xref: /openbmc/linux/fs/crypto/crypto.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/bio.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include "fscrypt_private.h"
31 
32 static unsigned int num_prealloc_crypto_pages = 32;
33 static unsigned int num_prealloc_crypto_ctxs = 128;
34 
35 module_param(num_prealloc_crypto_pages, uint, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 		"Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs, uint, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 		"Number of crypto contexts to preallocate");
41 
42 static mempool_t *fscrypt_bounce_page_pool = NULL;
43 
44 static LIST_HEAD(fscrypt_free_ctxs);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46 
47 static struct workqueue_struct *fscrypt_read_workqueue;
48 static DEFINE_MUTEX(fscrypt_init_mutex);
49 
50 static struct kmem_cache *fscrypt_ctx_cachep;
51 struct kmem_cache *fscrypt_info_cachep;
52 
53 /**
54  * fscrypt_release_ctx() - Releases an encryption context
55  * @ctx: The encryption context to release.
56  *
57  * If the encryption context was allocated from the pre-allocated pool, returns
58  * it to that pool. Else, frees it.
59  *
60  * If there's a bounce page in the context, this frees that.
61  */
62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63 {
64 	unsigned long flags;
65 
66 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
67 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 		ctx->w.bounce_page = NULL;
69 	}
70 	ctx->w.control_page = NULL;
71 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 	} else {
74 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 	}
78 }
79 EXPORT_SYMBOL(fscrypt_release_ctx);
80 
81 /**
82  * fscrypt_get_ctx() - Gets an encryption context
83  * @inode:       The inode for which we are doing the crypto
84  * @gfp_flags:   The gfp flag for memory allocation
85  *
86  * Allocates and initializes an encryption context.
87  *
88  * Return: An allocated and initialized encryption context on success; error
89  * value or NULL otherwise.
90  */
91 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
92 {
93 	struct fscrypt_ctx *ctx = NULL;
94 	struct fscrypt_info *ci = inode->i_crypt_info;
95 	unsigned long flags;
96 
97 	if (ci == NULL)
98 		return ERR_PTR(-ENOKEY);
99 
100 	/*
101 	 * We first try getting the ctx from a free list because in
102 	 * the common case the ctx will have an allocated and
103 	 * initialized crypto tfm, so it's probably a worthwhile
104 	 * optimization. For the bounce page, we first try getting it
105 	 * from the kernel allocator because that's just about as fast
106 	 * as getting it from a list and because a cache of free pages
107 	 * should generally be a "last resort" option for a filesystem
108 	 * to be able to do its job.
109 	 */
110 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 					struct fscrypt_ctx, free_list);
113 	if (ctx)
114 		list_del(&ctx->free_list);
115 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 	if (!ctx) {
117 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
118 		if (!ctx)
119 			return ERR_PTR(-ENOMEM);
120 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 	} else {
122 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 	}
124 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
125 	return ctx;
126 }
127 EXPORT_SYMBOL(fscrypt_get_ctx);
128 
129 /**
130  * page_crypt_complete() - completion callback for page crypto
131  * @req: The asynchronous cipher request context
132  * @res: The result of the cipher operation
133  */
134 static void page_crypt_complete(struct crypto_async_request *req, int res)
135 {
136 	struct fscrypt_completion_result *ecr = req->data;
137 
138 	if (res == -EINPROGRESS)
139 		return;
140 	ecr->res = res;
141 	complete(&ecr->completion);
142 }
143 
144 typedef enum {
145 	FS_DECRYPT = 0,
146 	FS_ENCRYPT,
147 } fscrypt_direction_t;
148 
149 static int do_page_crypto(const struct inode *inode,
150 			fscrypt_direction_t rw, u64 lblk_num,
151 			struct page *src_page, struct page *dest_page,
152 			unsigned int len, unsigned int offs,
153 			gfp_t gfp_flags)
154 {
155 	struct {
156 		__le64 index;
157 		u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
158 	} xts_tweak;
159 	struct skcipher_request *req = NULL;
160 	DECLARE_FS_COMPLETION_RESULT(ecr);
161 	struct scatterlist dst, src;
162 	struct fscrypt_info *ci = inode->i_crypt_info;
163 	struct crypto_skcipher *tfm = ci->ci_ctfm;
164 	int res = 0;
165 
166 	BUG_ON(len == 0);
167 
168 	req = skcipher_request_alloc(tfm, gfp_flags);
169 	if (!req) {
170 		printk_ratelimited(KERN_ERR
171 				"%s: crypto_request_alloc() failed\n",
172 				__func__);
173 		return -ENOMEM;
174 	}
175 
176 	skcipher_request_set_callback(
177 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
178 		page_crypt_complete, &ecr);
179 
180 	BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
181 	xts_tweak.index = cpu_to_le64(lblk_num);
182 	memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));
183 
184 	sg_init_table(&dst, 1);
185 	sg_set_page(&dst, dest_page, len, offs);
186 	sg_init_table(&src, 1);
187 	sg_set_page(&src, src_page, len, offs);
188 	skcipher_request_set_crypt(req, &src, &dst, len, &xts_tweak);
189 	if (rw == FS_DECRYPT)
190 		res = crypto_skcipher_decrypt(req);
191 	else
192 		res = crypto_skcipher_encrypt(req);
193 	if (res == -EINPROGRESS || res == -EBUSY) {
194 		BUG_ON(req->base.data != &ecr);
195 		wait_for_completion(&ecr.completion);
196 		res = ecr.res;
197 	}
198 	skcipher_request_free(req);
199 	if (res) {
200 		printk_ratelimited(KERN_ERR
201 			"%s: crypto_skcipher_encrypt() returned %d\n",
202 			__func__, res);
203 		return res;
204 	}
205 	return 0;
206 }
207 
208 static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
209 {
210 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
211 	if (ctx->w.bounce_page == NULL)
212 		return ERR_PTR(-ENOMEM);
213 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
214 	return ctx->w.bounce_page;
215 }
216 
217 /**
218  * fscypt_encrypt_page() - Encrypts a page
219  * @inode:     The inode for which the encryption should take place
220  * @page:      The page to encrypt. Must be locked for bounce-page
221  *             encryption.
