1 /* 2 * This contains encryption functions for per-file encryption. 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * Copyright (C) 2015, Motorola Mobility 6 * 7 * Written by Michael Halcrow, 2014. 8 * 9 * Filename encryption additions 10 * Uday Savagaonkar, 2014 11 * Encryption policy handling additions 12 * Ildar Muslukhov, 2014 13 * Add fscrypt_pullback_bio_page() 14 * Jaegeuk Kim, 2015. 15 * 16 * This has not yet undergone a rigorous security audit. 17 * 18 * The usage of AES-XTS should conform to recommendations in NIST 19 * Special Publication 800-38E and IEEE P1619/D16. 20 */ 21 22 #include <linux/pagemap.h> 23 #include <linux/mempool.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/ratelimit.h> 27 #include <linux/dcache.h> 28 #include <linux/namei.h> 29 #include <crypto/aes.h> 30 #include "fscrypt_private.h" 31 32 static unsigned int num_prealloc_crypto_pages = 32; 33 static unsigned int num_prealloc_crypto_ctxs = 128; 34 35 module_param(num_prealloc_crypto_pages, uint, 0444); 36 MODULE_PARM_DESC(num_prealloc_crypto_pages, 37 "Number of crypto pages to preallocate"); 38 module_param(num_prealloc_crypto_ctxs, uint, 0444); 39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 40 "Number of crypto contexts to preallocate"); 41 42 static mempool_t *fscrypt_bounce_page_pool = NULL; 43 44 static LIST_HEAD(fscrypt_free_ctxs); 45 static DEFINE_SPINLOCK(fscrypt_ctx_lock); 46 47 struct workqueue_struct *fscrypt_read_workqueue; 48 static DEFINE_MUTEX(fscrypt_init_mutex); 49 50 static struct kmem_cache *fscrypt_ctx_cachep; 51 struct kmem_cache *fscrypt_info_cachep; 52 53 /** 54 * fscrypt_release_ctx() - Releases an encryption context 55 * @ctx: The encryption context to release. 56 * 57 * If the encryption context was allocated from the pre-allocated pool, returns 58 * it to that pool. Else, frees it. 59 * 60 * If there's a bounce page in the context, this frees that. 61 */ 62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 63 { 64 unsigned long flags; 65 66 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { 67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); 68 ctx->w.bounce_page = NULL; 69 } 70 ctx->w.control_page = NULL; 71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { 72 kmem_cache_free(fscrypt_ctx_cachep, ctx); 73 } else { 74 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 75 list_add(&ctx->free_list, &fscrypt_free_ctxs); 76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 77 } 78 } 79 EXPORT_SYMBOL(fscrypt_release_ctx); 80 81 /** 82 * fscrypt_get_ctx() - Gets an encryption context 83 * @inode: The inode for which we are doing the crypto 84 * @gfp_flags: The gfp flag for memory allocation 85 * 86 * Allocates and initializes an encryption context. 87 * 88 * Return: An allocated and initialized encryption context on success; error 89 * value or NULL otherwise. 90 */ 91 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) 92 { 93 struct fscrypt_ctx *ctx = NULL; 94 struct fscrypt_info *ci = inode->i_crypt_info; 95 unsigned long flags; 96 97 if (ci == NULL) 98 return ERR_PTR(-ENOKEY); 99 100 /* 101 * We first try getting the ctx from a free list because in 102 * the common case the ctx will have an allocated and 103 * initialized crypto tfm, so it's probably a worthwhile 104 * optimization. For the bounce page, we first try getting it 105 * from the kernel allocator because that's just about as fast 106 * as getting it from a list and because a cache of free pages 107 * should generally be a "last resort" option for a filesystem 108 * to be able to do its job. 109 */ 110 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs, 112 struct fscrypt_ctx, free_list); 113 if (ctx) 114 list_del(&ctx->free_list); 115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 