xref: /openbmc/linux/fs/crypto/crypto.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This contains encryption functions for per-file encryption.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Michael Halcrow, 2014.
9  *
10  * Filename encryption additions
11  *	Uday Savagaonkar, 2014
12  * Encryption policy handling additions
13  *	Ildar Muslukhov, 2014
14  * Add fscrypt_pullback_bio_page()
15  *	Jaegeuk Kim, 2015.
16  *
17  * This has not yet undergone a rigorous security audit.
18  *
19  * The usage of AES-XTS should conform to recommendations in NIST
20  * Special Publication 800-38E and IEEE P1619/D16.
21  */
22 
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/ratelimit.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <crypto/aes.h>
31 #include <crypto/skcipher.h>
32 #include "fscrypt_private.h"
33 
34 static unsigned int num_prealloc_crypto_pages = 32;
35 static unsigned int num_prealloc_crypto_ctxs = 128;
36 
37 module_param(num_prealloc_crypto_pages, uint, 0444);
38 MODULE_PARM_DESC(num_prealloc_crypto_pages,
39 		"Number of crypto pages to preallocate");
40 module_param(num_prealloc_crypto_ctxs, uint, 0444);
41 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
42 		"Number of crypto contexts to preallocate");
43 
44 static mempool_t *fscrypt_bounce_page_pool = NULL;
45 
46 static LIST_HEAD(fscrypt_free_ctxs);
47 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
48 
49 static struct workqueue_struct *fscrypt_read_workqueue;
50 static DEFINE_MUTEX(fscrypt_init_mutex);
51 
52 static struct kmem_cache *fscrypt_ctx_cachep;
53 struct kmem_cache *fscrypt_info_cachep;
54 
55 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
56 {
57 	queue_work(fscrypt_read_workqueue, work);
58 }
59 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
60 
61 /**
62  * fscrypt_release_ctx() - Releases an encryption context
63  * @ctx: The encryption context to release.
64  *
65  * If the encryption context was allocated from the pre-allocated pool, returns
66  * it to that pool. Else, frees it.
67  *
68  * If there's a bounce page in the context, this frees that.
69  */
70 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
71 {
72 	unsigned long flags;
73 
74 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
75 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
76 		ctx->w.bounce_page = NULL;
77 	}
78 	ctx->w.control_page = NULL;
79 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
80 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
81 	} else {
82 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
83 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
84 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
85 	}
86 }
87 EXPORT_SYMBOL(fscrypt_release_ctx);
88 
89 /**
90  * fscrypt_get_ctx() - Gets an encryption context
91  * @gfp_flags:   The gfp flag for memory allocation
92  *
93  * Allocates and initializes an encryption context.
94  *
95  * Return: A new encryption context on success; an ERR_PTR() otherwise.
96  */
97 struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
98 {
99 	struct fscrypt_ctx *ctx;
100 	unsigned long flags;
101 
102 	/*
103 	 * We first try getting the ctx from a free list because in
104 	 * the common case the ctx will have an allocated and
105 	 * initialized crypto tfm, so it's probably a worthwhile
106 	 * optimization. For the bounce page, we first try getting it
107 	 * from the kernel allocator because that's just about as fast
108 	 * as getting it from a list and because a cache of free pages
109 	 * should generally be a "last resort" option for a filesystem
110 	 * to be able to do its job.