222  * @len:       Length of data to encrypt in @page and encrypted
223  *             data in returned page.
224  * @offs:      Offset of data within @page and returned
225  *             page holding encrypted data.
226  * @lblk_num:  Logical block number. This must be unique for multiple
227  *             calls with same inode, except when overwriting
228  *             previously written data.
229  * @gfp_flags: The gfp flag for memory allocation
230  *
231  * Encrypts @page using the ctx encryption context. Performs encryption
232  * either in-place or into a newly allocated bounce page.
233  * Called on the page write path.
234  *
235  * Bounce page allocation is the default.
236  * In this case, the contents of @page are encrypted and stored in an
237  * allocated bounce page. @page has to be locked and the caller must call
238  * fscrypt_restore_control_page() on the returned ciphertext page to
239  * release the bounce buffer and the encryption context.
240  *
241  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
242  * fscrypt_operations. Here, the input-page is returned with its content
243  * encrypted.
244  *
245  * Return: A page with the encrypted content on success. Else, an
246  * error value or NULL.
247  */
248 struct page *fscrypt_encrypt_page(const struct inode *inode,
249 				struct page *page,
250 				unsigned int len,
251 				unsigned int offs,
252 				u64 lblk_num, gfp_t gfp_flags)
253 
254 {
255 	struct fscrypt_ctx *ctx;
256 	struct page *ciphertext_page = page;
257 	int err;
258 
259 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
260 
261 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
262 		/* with inplace-encryption we just encrypt the page */
263 		err = do_page_crypto(inode, FS_ENCRYPT, lblk_num,
264 					page, ciphertext_page,
265 					len, offs, gfp_flags);
266 		if (err)
267 			return ERR_PTR(err);
268 
269 		return ciphertext_page;
270 	}
271 
272 	BUG_ON(!PageLocked(page));
273 
274 	ctx = fscrypt_get_ctx(inode, gfp_flags);
275 	if (IS_ERR(ctx))
276 		return (struct page *)ctx;
277 
278 	/* The encryption operation will require a bounce page. */
279 	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
280 	if (IS_ERR(ciphertext_page))
281 		goto errout;
282 
283 	ctx->w.control_page = page;
284 	err = do_page_crypto(inode, FS_ENCRYPT, lblk_num,
285 					page, ciphertext_page,
286 					len, offs, gfp_flags);
287 	if (err) {
288 		ciphertext_page = ERR_PTR(err);
289 		goto errout;
290 	}
291 	SetPagePrivate(ciphertext_page);
292 	set_page_private(ciphertext_page, (unsigned long)ctx);
293 	lock_page(ciphertext_page);
294 	return ciphertext_page;
295 
296 errout:
297 	fscrypt_release_ctx(ctx);
298 	return ciphertext_page;
299 }
300 EXPORT_SYMBOL(fscrypt_encrypt_page);
301 
302 /**
303  * fscrypt_decrypt_page() - Decrypts a page in-place
304  * @inode:     The corresponding inode for the page to decrypt.
305  * @page:      The page to decrypt. Must be locked in case
306  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
307  * @len:       Number of bytes in @page to be decrypted.
308  * @offs:      Start of data in @page.
309  * @lblk_num:  Logical block number.
310  *
311  * Decrypts page in-place using the ctx encryption context.
312  *
313  * Called from the read completion callback.
314  *
315  * Return: Zero on success, non-zero otherwise.