116 if (!ctx) { 117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); 118 if (!ctx) 119 return ERR_PTR(-ENOMEM); 120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 121 } else { 122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 123 } 124 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; 125 return ctx; 126 } 127 EXPORT_SYMBOL(fscrypt_get_ctx); 128 129 /** 130 * page_crypt_complete() - completion callback for page crypto 131 * @req: The asynchronous cipher request context 132 * @res: The result of the cipher operation 133 */ 134 static void page_crypt_complete(struct crypto_async_request *req, int res) 135 { 136 struct fscrypt_completion_result *ecr = req->data; 137 138 if (res == -EINPROGRESS) 139 return; 140 ecr->res = res; 141 complete(&ecr->completion); 142 } 143 144 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, 145 u64 lblk_num, struct page *src_page, 146 struct page *dest_page, unsigned int len, 147 unsigned int offs, gfp_t gfp_flags) 148 { 149 struct { 150 __le64 index; 151 u8 padding[FS_IV_SIZE - sizeof(__le64)]; 152 } iv; 153 struct skcipher_request *req = NULL; 154 DECLARE_FS_COMPLETION_RESULT(ecr); 155 struct scatterlist dst, src; 156 struct fscrypt_info *ci = inode->i_crypt_info; 157 struct crypto_skcipher *tfm = ci->ci_ctfm; 158 int res = 0; 159 160 BUG_ON(len == 0); 161 162 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE); 163 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE); 164 iv.index = cpu_to_le64(lblk_num); 165 memset(iv.padding, 0, sizeof(iv.padding)); 166 167 if (ci->ci_essiv_tfm != NULL) { 168 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv, 169 (u8 *)&iv); 170 } 171 172 req = skcipher_request_alloc(tfm, gfp_flags); 173 if (!req) { 174 printk_ratelimited(KERN_ERR 175 "%s: crypto_request_alloc() failed\n", 176 __func__); 177 return -ENOMEM; 178 } 179 180 skcipher_request_set_callback( 181 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 182 page_crypt_complete, &ecr); 183 184 sg_init_table(&dst, 1); 185 sg_set_page(&dst, dest_page, len, offs); 186 sg_init_table(&src, 1); 187 sg_set_page(&src, src_page, len, offs); 188 skcipher_request_set_crypt(req, &src, &dst, len, &iv); 189 if (rw == FS_DECRYPT) 190 res = crypto_skcipher_decrypt(req); 191 else 192 res = crypto_skcipher_encrypt(req); 193 if (res == -EINPROGRESS || res == -EBUSY) { 194 BUG_ON(req->base.data != &ecr); 195 wait_for_completion(&ecr.completion); 196 res = ecr.res; 197 } 198 skcipher_request_free(req); 199 if (res) { 200 printk_ratelimited(KERN_ERR 201 "%s: crypto_skcipher_encrypt() returned %d\n", 202 __func__, res); 203 return res; 204 } 205 return 0; 206 } 207 208 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, 209 gfp_t gfp_flags) 210 { 211 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); 212 if (ctx->w.bounce_page == NULL) 213 return ERR_PTR(-ENOMEM); 214 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; 215 return ctx->w.bounce_page; 216 } 217 218 /** 219 * fscypt_encrypt_page() - Encrypts a page 220 * @inode: The inode for which the encryption should take place 221 * @page: The page to encrypt. Must be locked for bounce-page 222 * encryption. 223 * @len: Length of data to encrypt in @page and encrypted 224 * data in returned page. 225 * @offs: Offset of data within @page and returned 226 * page holding encrypted data. 227 * @lblk_num: Logical block number. This must be unique for multiple 228 * calls with same inode, except when overwriting 229 * previously written data. 230 * @gfp_flags: The gfp flag for memory allocation 231 * 232 * Encrypts @page using the ctx encryption context. Performs encryption 233 * either in-place or into a newly allocated bounce page. 234 * Called on the page write path. 235 * 236 * Bounce page allocation is the default. 