111 	 */
112 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
113 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
114 					struct fscrypt_ctx, free_list);
115 	if (ctx)
116 		list_del(&ctx->free_list);
117 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
118 	if (!ctx) {
119 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
120 		if (!ctx)
121 			return ERR_PTR(-ENOMEM);
122 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 	} else {
124 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
125 	}
126 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
127 	return ctx;
128 }
129 EXPORT_SYMBOL(fscrypt_get_ctx);
130 
131 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
132 			 const struct fscrypt_info *ci)
133 {
134 	memset(iv, 0, ci->ci_mode->ivsize);
135 	iv->lblk_num = cpu_to_le64(lblk_num);
136 
137 	if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
138 		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
139 
140 	if (ci->ci_essiv_tfm != NULL)
141 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
142 }
143 
144 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
145 			   u64 lblk_num, struct page *src_page,
146 			   struct page *dest_page, unsigned int len,
147 			   unsigned int offs, gfp_t gfp_flags)
148 {
149 	union fscrypt_iv iv;
150 	struct skcipher_request *req = NULL;
151 	DECLARE_CRYPTO_WAIT(wait);
152 	struct scatterlist dst, src;
153 	struct fscrypt_info *ci = inode->i_crypt_info;
154 	struct crypto_skcipher *tfm = ci->ci_ctfm;
155 	int res = 0;
156 
157 	BUG_ON(len == 0);
158 
159 	fscrypt_generate_iv(&iv, lblk_num, ci);
160 
161 	req = skcipher_request_alloc(tfm, gfp_flags);
162 	if (!req)
163 		return -ENOMEM;
164 
165 	skcipher_request_set_callback(
166 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
167 		crypto_req_done, &wait);
168 
169 	sg_init_table(&dst, 1);
170 	sg_set_page(&dst, dest_page, len, offs);
171 	sg_init_table(&src, 1);
172 	sg_set_page(&src, src_page, len, offs);
173 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
174 	if (rw == FS_DECRYPT)
175 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
176 	else
177 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
178 	skcipher_request_free(req);
179 	if (res) {
180 		fscrypt_err(inode->i_sb,
181 			    "%scryption failed for inode %lu, block %llu: %d",
182 			    (rw == FS_DECRYPT ? "de" : "en"),
183 			    inode->i_ino, lblk_num, res);
184 		return res;
185 	}
186 	return 0;
187 }
188 
189 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
190 				       gfp_t gfp_flags)
191 {
192 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
193 	if (ctx->w.bounce_page == NULL)
194 		return ERR_PTR(-ENOMEM);
195 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
196 	return ctx->w.bounce_page;
197 }
198 
199 /**
200  * fscypt_encrypt_page() - Encrypts a page
201  * @inode:     The inode for which the encryption should take place
202  * @page:      The page to encrypt. Must be locked for bounce-page
203  *             encryption.
204  * @len:       Length of data to encrypt in @page and encrypted
205  *             data in returned page.
206  * @offs:      Offset of data within @page and returned
207  *             page holding encrypted data.
208  * @lblk_num:  Logical block number. This must be unique for multiple
209  *             calls with same inode, except when overwriting
210  *             previously written data.
211  * @gfp_flags: The gfp flag for memory allocation
212  *
213  * Encrypts @page using the ctx encryption context. Performs encryption
214  * either in-place or into a newly allocated bounce page.
215  * Called on the page write path.
216  *
217  * Bounce page allocation is the default.
218  * In this case, the contents of @page are encrypted and stored in an
219  * allocated bounce page. @page has to be locked and the caller must call
220  * fscrypt_restore_control_page() on the returned ciphertext page to
221  * release the bounce buffer and the encryption context.
222  *
223  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
224  * fscrypt_operations. Here, the input-page is returned with its content
225  * encrypted.
226  *
227  * Return: A page with the encrypted content on success. Else, an
228  * error value or NULL.
