xref: /openbmc/linux/fs/crypto/crypto.c (revision b664e06d)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55 {
56 	queue_work(fscrypt_read_workqueue, work);
57 }
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59 
60 /**
61  * fscrypt_release_ctx() - Releases an encryption context
62  * @ctx: The encryption context to release.
63  *
64  * If the encryption context was allocated from the pre-allocated pool, returns
65  * it to that pool. Else, frees it.
66  *
67  * If there's a bounce page in the context, this frees that.
68  */
69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70 {
71 	unsigned long flags;
72 
73 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 		ctx->w.bounce_page = NULL;
76 	}
77 	ctx->w.control_page = NULL;
78 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 	} else {
81 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 	}
85 }
86 EXPORT_SYMBOL(fscrypt_release_ctx);
87 
88 /**
89  * fscrypt_get_ctx() - Gets an encryption context
90  * @gfp_flags:   The gfp flag for memory allocation
91  *
92  * Allocates and initializes an encryption context.
93  *
94  * Return: A new encryption context on success; an ERR_PTR() otherwise.
95  */
96 struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
97 {
98 	struct fscrypt_ctx *ctx;
99 	unsigned long flags;
100 
101 	/*
102 	 * We first try getting the ctx from a free list because in
103 	 * the common case the ctx will have an allocated and
104 	 * initialized crypto tfm, so it's probably a worthwhile
105 	 * optimization. For the bounce page, we first try getting it
106 	 * from the kernel allocator because that's just about as fast
107 	 * as getting it from a list and because a cache of free pages
108 	 * should generally be a "last resort" option for a filesystem
109 	 * to be able to do its job.
110 	 */
111 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113 					struct fscrypt_ctx, free_list);
114 	if (ctx)
115 		list_del(&ctx->free_list);
116 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117 	if (!ctx) {
118 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119 		if (!ctx)
120 			return ERR_PTR(-ENOMEM);
121 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122 	} else {
123 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124 	}
125 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
126 	return ctx;
127 }
128 EXPORT_SYMBOL(fscrypt_get_ctx);
129 
130 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
131 			 const struct fscrypt_info *ci)
132 {
133 	memset(iv, 0, ci->ci_mode->ivsize);
134 	iv->lblk_num = cpu_to_le64(lblk_num);
135 
136 	if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
137 		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
138 
139 	if (ci->ci_essiv_tfm != NULL)
140 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
141 }
142 
143 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
144 			   u64 lblk_num, struct page *src_page,
145 			   struct page *dest_page, unsigned int len,
146 			   unsigned int offs, gfp_t gfp_flags)
147 {
148 	union fscrypt_iv iv;
149 	struct skcipher_request *req = NULL;
150 	DECLARE_CRYPTO_WAIT(wait);
151 	struct scatterlist dst, src;
152 	struct fscrypt_info *ci = inode->i_crypt_info;
153 	struct crypto_skcipher *tfm = ci->ci_ctfm;
154 	int res = 0;
155 
156 	BUG_ON(len == 0);
157 
158 	fscrypt_generate_iv(&iv, lblk_num, ci);
159 
160 	req = skcipher_request_alloc(tfm, gfp_flags);
161 	if (!req)
162 		return -ENOMEM;
163 
164 	skcipher_request_set_callback(
165 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
166 		crypto_req_done, &wait);
167 
168 	sg_init_table(&dst, 1);
169 	sg_set_page(&dst, dest_page, len, offs);
170 	sg_init_table(&src, 1);
171 	sg_set_page(&src, src_page, len, offs);
172 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
173 	if (rw == FS_DECRYPT)
174 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
175 	else
176 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
177 	skcipher_request_free(req);
178 	if (res) {
179 		fscrypt_err(inode->i_sb,
180 			    "%scryption failed for inode %lu, block %llu: %d",
181 			    (rw == FS_DECRYPT ? "de" : "en"),
182 			    inode->i_ino, lblk_num, res);
183 		return res;
184 	}
185 	return 0;
186 }
187 
188 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
189 				       gfp_t gfp_flags)
190 {
191 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
192 	if (ctx->w.bounce_page == NULL)
193 		return ERR_PTR(-ENOMEM);
194 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
195 	return ctx->w.bounce_page;
196 }
197 
198 /**
199  * fscypt_encrypt_page() - Encrypts a page
200  * @inode:     The inode for which the encryption should take place
201  * @page:      The page to encrypt. Must be locked for bounce-page
202  *             encryption.
203  * @len:       Length of data to encrypt in @page and encrypted
204  *             data in returned page.
205  * @offs:      Offset of data within @page and returned
206  *             page holding encrypted data.
207  * @lblk_num:  Logical block number. This must be unique for multiple
208  *             calls with same inode, except when overwriting
209  *             previously written data.