237 * In this case, the contents of @page are encrypted and stored in an 238 * allocated bounce page. @page has to be locked and the caller must call 239 * fscrypt_restore_control_page() on the returned ciphertext page to 240 * release the bounce buffer and the encryption context. 241 * 242 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in 243 * fscrypt_operations. Here, the input-page is returned with its content 244 * encrypted. 245 * 246 * Return: A page with the encrypted content on success. Else, an 247 * error value or NULL. 248 */ 249 struct page *fscrypt_encrypt_page(const struct inode *inode, 250 struct page *page, 251 unsigned int len, 252 unsigned int offs, 253 u64 lblk_num, gfp_t gfp_flags) 254 255 { 256 struct fscrypt_ctx *ctx; 257 struct page *ciphertext_page = page; 258 int err; 259 260 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); 261 262 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { 263 /* with inplace-encryption we just encrypt the page */ 264 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, 265 ciphertext_page, len, offs, 266 gfp_flags); 267 if (err) 268 return ERR_PTR(err); 269 270 return ciphertext_page; 271 } 272 273 BUG_ON(!PageLocked(page)); 274 275 ctx = fscrypt_get_ctx(inode, gfp_flags); 276 if (IS_ERR(ctx)) 277 return (struct page *)ctx; 278 279 /* The encryption operation will require a bounce page. */ 280 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); 281 if (IS_ERR(ciphertext_page)) 282 goto errout; 283 284 ctx->w.control_page = page; 285 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, 286 page, ciphertext_page, len, offs, 287 gfp_flags); 288 if (err) { 289 ciphertext_page = ERR_PTR(err); 290 goto errout; 291 } 292 SetPagePrivate(ciphertext_page); 293 set_page_private(ciphertext_page, (unsigned long)ctx); 294 lock_page(ciphertext_page); 295 return ciphertext_page; 296 297 errout: 298 fscrypt_release_ctx(ctx); 299 return ciphertext_page; 300 } 301 EXPORT_SYMBOL(fscrypt_encrypt_page); 302 303 /** 304 * fscrypt_decrypt_page() - Decrypts a page in-place 305 * @inode: The corresponding inode for the page to decrypt. 306 * @page: The page to decrypt. Must be locked in case 307 * it is a writeback page (FS_CFLG_OWN_PAGES unset). 308 * @len: Number of bytes in @page to be decrypted. 309 * @offs: Start of data in @page. 310 * @lblk_num: Logical block number. 311 * 312 * Decrypts page in-place using the ctx encryption context. 313 * 314 * Called from the read completion callback. 315 * 316 * Return: Zero on success, non-zero otherwise. 317 */ 318 int fscrypt_decrypt_page(const struct inode *inode, struct page *page, 319 unsigned int len, unsigned int offs, u64 lblk_num) 320 { 321 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) 322 BUG_ON(!PageLocked(page)); 323 324 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, 325 len, offs, GFP_NOFS); 326 } 327 EXPORT_SYMBOL(fscrypt_decrypt_page); 328 329 /* 330 * Validate dentries for encrypted directories to make sure we aren't 331 * potentially caching stale data after a key has been added or 332 * removed. 333 */ 334 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 335 { 336 struct dentry *dir; 337 int dir_has_key, cached_with_key; 338 339 if (flags & LOOKUP_RCU) 340 return -ECHILD; 341 342 dir = dget_parent(dentry); 343 if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) { 344 dput(dir); 345 return 0; 346 } 347 348 /* this should eventually be an flag in d_flags */ 349 spin_lock(&dentry->d_lock); 350 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; 351 spin_unlock(&dentry->d_lock); 352 dir_has_key = (d_inode(dir)->i_crypt_info != NULL); 353 dput(dir); 354 355 /* 356 * If the dentry was cached without the key, and it is a 357 * negative dentry, it might be a valid name. We can't check 358 * if the key has since been made available due to locking 359 * reasons, so we fail the validation so ext4_lookup() can do 360 * this check. 