229  */
230 struct page *fscrypt_encrypt_page(const struct inode *inode,
231 				struct page *page,
232 				unsigned int len,
233 				unsigned int offs,
234 				u64 lblk_num, gfp_t gfp_flags)
235 
236 {
237 	struct fscrypt_ctx *ctx;
238 	struct page *ciphertext_page = page;
239 	int err;
240 
241 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
242 
243 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
244 		/* with inplace-encryption we just encrypt the page */
245 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
246 					     ciphertext_page, len, offs,
247 					     gfp_flags);
248 		if (err)
249 			return ERR_PTR(err);
250 
251 		return ciphertext_page;
252 	}
253 
254 	BUG_ON(!PageLocked(page));
255 
256 	ctx = fscrypt_get_ctx(gfp_flags);
257 	if (IS_ERR(ctx))
258 		return ERR_CAST(ctx);
259 
260 	/* The encryption operation will require a bounce page. */
261 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
262 	if (IS_ERR(ciphertext_page))
263 		goto errout;
264 
265 	ctx->w.control_page = page;
266 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
267 				     page, ciphertext_page, len, offs,
268 				     gfp_flags);
269 	if (err) {
270 		ciphertext_page = ERR_PTR(err);
271 		goto errout;
272 	}
273 	SetPagePrivate(ciphertext_page);
274 	set_page_private(ciphertext_page, (unsigned long)ctx);
275 	lock_page(ciphertext_page);
276 	return ciphertext_page;
277 
278 errout:
279 	fscrypt_release_ctx(ctx);
280 	return ciphertext_page;
281 }
282 EXPORT_SYMBOL(fscrypt_encrypt_page);
283 
284 /**
285  * fscrypt_decrypt_page() - Decrypts a page in-place
286  * @inode:     The corresponding inode for the page to decrypt.
287  * @page:      The page to decrypt. Must be locked in case
288  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
289  * @len:       Number of bytes in @page to be decrypted.
290  * @offs:      Start of data in @page.
291  * @lblk_num:  Logical block number.
292  *
293  * Decrypts page in-place using the ctx encryption context.
294  *
295  * Called from the read completion callback.
296  *
297  * Return: Zero on success, non-zero otherwise.
298  */
299 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
300 			unsigned int len, unsigned int offs, u64 lblk_num)
301 {
302 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
303 		BUG_ON(!PageLocked(page));
304 
305 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
306 				      len, offs, GFP_NOFS);
307 }
308 EXPORT_SYMBOL(fscrypt_decrypt_page);
309 
310 /*
311  * Validate dentries in encrypted directories to make sure we aren't potentially
312  * caching stale dentries after a key has been added.
313  */
314 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
315 {
316 	struct dentry *dir;
317 	int err;
318 	int valid;
319 
320 	/*
321 	 * Plaintext names are always valid, since fscrypt doesn't support
322 	 * reverting to ciphertext names without evicting the directory's inode
323 	 * -- which implies eviction of the dentries in the directory.
324 	 */
325 	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
326 		return 1;
327 
328 	/*
329 	 * Ciphertext name; valid if the directory's key is still unavailable.
330 	 *
331 	 * Although fscrypt forbids rename() on ciphertext names, we still must
332 	 * use dget_parent() here rather than use ->d_parent directly.  That's
333 	 * because a corrupted fs image may contain directory hard links, which
334 	 * the VFS handles by moving the directory's dentry tree in the dcache
335 	 * each time ->lookup() finds the directory and it already has a dentry
336 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
337 	 * a reference to some ->d_parent to prevent it from being freed.
338 	 */
339 
340 	if (flags & LOOKUP_RCU)
341 		return -ECHILD;
342 
343 	dir = dget_parent(dentry);
344 	err = fscrypt_get_encryption_info(d_inode(dir));
345 	valid = !fscrypt_has_encryption_key(d_inode(dir));
346 	dput(dir);
347 
348 	if (err < 0)
349 		return err;
350 
351 	return valid;
352 }
353 
354 const struct dentry_operations fscrypt_d_ops = {
355 	.d_revalidate = fscrypt_d_revalidate,
356 };
357 
358 void fscrypt_restore_control_page(struct page *page)
359 {
360 	struct fscrypt_ctx *ctx;
361 
362 	ctx = (struct fscrypt_ctx *)page_private(page);
363 	set_page_private(page, (unsigned long)NULL);
364 	ClearPagePrivate(page);
365 	unlock_page(page);
366 	fscrypt_release_ctx(ctx);
367 }
368 EXPORT_SYMBOL(fscrypt_restore_control_page);
369 
370 static void fscrypt_destroy(void)
371 {
372 	struct fscrypt_ctx *pos, *n;
373 
374 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
375 		kmem_cache_free(fscrypt_ctx_cachep, pos);
376 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
377 	mempool_destroy(fscrypt_bounce_page_pool);
378 	fscrypt_bounce_page_pool = NULL;
379 }
380 
381 /**
382  * fscrypt_initialize() - allocate major buffers for fs encryption.
