1 /* 2 * This contains encryption functions for per-file encryption. 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * Copyright (C) 2015, Motorola Mobility 6 * 7 * Written by Michael Halcrow, 2014. 8 * 9 * Filename encryption additions 10 * Uday Savagaonkar, 2014 11 * Encryption policy handling additions 12 * Ildar Muslukhov, 2014 13 * Add fscrypt_pullback_bio_page() 14 * Jaegeuk Kim, 2015. 15 * 16 * This has not yet undergone a rigorous security audit. 17 * 18 * The usage of AES-XTS should conform to recommendations in NIST 19 * Special Publication 800-38E and IEEE P1619/D16. 20 */ 21 22 #include <linux/pagemap.h> 23 #include <linux/mempool.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/ratelimit.h> 27 #include <linux/dcache.h> 28 #include <linux/namei.h> 29 #include <crypto/aes.h> 30 #include <crypto/skcipher.h> 31 #include "fscrypt_private.h" 32 33 static unsigned int num_prealloc_crypto_pages = 32; 34 static unsigned int num_prealloc_crypto_ctxs = 128; 35 36 module_param(num_prealloc_crypto_pages, uint, 0444); 37 MODULE_PARM_DESC(num_prealloc_crypto_pages, 38 "Number of crypto pages to preallocate"); 39 module_param(num_prealloc_crypto_ctxs, uint, 0444); 40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 41 "Number of crypto contexts to preallocate"); 42 43 static mempool_t *fscrypt_bounce_page_pool = NULL; 44 45 static LIST_HEAD(fscrypt_free_ctxs); 46 static DEFINE_SPINLOCK(fscrypt_ctx_lock); 47 48 static struct workqueue_struct *fscrypt_read_workqueue; 49 static DEFINE_MUTEX(fscrypt_init_mutex); 50 51 static struct kmem_cache *fscrypt_ctx_cachep; 52 struct kmem_cache *fscrypt_info_cachep; 53 54 void fscrypt_enqueue_decrypt_work(struct work_struct *work) 55 { 56 queue_work(fscrypt_read_workqueue, work); 57 } 58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); 59 60 /** 61 * fscrypt_release_ctx() - Releases an encryption context 62 * @ctx: The encryption context to release. 63 * 64 * If the encryption context was allocated from the pre-allocated pool, returns 65 * it to that pool. Else, frees it. 66 * 67 * If there's a bounce page in the context, this frees that. 68 */ 69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 70 { 71 unsigned long flags; 72 73 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { 74 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); 75 ctx->w.bounce_page = NULL; 76 } 77 ctx->w.control_page = NULL; 78 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { 79 kmem_cache_free(fscrypt_ctx_cachep, ctx); 80 } else { 81 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 82 list_add(&ctx->free_list, &fscrypt_free_ctxs); 83 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 84 } 85 } 86 EXPORT_SYMBOL(fscrypt_release_ctx); 87 88 /** 89 * fscrypt_get_ctx() - Gets an encryption context 90 * @inode: The inode for which we are doing the crypto 91 * @gfp_flags: The gfp flag for memory allocation 92 * 93 * Allocates and initializes an encryption context. 94 * 95 * Return: An allocated and initialized encryption context on success; error 96 * value or NULL otherwise. 97 */ 98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) 99 { 100 struct fscrypt_ctx *ctx = NULL; 101 struct fscrypt_info *ci = inode->i_crypt_info; 102 unsigned long flags; 103 104 if (ci == NULL) 105 return ERR_PTR(-ENOKEY); 106 107 /* 108 * We first try getting the ctx from a free list because in 109 * the common case the ctx will have an allocated and 110 * initialized crypto tfm, so it's probably a worthwhile 111 * optimization. For the bounce page, we first try getting it 112 * from the kernel allocator because that's just about as fast 113 * as getting it from a list and because a cache of free pages 114 * should generally be a "last resort" option for a filesystem 115 * to be able to do its job. 116 */ 117 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 118 ctx = list_first_entry_or_null(&fscrypt_free_ctxs, 119 struct fscrypt_ctx, free_list); 120 if (ctx) 121 list_del(&ctx->free_list); 122 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 123 if (!ctx) { 124 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); 125 if (!ctx) 126 return ERR_PTR(-ENOMEM); 127 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 128 } else { 129 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 130 } 131 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; 132 return ctx; 133 } 134 EXPORT_SYMBOL(fscrypt_get_ctx); 135 136 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, 137 u64 lblk_num, struct page *src_page, 138 struct page *dest_page, unsigned int len, 139 unsigned int offs, gfp_t gfp_flags) 140 { 141 struct { 142 __le64 index; 143 u8 padding[FS_IV_SIZE - sizeof(__le64)]; 144 } iv; 145 struct skcipher_request *req = NULL; 146 DECLARE_CRYPTO_WAIT(wait); 147 struct scatterlist dst, src; 148 struct fscrypt_info *ci = inode->i_crypt_info; 149 struct crypto_skcipher *tfm = ci->ci_ctfm; 150 int res = 0; 151 152 BUG_ON(len == 0); 153 154 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE); 155 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE); 156 iv.index = cpu_to_le64(lblk_num); 157 memset(iv.padding, 0, sizeof(iv.padding)); 158 159 if (ci->ci_essiv_tfm != NULL) { 160 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv, 161 (u8 *)&iv); 162 } 163 164 req = skcipher_request_alloc(tfm, gfp_flags); 165 if (!req) 166 return -ENOMEM; 167 168 skcipher_request_set_callback( 169 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 170 crypto_req_done, &wait); 171 172 sg_init_table(&dst, 1); 173 sg_set_page(&dst, dest_page, len, offs); 174 sg_init_table(&src, 1); 175 sg_set_page(&src, src_page, len, offs); 176 skcipher_request_set_crypt(req, &src, &dst, len, &iv); 177 if (rw == FS_DECRYPT) 178 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); 179 else 180 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 181 skcipher_request_free(req); 182 if (res) { 183 fscrypt_err(inode->i_sb, 184 "%scryption failed for inode %lu, block %llu: %d", 185 (rw == FS_DECRYPT ? "de" : "en"), 186 inode->i_ino, lblk_num, res); 187 return res; 188 } 189 return 0; 190 } 191 192 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, 193 gfp_t gfp_flags) 194 { 195 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); 196 if (ctx->w.bounce_page == NULL) 197 return ERR_PTR(-ENOMEM); 198 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; 199 return ctx->w.bounce_page; 200 } 201 202 /** 203 * fscypt_encrypt_page() - Encrypts a page 204 * @inode: The inode for which the encryption should take place 205 * @page: The page to encrypt. Must be locked for bounce-page 206 * encryption. 207 * @len: Length of data to encrypt in @page and encrypted 208 * data in returned page. 209 * @offs: Offset of data within @page and returned 210 * page holding encrypted data. 211 * @lblk_num: Logical block number. This must be unique for multiple 212 * calls with same inode, except when overwriting 213 * previously written data. 214 * @gfp_flags: The gfp flag for memory allocation 215 * 216 * Encrypts @page using the ctx encryption context. Performs encryption 217 * either in-place or into a newly allocated bounce page. 218 * Called on the page write path. 219 * 220 * Bounce page allocation is the default. 221 * In this case, the contents of @page are encrypted and stored in an 222 * allocated bounce page. @page has to be locked and the caller must call 223 * fscrypt_restore_control_page() on the returned ciphertext page to 224 * release the bounce buffer and the encryption context. 225 * 226 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in 227 * fscrypt_operations. Here, the input-page is returned with its content 228 * encrypted. 229 * 230 * Return: A page with the encrypted content on success. Else, an 231 * error value or NULL. 232 */ 233 struct page *fscrypt_encrypt_page(const struct inode *inode, 234 struct page *page, 235 unsigned int len, 236 unsigned int offs, 237 u64 lblk_num, gfp_t gfp_flags) 238 239 { 240 struct fscrypt_ctx *ctx; 241 struct page *ciphertext_page = page; 242 int err; 243 244 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); 245 246 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { 247 /* with inplace-encryption we just encrypt the page */ 248 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, 249 ciphertext_page, len, offs, 250 gfp_flags); 251 if (err) 252 return ERR_PTR(err); 253 254 return ciphertext_page; 255 } 256 257 BUG_ON(!PageLocked(page)); 258 259 ctx = fscrypt_get_ctx(inode, gfp_flags); 260 if (IS_ERR(ctx)) 261 return (struct page *)ctx; 262 263 /* The encryption operation will require a bounce page. */ 264 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); 265 if (IS_ERR(ciphertext_page)) 266 goto errout; 267 268 ctx->w.control_page = page; 269 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, 270 page, ciphertext_page, len, offs, 271 gfp_flags); 272 if (err) { 273 ciphertext_page = ERR_PTR(err); 274 goto errout; 275 } 276 SetPagePrivate(ciphertext_page); 277 set_page_private(ciphertext_page, (unsigned long)ctx); 278 lock_page(ciphertext_page); 279 return ciphertext_page; 280 281 errout: 282 fscrypt_release_ctx(ctx); 283 return ciphertext_page; 284 } 285 EXPORT_SYMBOL(fscrypt_encrypt_page); 286 287 /** 288 * fscrypt_decrypt_page() - Decrypts a page in-place 289 * @inode: The corresponding inode for the page to decrypt. 