361 * 362 * We also fail the validation if the dentry was created with 363 * the key present, but we no longer have the key, or vice versa. 364 */ 365 if ((!cached_with_key && d_is_negative(dentry)) || 366 (!cached_with_key && dir_has_key) || 367 (cached_with_key && !dir_has_key)) 368 return 0; 369 return 1; 370 } 371 372 const struct dentry_operations fscrypt_d_ops = { 373 .d_revalidate = fscrypt_d_revalidate, 374 }; 375 EXPORT_SYMBOL(fscrypt_d_ops); 376 377 void fscrypt_restore_control_page(struct page *page) 378 { 379 struct fscrypt_ctx *ctx; 380 381 ctx = (struct fscrypt_ctx *)page_private(page); 382 set_page_private(page, (unsigned long)NULL); 383 ClearPagePrivate(page); 384 unlock_page(page); 385 fscrypt_release_ctx(ctx); 386 } 387 EXPORT_SYMBOL(fscrypt_restore_control_page); 388 389 static void fscrypt_destroy(void) 390 { 391 struct fscrypt_ctx *pos, *n; 392 393 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) 394 kmem_cache_free(fscrypt_ctx_cachep, pos); 395 INIT_LIST_HEAD(&fscrypt_free_ctxs); 396 mempool_destroy(fscrypt_bounce_page_pool); 397 fscrypt_bounce_page_pool = NULL; 398 } 399 400 /** 401 * fscrypt_initialize() - allocate major buffers for fs encryption. 402 * @cop_flags: fscrypt operations flags 403 * 404 * We only call this when we start accessing encrypted files, since it 405 * results in memory getting allocated that wouldn't otherwise be used. 406 * 407 * Return: Zero on success, non-zero otherwise. 408 */ 409 int fscrypt_initialize(unsigned int cop_flags) 410 { 411 int i, res = -ENOMEM; 412 413 /* 414 * No need to allocate a bounce page pool if there already is one or 415 * this FS won't use it. 416 */ 417 if (cop_flags & FS_CFLG_OWN_PAGES || fscrypt_bounce_page_pool) 418 return 0; 419 420 mutex_lock(&fscrypt_init_mutex); 421 if (fscrypt_bounce_page_pool) 422 goto already_initialized; 423 424 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 425 struct fscrypt_ctx *ctx; 426 427 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); 428 if (!ctx) 429 goto fail; 430 list_add(&ctx->free_list, &fscrypt_free_ctxs); 431 } 432 433 fscrypt_bounce_page_pool = 434 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 435 if (!fscrypt_bounce_page_pool) 436 goto fail; 437 438 already_initialized: 439 mutex_unlock(&fscrypt_init_mutex); 440 return 0; 441 fail: 442 fscrypt_destroy(); 443 mutex_unlock(&fscrypt_init_mutex); 444 return res; 445 } 446 447 /** 448 * fscrypt_init() - Set up for fs encryption. 449 */ 450 static int __init fscrypt_init(void) 451 { 452 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", 453 WQ_HIGHPRI, 0); 454 if (!fscrypt_read_workqueue) 455 goto fail; 456 457 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); 458 if (!fscrypt_ctx_cachep) 459 goto fail_free_queue; 460 461 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); 462 if (!fscrypt_info_cachep) 463 goto fail_free_ctx; 464 465 return 0; 466 467 fail_free_ctx: 468 kmem_cache_destroy(fscrypt_ctx_cachep); 469 fail_free_queue: 470 destroy_workqueue(fscrypt_read_workqueue); 471 fail: 472 return -ENOMEM; 473 } 474 module_init(fscrypt_init) 475 476 /** 477 * fscrypt_exit() - Shutdown the fs encryption system 478 */ 479 static void __exit fscrypt_exit(void) 480 { 481 fscrypt_destroy(); 482 483 if (fscrypt_read_workqueue) 484 destroy_workqueue(fscrypt_read_workqueue); 485 kmem_cache_destroy(fscrypt_ctx_cachep); 486 kmem_cache_destroy(fscrypt_info_cachep); 487 488 fscrypt_essiv_cleanup(); 489 } 490 module_exit(fscrypt_exit); 491 492 MODULE_LICENSE("GPL"); 493