316  */
317 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
318 			unsigned int len, unsigned int offs, u64 lblk_num)
319 {
320 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
321 		BUG_ON(!PageLocked(page));
322 
323 	return do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, len,
324 			offs, GFP_NOFS);
325 }
326 EXPORT_SYMBOL(fscrypt_decrypt_page);
327 
328 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
329 				sector_t pblk, unsigned int len)
330 {
331 	struct fscrypt_ctx *ctx;
332 	struct page *ciphertext_page = NULL;
333 	struct bio *bio;
334 	int ret, err = 0;
335 
336 	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
337 
338 	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
339 	if (IS_ERR(ctx))
340 		return PTR_ERR(ctx);
341 
342 	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
343 	if (IS_ERR(ciphertext_page)) {
344 		err = PTR_ERR(ciphertext_page);
345 		goto errout;
346 	}
347 
348 	while (len--) {
349 		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
350 					ZERO_PAGE(0), ciphertext_page,
351 					PAGE_SIZE, 0, GFP_NOFS);
352 		if (err)
353 			goto errout;
354 
355 		bio = bio_alloc(GFP_NOWAIT, 1);
356 		if (!bio) {
357 			err = -ENOMEM;
358 			goto errout;
359 		}
360 		bio->bi_bdev = inode->i_sb->s_bdev;
361 		bio->bi_iter.bi_sector =
362 			pblk << (inode->i_sb->s_blocksize_bits - 9);
363 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
364 		ret = bio_add_page(bio, ciphertext_page,
365 					inode->i_sb->s_blocksize, 0);
366 		if (ret != inode->i_sb->s_blocksize) {
367 			/* should never happen! */
368 			WARN_ON(1);
369 			bio_put(bio);
370 			err = -EIO;
371 			goto errout;
372 		}
373 		err = submit_bio_wait(bio);
374 		if ((err == 0) && bio->bi_error)
375 			err = -EIO;
376 		bio_put(bio);
377 		if (err)
378 			goto errout;
379 		lblk++;
380 		pblk++;
381 	}
382 	err = 0;
383 errout:
384 	fscrypt_release_ctx(ctx);
385 	return err;
386 }
387 EXPORT_SYMBOL(fscrypt_zeroout_range);
388 
389 /*
390  * Validate dentries for encrypted directories to make sure we aren't
391  * potentially caching stale data after a key has been added or
392  * removed.
393  */
394 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
395 {
396 	struct dentry *dir;
397 	struct fscrypt_info *ci;
398 	int dir_has_key, cached_with_key;
399 
400 	if (flags & LOOKUP_RCU)
401 		return -ECHILD;
402 
403 	dir = dget_parent(dentry);
404 	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
405 		dput(dir);
406 		return 0;
407 	}
408 
409 	ci = d_inode(dir)->i_crypt_info;
410 	if (ci && ci->ci_keyring_key &&
411 	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
412 					  (1 << KEY_FLAG_REVOKED) |
413 					  (1 << KEY_FLAG_DEAD))))
414 		ci = NULL;
415 
416 	/* this should eventually be an flag in d_flags */
417 	spin_lock(&dentry->d_lock);
418 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
419 	spin_unlock(&dentry->d_lock);
420 	dir_has_key = (ci != NULL);
421 	dput(dir);
422 
423 	/*
424 	 * If the dentry was cached without the key, and it is a
425 	 * negative dentry, it might be a valid name.  We can't check
426 	 * if the key has since been made available due to locking
427 	 * reasons, so we fail the validation so ext4_lookup() can do
428 	 * this check.
429 	 *
430 	 * We also fail the validation if the dentry was created with
431 	 * the key present, but we no longer have the key, or vice versa.
432 	 */
433 	if ((!cached_with_key && d_is_negative(dentry)) ||
434 			(!cached_with_key && dir_has_key) ||
435 			(cached_with_key && !dir_has_key))
436 		return 0;
437 	return 1;
438 }
439 
440 const struct dentry_operations fscrypt_d_ops = {
441 	.d_revalidate = fscrypt_d_revalidate,
442 };
443 EXPORT_SYMBOL(fscrypt_d_ops);
444 
445 /*
446  * Call fscrypt_decrypt_page on every single page, reusing the encryption
447  * context.
