor_hash: second part of the name's dirhash, if applicable 332 * @iname: encrypted filename to convert. May also be "." or "..", which 333 * aren't actually encrypted. 334 * @oname: output buffer for the user-presentable filename. The caller must 335 * have allocated enough space for this, e.g. using 336 * fscrypt_fname_alloc_buffer(). 337 * 338 * If the key is available, we'll decrypt the disk name. Otherwise, we'll 339 * encode it for presentation in fscrypt_nokey_name format. 340 * See struct fscrypt_nokey_name for details. 341 * 342 * Return: 0 on success, -errno on failure 343 */ 344 int fscrypt_fname_disk_to_usr(const struct inode *inode, 345 u32 hash, u32 minor_hash, 346 const struct fscrypt_str *iname, 347 struct fscrypt_str *oname) 348 { 349 const struct qstr qname = FSTR_TO_QSTR(iname); 350 struct fscrypt_nokey_name nokey_name; 351 u32 size; /* size of the unencoded no-key name */ 352 int err; 353 354 if (fscrypt_is_dot_dotdot(&qname)) { 355 oname->name[0] = '.'; 356 oname->name[iname->len - 1] = '.'; 357 oname->len = iname->len; 358 return 0; 359 } 360 361 if (iname->len < FS_CRYPTO_BLOCK_SIZE) 362 return -EUCLEAN; 363 364 if (fscrypt_has_encryption_key(inode)) 365 return fname_decrypt(inode, iname, oname); 366 367 /* 368 * Sanity check that struct fscrypt_nokey_name doesn't have padding 369 * between fields and that its encoded size never exceeds NAME_MAX. 370 */ 371 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) != 372 offsetof(struct fscrypt_nokey_name, bytes)); 373 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) != 374 offsetof(struct fscrypt_nokey_name, sha256)); 375 BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX); 376 377 if (hash) { 378 nokey_name.dirhash[0] = hash; 379 nokey_name.dirhash[1] = minor_hash; 380 } else { 381 nokey_name.dirhash[0] = 0; 382 nokey_name.dirhash[1] = 0; 383 } 384 if (iname->len <= sizeof(nokey_name.bytes)) { 385 memcpy(nokey_name.bytes, iname->name, iname->len); 386 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]); 387 } else { 388 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes)); 389 /* Compute strong hash of remaining part of name. */ 390 err = fscrypt_do_sha256(&iname->name[sizeof(nokey_name.bytes)], 391 iname->len - sizeof(nokey_name.bytes), 392 nokey_name.sha256); 393 if (err) 394 return err; 395 size = FSCRYPT_NOKEY_NAME_MAX; 396 } 397 oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name); 398 return 0; 399 } 400 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); 401 402 /** 403 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory 404 * @dir: the directory that will be searched 405 * @iname: the user-provided filename being searched for 406 * @lookup: 1 if we're allowed to proceed without the key because it's 407 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot 408 * proceed without the key because we're going to create the dir_entry. 409 * @fname: the filename information to be filled in 410 * 411 * Given a user-provided filename @iname, this function sets @fname->disk_name 412 * to the name that would be stored in the on-disk directory entry, if possible. 413 * If the directory is unencrypted this is simply @iname. Else, if we have the 414 * directory's encryption key, then @iname is the plaintext, so we encrypt it to 415 * get the disk_name. 416 * 417 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so 418 * we decode it to get the fscrypt_nokey_name. Non-@lookup operations will be 419 * impossible in this case, so we fail them with ENOKEY. 420 * 421 * If successful, fscrypt_free_filename() must be called later to clean up. 422 * 423 * Return: 0 on success, -errno on failure 424 */ 425 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, 426 int lookup, struct fscrypt_name *fname) 427 { 428 struct fscrypt_nokey_name *nokey_name; 429 int ret; 430 431 memset(fname, 0, sizeof(struct fscrypt_name)); 432 fname->usr_fname = iname; 433 434 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) { 435 fname->disk_name.name = (unsigned char *)iname->name; 436 fname->disk_name.len = iname->len; 437 return 0; 438 } 439 ret = fscrypt_get_encryption_info(dir); 440 if (ret) 441 return ret; 442 443 if (fscrypt_has_encryption_key(dir)) { 444 if (!fscrypt_fname_encrypted_size(dir, iname->len, 445 dir->i_sb->s_cop->max_namelen, 446 &fname->crypto_buf.len)) 447 return -ENAMETOOLONG; 448 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len, 449 GFP_NOFS); 450 if (!fname->crypto_buf.name) 451 return -ENOMEM; 452 453 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name, 454 fname->crypto_buf.len); 455 if (ret) 456 goto errout; 457 fname->disk_name.name = fname->crypto_buf.name; 458 fname->disk_name.len = fname->crypto_buf.len; 459 return 0; 460 } 461 if (!lookup) 462 return -ENOKEY; 463 fname->is_ciphertext_name = true; 464 465 /* 466 * We don't have the key and we are doing a lookup; decode the 467 * user-supplied name 468 */ 