xref: /openbmc/linux/fs/crypto/crypto.c (revision faa16bc4)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55 {
56 	queue_work(fscrypt_read_workqueue, work);
57 }
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59 
60 /**
61  * fscrypt_release_ctx() - Releases an encryption context
62  * @ctx: The encryption context to release.
63  *
64  * If the encryption context was allocated from the pre-allocated pool, returns
65  * it to that pool. Else, frees it.
66  *
67  * If there's a bounce page in the context, this frees that.
68  */
69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70 {
71 	unsigned long flags;
72 
73 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 		ctx->w.bounce_page = NULL;
76 	}
77 	ctx->w.control_page = NULL;
78 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 	} else {
81 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 	}
85 }
86 EXPORT_SYMBOL(fscrypt_release_ctx);
87 
88 /**
89  * fscrypt_get_ctx() - Gets an encryption context
90  * @inode:       The inode for which we are doing the crypto
91  * @gfp_flags:   The gfp flag for memory allocation
92  *
93  * Allocates and initializes an encryption context.
94  *
95  * Return: An allocated and initialized encryption context on success; error
96  * value or NULL otherwise.
97  */
98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
99 {
100 	struct fscrypt_ctx *ctx = NULL;
101 	struct fscrypt_info *ci = inode->i_crypt_info;
102 	unsigned long flags;
103 
104 	if (ci == NULL)
105 		return ERR_PTR(-ENOKEY);
106 
107 	/*
108 	 * We first try getting the ctx from a free list because in
109 	 * the common case the ctx will have an allocated and
110 	 * initialized crypto tfm, so it's probably a worthwhile
111 	 * optimization. For the bounce page, we first try getting it
112 	 * from the kernel allocator because that's just about as fast
113 	 * as getting it from a list and because a cache of free pages
114 	 * should generally be a "last resort" option for a filesystem
115 	 * to be able to do its job.
116 	 */
117 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 					struct fscrypt_ctx, free_list);
120 	if (ctx)
121 		list_del(&ctx->free_list);
122 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 	if (!ctx) {
124 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
125 		if (!ctx)
126 			return ERR_PTR(-ENOMEM);
127 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 	} else {
129 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 	}
131 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
132 	return ctx;
133 }
134 EXPORT_SYMBOL(fscrypt_get_ctx);
135 
136 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
137 			   u64 lblk_num, struct page *src_page,
138 			   struct page *dest_page, unsigned int len,
139 			   unsigned int offs, gfp_t gfp_flags)
140 {
141 	struct {
142 		__le64 index;
143 		u8 padding[FS_IV_SIZE - sizeof(__le64)];
144 	} iv;
145 	struct skcipher_request *req = NULL;
146 	DECLARE_CRYPTO_WAIT(wait);
147 	struct scatterlist dst, src;
148 	struct fscrypt_info *ci = inode->i_crypt_info;
149 	struct crypto_skcipher *tfm = ci->ci_ctfm;
150 	int res = 0;
151 
152 	BUG_ON(len == 0);
153 
154 	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
155 	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
156 	iv.index = cpu_to_le64(lblk_num);
157 	memset(iv.padding, 0, sizeof(iv.padding));
158 
159 	if (ci->ci_essiv_tfm != NULL) {
160 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
161 					  (u8 *)&iv);
162 	}
163 
164 	req = skcipher_request_alloc(tfm, gfp_flags);
165 	if (!req)
166 		return -ENOMEM;
167 
168 	skcipher_request_set_callback(
169 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
170 		crypto_req_done, &wait);
171 
172 	sg_init_table(&dst, 1);
173 	sg_set_page(&dst, dest_page, len, offs);
174 	sg_init_table(&src, 1);
175 	sg_set_page(&src, src_page, len, offs);
176 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
177 	if (rw == FS_DECRYPT)
178 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
179 	else
180 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
181 	skcipher_request_free(req);
182 	if (res) {
183 		fscrypt_err(inode->i_sb,
184 			    "%scryption failed for inode %lu, block %llu: %d",
185 			    (rw == FS_DECRYPT ? "de" : "en"),
186 			    inode->i_ino, lblk_num, res);
187 		return res;
188 	}
189 	return 0;
190 }
191 
192 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
193 				       gfp_t gfp_flags)
194 {
195 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
196 	if (ctx->w.bounce_page == NULL)
197 		return ERR_PTR(-ENOMEM);
198 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
199 	return ctx->w.bounce_page;
200 }
201 
202 /**
203  * fscypt_encrypt_page() - Encrypts a page
204  * @inode:     The inode for which the encryption should take place
205  * @page:      The page to encrypt. Must be locked for bounce-page
206  *             encryption.
207  * @len:       Length of data to encrypt in @page and encrypted
208  *             data in returned page.