383  * @cop_flags:  fscrypt operations flags
384  *
385  * We only call this when we start accessing encrypted files, since it
386  * results in memory getting allocated that wouldn't otherwise be used.
387  *
388  * Return: Zero on success, non-zero otherwise.
389  */
390 int fscrypt_initialize(unsigned int cop_flags)
391 {
392 	int i, res = -ENOMEM;
393 
394 	/* No need to allocate a bounce page pool if this FS won't use it. */
395 	if (cop_flags & FS_CFLG_OWN_PAGES)
396 		return 0;
397 
398 	mutex_lock(&fscrypt_init_mutex);
399 	if (fscrypt_bounce_page_pool)
400 		goto already_initialized;
401 
402 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
403 		struct fscrypt_ctx *ctx;
404 
405 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
406 		if (!ctx)
407 			goto fail;
408 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
409 	}
410 
411 	fscrypt_bounce_page_pool =
412 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
413 	if (!fscrypt_bounce_page_pool)
414 		goto fail;
415 
416 already_initialized:
417 	mutex_unlock(&fscrypt_init_mutex);
418 	return 0;
419 fail:
420 	fscrypt_destroy();
421 	mutex_unlock(&fscrypt_init_mutex);
422 	return res;
423 }
424 
425 void fscrypt_msg(struct super_block *sb, const char *level,
426 		 const char *fmt, ...)
427 {
428 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
429 				      DEFAULT_RATELIMIT_BURST);
430 	struct va_format vaf;
431 	va_list args;
432 
433 	if (!__ratelimit(&rs))
434 		return;
435 
436 	va_start(args, fmt);
437 	vaf.fmt = fmt;
438 	vaf.va = &args;
439 	if (sb)
440 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
441 	else
442 		printk("%sfscrypt: %pV\n", level, &vaf);
443 	va_end(args);
444 }
445 
446 /**
447  * fscrypt_init() - Set up for fs encryption.
448  */
449 static int __init fscrypt_init(void)
450 {
451 	/*
452 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
453 	 * even when they happen to complete on the same CPU.  This sacrifices
454 	 * locality, but it's worthwhile since decryption is CPU-intensive.
455 	 *
456 	 * Also use a high-priority workqueue to prioritize decryption work,
457 	 * which blocks reads from completing, over regular application tasks.
458 	 */
459 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
460 						 WQ_UNBOUND | WQ_HIGHPRI,
461 						 num_online_cpus());
462 	if (!fscrypt_read_workqueue)
463 		goto fail;
464 
465 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
466 	if (!fscrypt_ctx_cachep)
467 		goto fail_free_queue;
468 
469 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
470 	if (!fscrypt_info_cachep)
471 		goto fail_free_ctx;
472 
473 	return 0;
474 
475 fail_free_ctx:
476 	kmem_cache_destroy(fscrypt_ctx_cachep);
477 fail_free_queue:
478 	destroy_workqueue(fscrypt_read_workqueue);
479 fail:
480 	return -ENOMEM;
481 }
482 module_init(fscrypt_init)
483 
484 /**
485  * fscrypt_exit() - Shutdown the fs encryption system
486  */
487 static void __exit fscrypt_exit(void)
488 {
489 	fscrypt_destroy();
490 
491 	if (fscrypt_read_workqueue)
492 		destroy_workqueue(fscrypt_read_workqueue);
493 	kmem_cache_destroy(fscrypt_ctx_cachep);
494 	kmem_cache_destroy(fscrypt_info_cachep);
495 
496 	fscrypt_essiv_cleanup();
497 }
498 module_exit(fscrypt_exit);
499 
500 MODULE_LICENSE("GPL");
501