210  * @gfp_flags: The gfp flag for memory allocation
211  *
212  * Encrypts @page using the ctx encryption context. Performs encryption
213  * either in-place or into a newly allocated bounce page.
214  * Called on the page write path.
215  *
216  * Bounce page allocation is the default.
217  * In this case, the contents of @page are encrypted and stored in an
218  * allocated bounce page. @page has to be locked and the caller must call
219  * fscrypt_restore_control_page() on the returned ciphertext page to
220  * release the bounce buffer and the encryption context.
221  *
222  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
223  * fscrypt_operations. Here, the input-page is returned with its content
224  * encrypted.
225  *
226  * Return: A page with the encrypted content on success. Else, an
227  * error value or NULL.
228  */
229 struct page *fscrypt_encrypt_page(const struct inode *inode,
230 				struct page *page,
231 				unsigned int len,
232 				unsigned int offs,
233 				u64 lblk_num, gfp_t gfp_flags)
234 
235 {
236 	struct fscrypt_ctx *ctx;
237 	struct page *ciphertext_page = page;
238 	int err;
239 
240 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
241 
242 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
243 		/* with inplace-encryption we just encrypt the page */
244 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
245 					     ciphertext_page, len, offs,
246 					     gfp_flags);
247 		if (err)
248 			return ERR_PTR(err);
249 
250 		return ciphertext_page;
251 	}
252 
253 	BUG_ON(!PageLocked(page));
254 
255 	ctx = fscrypt_get_ctx(gfp_flags);
256 	if (IS_ERR(ctx))
257 		return ERR_CAST(ctx);
258 
259 	/* The encryption operation will require a bounce page. */
260 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
261 	if (IS_ERR(ciphertext_page))
262 		goto errout;
263 
264 	ctx->w.control_page = page;
265 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
266 				     page, ciphertext_page, len, offs,
267 				     gfp_flags);
268 	if (err) {
269 		ciphertext_page = ERR_PTR(err);
270 		goto errout;
271 	}
272 	SetPagePrivate(ciphertext_page);
273 	set_page_private(ciphertext_page, (unsigned long)ctx);
274 	lock_page(ciphertext_page);
275 	return ciphertext_page;
276 
277 errout:
278 	fscrypt_release_ctx(ctx);
279 	return ciphertext_page;
280 }
281 EXPORT_SYMBOL(fscrypt_encrypt_page);
282 
283 /**
284  * fscrypt_decrypt_page() - Decrypts a page in-place
285  * @inode:     The corresponding inode for the page to decrypt.
286  * @page:      The page to decrypt. Must be locked in case
287  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
288  * @len:       Number of bytes in @page to be decrypted.
289  * @offs:      Start of data in @page.
290  * @lblk_num:  Logical block number.
291  *
292  * Decrypts page in-place using the ctx encryption context.
293  *
294  * Called from the read completion callback.
295  *
296  * Return: Zero on success, non-zero otherwise.
297  */
298 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
299 			unsigned int len, unsigned int offs, u64 lblk_num)
300 {
301 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
302 		BUG_ON(!PageLocked(page));
303 
304 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
305 				      len, offs, GFP_NOFS);
306 }
307 EXPORT_SYMBOL(fscrypt_decrypt_page);
308 
309 /*
310  * Validate dentries in encrypted directories to make sure we aren't potentially
311  * caching stale dentries after a key has been added.
312  */
313 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
314 {
315 	struct dentry *dir;
316 	int err;
317 	int valid;
318 
319 	/*
320 	 * Plaintext names are always valid, since fscrypt doesn't support
321 	 * reverting to ciphertext names without evicting the directory's inode
322 	 * -- which implies eviction of the dentries in the directory.
323 	 */
324 	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
325 		return 1;
326 
327 	/*
328 	 * Ciphertext name; valid if the directory's key is still unavailable.
329 	 *
330 	 * Although fscrypt forbids rename() on ciphertext names, we still must
331 	 * use dget_parent() here rather than use ->d_parent directly.  That's
332 	 * because a corrupted fs image may contain directory hard links, which
333 	 * the VFS handles by moving the directory's dentry tree in the dcache
334 	 * each time ->lookup() finds the directory and it already has a dentry
335 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
336 	 * a reference to some ->d_parent to prevent it from being freed.