209  * @offs:      Offset of data within @page and returned
210  *             page holding encrypted data.
211  * @lblk_num:  Logical block number. This must be unique for multiple
212  *             calls with same inode, except when overwriting
213  *             previously written data.
214  * @gfp_flags: The gfp flag for memory allocation
215  *
216  * Encrypts @page using the ctx encryption context. Performs encryption
217  * either in-place or into a newly allocated bounce page.
218  * Called on the page write path.
219  *
220  * Bounce page allocation is the default.
221  * In this case, the contents of @page are encrypted and stored in an
222  * allocated bounce page. @page has to be locked and the caller must call
223  * fscrypt_restore_control_page() on the returned ciphertext page to
224  * release the bounce buffer and the encryption context.
225  *
226  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
227  * fscrypt_operations. Here, the input-page is returned with its content
228  * encrypted.
229  *
230  * Return: A page with the encrypted content on success. Else, an
231  * error value or NULL.
232  */
233 struct page *fscrypt_encrypt_page(const struct inode *inode,
234 				struct page *page,
235 				unsigned int len,
236 				unsigned int offs,
237 				u64 lblk_num, gfp_t gfp_flags)
238 
239 {
240 	struct fscrypt_ctx *ctx;
241 	struct page *ciphertext_page = page;
242 	int err;
243 
244 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
245 
246 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
247 		/* with inplace-encryption we just encrypt the page */
248 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
249 					     ciphertext_page, len, offs,
250 					     gfp_flags);
251 		if (err)
252 			return ERR_PTR(err);
253 
254 		return ciphertext_page;
255 	}
256 
257 	BUG_ON(!PageLocked(page));
258 
259 	ctx = fscrypt_get_ctx(inode, gfp_flags);
260 	if (IS_ERR(ctx))
261 		return (struct page *)ctx;
262 
263 	/* The encryption operation will require a bounce page. */
264 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
265 	if (IS_ERR(ciphertext_page))
266 		goto errout;
267 
268 	ctx->w.control_page = page;
269 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
270 				     page, ciphertext_page, len, offs,
271 				     gfp_flags);
272 	if (err) {
273 		ciphertext_page = ERR_PTR(err);
274 		goto errout;
275 	}
276 	SetPagePrivate(ciphertext_page);
277 	set_page_private(ciphertext_page, (unsigned long)ctx);
278 	lock_page(ciphertext_page);
279 	return ciphertext_page;
280 
281 errout:
282 	fscrypt_release_ctx(ctx);
283 	return ciphertext_page;
284 }
285 EXPORT_SYMBOL(fscrypt_encrypt_page);
286 
287 /**
288  * fscrypt_decrypt_page() - Decrypts a page in-place
289  * @inode:     The corresponding inode for the page to decrypt.
290  * @page:      The page to decrypt. Must be locked in case
291  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
292  * @len:       Number of bytes in @page to be decrypted.
293  * @offs:      Start of data in @page.
294  * @lblk_num:  Logical block number.
295  *
296  * Decrypts page in-place using the ctx encryption context.
297  *
298  * Called from the read completion callback.
299  *
300  * Return: Zero on success, non-zero otherwise.
301  */
302 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
303 			unsigned int len, unsigned int offs, u64 lblk_num)
304 {
305 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
306 		BUG_ON(!PageLocked(page));
307 
308 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
309 				      len, offs, GFP_NOFS);
310 }
311 EXPORT_SYMBOL(fscrypt_decrypt_page);
312 
313 /*
314  * Validate dentries for encrypted directories to make sure we aren't
315  * potentially caching stale data after a key has been added or
316  * removed.
317  */
318 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
319 {
320 	struct dentry *dir;
321 	int dir_has_key, cached_with_key;
322 
323 	if (flags & LOOKUP_RCU)
324 		return -ECHILD;
325 
326 	dir = dget_parent(dentry);
327 	if (!IS_ENCRYPTED(d_inode(dir))) {
328 		dput(dir);
329 		return 0;
330 	}
331 
332 	spin_lock(&dentry->d_lock);
333 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
334 	spin_unlock(&dentry->d_lock);
335 	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
336 	dput(dir);
337 
338 	/*
339 	 * If the dentry was cached without the key, and it is a
340 	 * negative dentry, it might be a valid name.  We can't check
341 	 * if the key has since been made available due to locking
342 	 * reasons, so we fail the validation so ext4_lookup() can do
343 	 * this check.
344 	 *
345 	 * We also fail the validation if the dentry was created with
346 	 * the key present, but we no longer have the key, or vice versa.