448  */
449 static void completion_pages(struct work_struct *work)
450 {
451 	struct fscrypt_ctx *ctx =
452 		container_of(work, struct fscrypt_ctx, r.work);
453 	struct bio *bio = ctx->r.bio;
454 	struct bio_vec *bv;
455 	int i;
456 
457 	bio_for_each_segment_all(bv, bio, i) {
458 		struct page *page = bv->bv_page;
459 		int ret = fscrypt_decrypt_page(page->mapping->host, page,
460 				PAGE_SIZE, 0, page->index);
461 
462 		if (ret) {
463 			WARN_ON_ONCE(1);
464 			SetPageError(page);
465 		} else {
466 			SetPageUptodate(page);
467 		}
468 		unlock_page(page);
469 	}
470 	fscrypt_release_ctx(ctx);
471 	bio_put(bio);
472 }
473 
474 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
475 {
476 	INIT_WORK(&ctx->r.work, completion_pages);
477 	ctx->r.bio = bio;
478 	queue_work(fscrypt_read_workqueue, &ctx->r.work);
479 }
480 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
481 
482 void fscrypt_pullback_bio_page(struct page **page, bool restore)
483 {
484 	struct fscrypt_ctx *ctx;
485 	struct page *bounce_page;
486 
487 	/* The bounce data pages are unmapped. */
488 	if ((*page)->mapping)
489 		return;
490 
491 	/* The bounce data page is unmapped. */
492 	bounce_page = *page;
493 	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
494 
495 	/* restore control page */
496 	*page = ctx->w.control_page;
497 
498 	if (restore)
499 		fscrypt_restore_control_page(bounce_page);
500 }
501 EXPORT_SYMBOL(fscrypt_pullback_bio_page);
502 
503 void fscrypt_restore_control_page(struct page *page)
504 {
505 	struct fscrypt_ctx *ctx;
506 
507 	ctx = (struct fscrypt_ctx *)page_private(page);
508 	set_page_private(page, (unsigned long)NULL);
509 	ClearPagePrivate(page);
510 	unlock_page(page);
511 	fscrypt_release_ctx(ctx);
512 }
513 EXPORT_SYMBOL(fscrypt_restore_control_page);
514 
515 static void fscrypt_destroy(void)
516 {
517 	struct fscrypt_ctx *pos, *n;
518 
519 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
520 		kmem_cache_free(fscrypt_ctx_cachep, pos);
521 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
522 	mempool_destroy(fscrypt_bounce_page_pool);
523 	fscrypt_bounce_page_pool = NULL;
524 }
525 
526 /**
527  * fscrypt_initialize() - allocate major buffers for fs encryption.
528  * @cop_flags:  fscrypt operations flags
529  *
530  * We only call this when we start accessing encrypted files, since it
531  * results in memory getting allocated that wouldn't otherwise be used.
532  *
533  * Return: Zero on success, non-zero otherwise.
534  */
535 int fscrypt_initialize(unsigned int cop_flags)
536 {
537 	int i, res = -ENOMEM;
538 
539 	/*
540 	 * No need to allocate a bounce page pool if there already is one or
541 	 * this FS won't use it.
542 	 */
543 	if (cop_flags & FS_CFLG_OWN_PAGES || fscrypt_bounce_page_pool)
544 		return 0;
545 
546 	mutex_lock(&fscrypt_init_mutex);
547 	if (fscrypt_bounce_page_pool)
548 		goto already_initialized;
549 
550 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
551 		struct fscrypt_ctx *ctx;
552 
553 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
554 		if (!ctx)
555 			goto fail;
556 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
557 	}
558 
559 	fscrypt_bounce_page_pool =
560 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
561 	if (!fscrypt_bounce_page_pool)
562 		goto fail;
563 
564 already_initialized:
565 	mutex_unlock(&fscrypt_init_mutex);
566 	return 0;
567 fail:
568 	fscrypt_destroy();
569 	mutex_unlock(&fscrypt_init_mutex);
570 	return res;
571 }
572 
573 /**
574  * fscrypt_init() - Set up for fs encryption.
575  */
576 static int __init fscrypt_init(void)
577 {
578 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
579 							WQ_HIGHPRI, 0);
580 	if (!fscrypt_read_workqueue)
581 		goto fail;
582 
583 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
584 	if (!fscrypt_ctx_cachep)
585 		goto fail_free_queue;
586 
587 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
588 	if (!fscrypt_info_cachep)
589 		goto fail_free_ctx;
590 
591 	return 0;
592 
593 fail_free_ctx:
594 	kmem_cache_destroy(fscrypt_ctx_cachep);
595 fail_free_queue:
596 	destroy_workqueue(fscrypt_read_workqueue);
597 fail:
598 	return -ENOMEM;
599 }
600 module_init(fscrypt_init)
601 
602 /**
603  * fscrypt_exit() - Shutdown the fs encryption system
604  */
605 static void __exit fscrypt_exit(void)
606 {
607 	fscrypt_destroy();
608 
609 	if (fscrypt_read_workqueue)
610 		destroy_workqueue(fscrypt_read_workqueue);
611 	kmem_cache_destroy(fscrypt_ctx_cachep);
612 	kmem_cache_destroy(fscrypt_info_cachep);
613 }
614 module_exit(fscrypt_exit);
615 
616 MODULE_LICENSE("GPL");
617