337 	 */
338 
339 	if (flags & LOOKUP_RCU)
340 		return -ECHILD;
341 
342 	dir = dget_parent(dentry);
343 	err = fscrypt_get_encryption_info(d_inode(dir));
344 	valid = !fscrypt_has_encryption_key(d_inode(dir));
345 	dput(dir);
346 
347 	if (err < 0)
348 		return err;
349 
350 	return valid;
351 }
352 
353 const struct dentry_operations fscrypt_d_ops = {
354 	.d_revalidate = fscrypt_d_revalidate,
355 };
356 
357 void fscrypt_restore_control_page(struct page *page)
358 {
359 	struct fscrypt_ctx *ctx;
360 
361 	ctx = (struct fscrypt_ctx *)page_private(page);
362 	set_page_private(page, (unsigned long)NULL);
363 	ClearPagePrivate(page);
364 	unlock_page(page);
365 	fscrypt_release_ctx(ctx);
366 }
367 EXPORT_SYMBOL(fscrypt_restore_control_page);
368 
369 static void fscrypt_destroy(void)
370 {
371 	struct fscrypt_ctx *pos, *n;
372 
373 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
374 		kmem_cache_free(fscrypt_ctx_cachep, pos);
375 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
376 	mempool_destroy(fscrypt_bounce_page_pool);
377 	fscrypt_bounce_page_pool = NULL;
378 }
379 
380 /**
381  * fscrypt_initialize() - allocate major buffers for fs encryption.
382  * @cop_flags:  fscrypt operations flags
383  *
384  * We only call this when we start accessing encrypted files, since it
385  * results in memory getting allocated that wouldn't otherwise be used.
386  *
387  * Return: Zero on success, non-zero otherwise.
388  */
389 int fscrypt_initialize(unsigned int cop_flags)
390 {
391 	int i, res = -ENOMEM;
392 
393 	/* No need to allocate a bounce page pool if this FS won't use it. */
394 	if (cop_flags & FS_CFLG_OWN_PAGES)
395 		return 0;
396 
397 	mutex_lock(&fscrypt_init_mutex);
398 	if (fscrypt_bounce_page_pool)
399 		goto already_initialized;
400 
401 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
402 		struct fscrypt_ctx *ctx;
403 
404 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
405 		if (!ctx)
406 			goto fail;
407 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
408 	}
409 
410 	fscrypt_bounce_page_pool =
411 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
412 	if (!fscrypt_bounce_page_pool)
413 		goto fail;
414 
415 already_initialized:
416 	mutex_unlock(&fscrypt_init_mutex);
417 	return 0;
418 fail:
419 	fscrypt_destroy();
420 	mutex_unlock(&fscrypt_init_mutex);
421 	return res;
422 }
423 
424 void fscrypt_msg(struct super_block *sb, const char *level,
425 		 const char *fmt, ...)
426 {
427 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
428 				      DEFAULT_RATELIMIT_BURST);
429 	struct va_format vaf;
430 	va_list args;
431 
432 	if (!__ratelimit(&rs))
433 		return;
434 
435 	va_start(args, fmt);
436 	vaf.fmt = fmt;
437 	vaf.va = &args;
438 	if (sb)
439 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
440 	else
441 		printk("%sfscrypt: %pV\n", level, &vaf);
442 	va_end(args);
443 }
444 
445 /**
446  * fscrypt_init() - Set up for fs encryption.
447  */
448 static int __init fscrypt_init(void)
449 {
450 	/*
451 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
452 	 * even when they happen to complete on the same CPU.  This sacrifices
453 	 * locality, but it's worthwhile since decryption is CPU-intensive.
454 	 *
455 	 * Also use a high-priority workqueue to prioritize decryption work,
456 	 * which blocks reads from completing, over regular application tasks.
457 	 */
458 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
459 						 WQ_UNBOUND | WQ_HIGHPRI,
460 						 num_online_cpus());
461 	if (!fscrypt_read_workqueue)
462 		goto fail;
463 
464 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
465 	if (!fscrypt_ctx_cachep)
466 		goto fail_free_queue;
467 
468 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
469 	if (!fscrypt_info_cachep)
470 		goto fail_free_ctx;
471 
472 	return 0;
473 
474 fail_free_ctx:
475 	kmem_cache_destroy(fscrypt_ctx_cachep);
476 fail_free_queue:
477 	destroy_workqueue(fscrypt_read_workqueue);
478 fail:
479 	return -ENOMEM;
480 }
481 module_init(fscrypt_init)
482 
483 /**
484  * fscrypt_exit() - Shutdown the fs encryption system
485  */
486 static void __exit fscrypt_exit(void)
487 {
488 	fscrypt_destroy();
489 
490 	if (fscrypt_read_workqueue)
491 		destroy_workqueue(fscrypt_read_workqueue);
492 	kmem_cache_destroy(fscrypt_ctx_cachep);
493 	kmem_cache_destroy(fscrypt_info_cachep);
494 
495 	fscrypt_essiv_cleanup();
496 }
497 module_exit(fscrypt_exit);
498 
499 MODULE_LICENSE("GPL");
500