347 	 */
348 	if ((!cached_with_key && d_is_negative(dentry)) ||
349 			(!cached_with_key && dir_has_key) ||
350 			(cached_with_key && !dir_has_key))
351 		return 0;
352 	return 1;
353 }
354 
355 const struct dentry_operations fscrypt_d_ops = {
356 	.d_revalidate = fscrypt_d_revalidate,
357 };
358 
359 void fscrypt_restore_control_page(struct page *page)
360 {
361 	struct fscrypt_ctx *ctx;
362 
363 	ctx = (struct fscrypt_ctx *)page_private(page);
364 	set_page_private(page, (unsigned long)NULL);
365 	ClearPagePrivate(page);
366 	unlock_page(page);
367 	fscrypt_release_ctx(ctx);
368 }
369 EXPORT_SYMBOL(fscrypt_restore_control_page);
370 
371 static void fscrypt_destroy(void)
372 {
373 	struct fscrypt_ctx *pos, *n;
374 
375 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
376 		kmem_cache_free(fscrypt_ctx_cachep, pos);
377 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
378 	mempool_destroy(fscrypt_bounce_page_pool);
379 	fscrypt_bounce_page_pool = NULL;
380 }
381 
382 /**
383  * fscrypt_initialize() - allocate major buffers for fs encryption.
384  * @cop_flags:  fscrypt operations flags
385  *
386  * We only call this when we start accessing encrypted files, since it
387  * results in memory getting allocated that wouldn't otherwise be used.
388  *
389  * Return: Zero on success, non-zero otherwise.
390  */
391 int fscrypt_initialize(unsigned int cop_flags)
392 {
393 	int i, res = -ENOMEM;
394 
395 	/* No need to allocate a bounce page pool if this FS won't use it. */
396 	if (cop_flags & FS_CFLG_OWN_PAGES)
397 		return 0;
398 
399 	mutex_lock(&fscrypt_init_mutex);
400 	if (fscrypt_bounce_page_pool)
401 		goto already_initialized;
402 
403 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
404 		struct fscrypt_ctx *ctx;
405 
406 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
407 		if (!ctx)
408 			goto fail;
409 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
410 	}
411 
412 	fscrypt_bounce_page_pool =
413 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
414 	if (!fscrypt_bounce_page_pool)
415 		goto fail;
416 
417 already_initialized:
418 	mutex_unlock(&fscrypt_init_mutex);
419 	return 0;
420 fail:
421 	fscrypt_destroy();
422 	mutex_unlock(&fscrypt_init_mutex);
423 	return res;
424 }
425 
426 void fscrypt_msg(struct super_block *sb, const char *level,
427 		 const char *fmt, ...)
428 {
429 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
430 				      DEFAULT_RATELIMIT_BURST);
431 	struct va_format vaf;
432 	va_list args;
433 
434 	if (!__ratelimit(&rs))
435 		return;
436 
437 	va_start(args, fmt);
438 	vaf.fmt = fmt;
439 	vaf.va = &args;
440 	if (sb)
441 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
442 	else
443 		printk("%sfscrypt: %pV\n", level, &vaf);
444 	va_end(args);
445 }
446 
447 /**
448  * fscrypt_init() - Set up for fs encryption.
449  */
450 static int __init fscrypt_init(void)
451 {
452 	/*
453 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
454 	 * even when they happen to complete on the same CPU.  This sacrifices
455 	 * locality, but it's worthwhile since decryption is CPU-intensive.
456 	 *
457 	 * Also use a high-priority workqueue to prioritize decryption work,
458 	 * which blocks reads from completing, over regular application tasks.
459 	 */
460 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
461 						 WQ_UNBOUND | WQ_HIGHPRI,
462 						 num_online_cpus());
463 	if (!fscrypt_read_workqueue)
464 		goto fail;
465 
466 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
467 	if (!fscrypt_ctx_cachep)
468 		goto fail_free_queue;
469 
470 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
471 	if (!fscrypt_info_cachep)
472 		goto fail_free_ctx;
473 
474 	return 0;
475 
476 fail_free_ctx:
477 	kmem_cache_destroy(fscrypt_ctx_cachep);
478 fail_free_queue:
479 	destroy_workqueue(fscrypt_read_workqueue);
480 fail:
481 	return -ENOMEM;
482 }
483 module_init(fscrypt_init)
484 
485 /**
486  * fscrypt_exit() - Shutdown the fs encryption system
487  */
488 static void __exit fscrypt_exit(void)
489 {
490 	fscrypt_destroy();
491 
492 	if (fscrypt_read_workqueue)
493 		destroy_workqueue(fscrypt_read_workqueue);
494 	kmem_cache_destroy(fscrypt_ctx_cachep);
495 	kmem_cache_destroy(fscrypt_info_cachep);
496 
497 	fscrypt_essiv_cleanup();
498 }
499 module_exit(fscrypt_exit);
500 
501 MODULE_LICENSE("GPL");
502