469 470 if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX)) 471 return -ENOENT; 472 473 fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL); 474 if (fname->crypto_buf.name == NULL) 475 return -ENOMEM; 476 477 ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name); 478 if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) || 479 (ret > offsetof(struct fscrypt_nokey_name, sha256) && 480 ret != FSCRYPT_NOKEY_NAME_MAX)) { 481 ret = -ENOENT; 482 goto errout; 483 } 484 fname->crypto_buf.len = ret; 485 486 nokey_name = (void *)fname->crypto_buf.name; 487 fname->hash = nokey_name->dirhash[0]; 488 fname->minor_hash = nokey_name->dirhash[1]; 489 if (ret != FSCRYPT_NOKEY_NAME_MAX) { 490 /* The full ciphertext filename is available. */ 491 fname->disk_name.name = nokey_name->bytes; 492 fname->disk_name.len = 493 ret - offsetof(struct fscrypt_nokey_name, bytes); 494 } 495 return 0; 496 497 errout: 498 kfree(fname->crypto_buf.name); 499 return ret; 500 } 501 EXPORT_SYMBOL(fscrypt_setup_filename); 502 503 /** 504 * fscrypt_match_name() - test whether the given name matches a directory entry 505 * @fname: the name being searched for 506 * @de_name: the name from the directory entry 507 * @de_name_len: the length of @de_name in bytes 508 * 509 * Normally @fname->disk_name will be set, and in that case we simply compare 510 * that to the name stored in the directory entry. The only exception is that 511 * if we don't have the key for an encrypted directory and the name we're 512 * looking for is very long, then we won't have the full disk_name and instead 513 * we'll need to match against a fscrypt_nokey_name that includes a strong hash. 514 * 515 * Return: %true if the name matches, otherwise %false. 516 */ 517 bool fscrypt_match_name(const struct fscrypt_name *fname, 518 const u8 *de_name, u32 de_name_len) 519 { 520 const struct fscrypt_nokey_name *nokey_name = 521 (const void *)fname->crypto_buf.name; 522 u8 sha256[SHA256_DIGEST_SIZE]; 523 524 if (likely(fname->disk_name.name)) { 525 if (de_name_len != fname->disk_name.len) 526 return false; 527 return !memcmp(de_name, fname->disk_name.name, de_name_len); 528 } 529 if (de_name_len <= sizeof(nokey_name->bytes)) 530 return false; 531 if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes))) 532 return false; 533 if (fscrypt_do_sha256(&de_name[sizeof(nokey_name->bytes)], 534 de_name_len - sizeof(nokey_name->bytes), sha256)) 535 return false; 536 return !memcmp(sha256, nokey_name->sha256, sizeof(sha256)); 537 } 538 EXPORT_SYMBOL_GPL(fscrypt_match_name); 539 540 /** 541 * fscrypt_fname_siphash() - calculate the SipHash of a filename 542 * @dir: the parent directory 543 * @name: the filename to calculate the SipHash of 544 * 545 * Given a plaintext filename @name and a directory @dir which uses SipHash as 546 * its dirhash method and has had its fscrypt key set up, this function 547 * calculates the SipHash of that name using the directory's secret dirhash key. 548 * 549 * Return: the SipHash of @name using the hash key of @dir 550 */ 551 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) 552 { 553 const struct fscrypt_info *ci = dir->i_crypt_info; 554 555 WARN_ON(!ci->ci_dirhash_key_initialized); 556 557 return siphash(name->name, name->len, &ci->ci_dirhash_key); 558 } 559 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash); 560 561 /* 562 * Validate dentries in encrypted directories to make sure we aren't potentially 563 * caching stale dentries after a key has been added. 564 */ 565 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 566 { 567 struct dentry *dir; 568 int err; 569 int valid; 570 571 /* 572 * Plaintext names are always valid, since fscrypt doesn't support 573 * reverting to ciphertext names without evicting the directory's inode 574 * -- which implies eviction of the dentries in the directory. 575 */ 576 if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME)) 577 return 1; 578 579 /* 580 * Ciphertext name; valid if the directory's key is still unavailable. 581 * 582 * Although fscrypt forbids rename() on ciphertext names, we still must 583 * use dget_parent() here rather than use ->d_parent directly. That's 584 * because a corrupted fs image may contain directory hard links, which 585 * the VFS handles by moving the directory's dentry tree in the dcache 586 * each time ->lookup() finds the directory and it already has a dentry 587 * elsewhere. Thus ->d_parent can be changing, and we must safely grab 588 * a reference to some ->d_parent to prevent it from being freed. 589 */ 590 591 if (flags & LOOKUP_RCU) 592 return -ECHILD; 593 594 dir = dget_parent(dentry); 595 err = fscrypt_get_encryption_info(d_inode(dir)); 596 valid = !fscrypt_has_encryption_key(d_inode(dir)); 597 dput(dir); 598 599 if (err < 0) 600 return err; 601 602 return valid; 603 } 604 605 const struct dentry_operations fscrypt_d_ops = { 606 .d_revalidate = fscrypt_d_revalidate, 607 }; 608