290 * @page: The page to decrypt. Must be locked in case 291 * it is a writeback page (FS_CFLG_OWN_PAGES unset). 292 * @len: Number of bytes in @page to be decrypted. 293 * @offs: Start of data in @page. 294 * @lblk_num: Logical block number. 295 * 296 * Decrypts page in-place using the ctx encryption context. 297 * 298 * Called from the read completion callback. 299 * 300 * Return: Zero on success, non-zero otherwise. 301 */ 302 int fscrypt_decrypt_page(const struct inode *inode, struct page *page, 303 unsigned int len, unsigned int offs, u64 lblk_num) 304 { 305 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) 306 BUG_ON(!PageLocked(page)); 307 308 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, 309 len, offs, GFP_NOFS); 310 } 311 EXPORT_SYMBOL(fscrypt_decrypt_page); 312 313 /* 314 * Validate dentries for encrypted directories to make sure we aren't 315 * potentially caching stale data after a key has been added or 316 * removed. 317 */ 318 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 319 { 320 struct dentry *dir; 321 int dir_has_key, cached_with_key; 322 323 if (flags & LOOKUP_RCU) 324 return -ECHILD; 325 326 dir = dget_parent(dentry); 327 if (!IS_ENCRYPTED(d_inode(dir))) { 328 dput(dir); 329 return 0; 330 } 331 332 spin_lock(&dentry->d_lock); 333 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; 334 spin_unlock(&dentry->d_lock); 335 dir_has_key = (d_inode(dir)->i_crypt_info != NULL); 336 dput(dir); 337 338 /* 339 * If the dentry was cached without the key, and it is a 340 * negative dentry, it might be a valid name. We can't check 341 * if the key has since been made available due to locking 342 * reasons, so we fail the validation so ext4_lookup() can do 343 * this check. 344 * 345 * We also fail the validation if the dentry was created with 346 * the key present, but we no longer have the key, or vice versa. 347 */ 348 if ((!cached_with_key && d_is_negative(dentry)) || 349 (!cached_with_key && dir_has_key) || 350 (cached_with_key && !dir_has_key)) 351 return 0; 352 return 1; 353 } 354 355 const struct dentry_operations fscrypt_d_ops = { 356 .d_revalidate = fscrypt_d_revalidate, 357 }; 358 359 void fscrypt_restore_control_page(struct page *page) 360 { 361 struct fscrypt_ctx *ctx; 362 363 ctx = (struct fscrypt_ctx *)page_private(page); 364 set_page_private(page, (unsigned long)NULL); 365 ClearPagePrivate(page); 366 unlock_page(page); 367 fscrypt_release_ctx(ctx); 368 } 369 EXPORT_SYMBOL(fscrypt_restore_control_page); 370 371 static void fscrypt_destroy(void) 372 { 373 struct fscrypt_ctx *pos, *n; 374 375 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) 376 kmem_cache_free(fscrypt_ctx_cachep, pos); 377 INIT_LIST_HEAD(&fscrypt_free_ctxs); 378 mempool_destroy(fscrypt_bounce_page_pool); 379 fscrypt_bounce_page_pool = NULL; 380 } 381 382 /** 383 * fscrypt_initialize() - allocate major buffers for fs encryption. 384 * @cop_flags: fscrypt operations flags 385 * 386 * We only call this when we start accessing encrypted files, since it 387 * results in memory getting allocated that wouldn't otherwise be used. 388 * 389 * Return: Zero on success, non-zero otherwise. 390 */ 391 int fscrypt_initialize(unsigned int cop_flags) 392 { 393 int i, res = -ENOMEM; 394 395 /* No need to allocate a bounce page pool if this FS won't use it. */ 396 if (cop_flags & FS_CFLG_OWN_PAGES) 397 return 0; 398 399 mutex_lock(&fscrypt_init_mutex); 400 if (fscrypt_bounce_page_pool) 401 goto already_initialized; 402 403 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 404 struct fscrypt_ctx *ctx; 405 406 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); 407 if (!ctx) 408 goto fail; 409 list_add(&ctx->free_list, &fscrypt_free_ctxs); 410 } 411 412 fscrypt_bounce_page_pool = 413 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 414 if (!fscrypt_bounce_page_pool) 415 goto fail; 416 417 already_initialized: 418 mutex_unlock(&fscrypt_init_mutex); 419 return 0; 420 fail: 421 fscrypt_destroy(); 422 mutex_unlock(&fscrypt_init_mutex); 423 return res; 424 } 425 426 void fscrypt_msg(struct super_block *sb, const char *level, 427 const char *fmt, ...) 428 { 429 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 430 DEFAULT_RATELIMIT_BURST); 431 struct va_format vaf; 432 va_list args; 433 434 if (!__ratelimit(&rs)) 435 return; 436 437 va_start(args, fmt); 438 vaf.fmt = fmt; 439 vaf.va = &args; 440 if (sb) 441 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf); 442 else 443 printk("%sfscrypt: %pV\n", level, &vaf); 444 va_end(args); 445 } 446 447 /** 448 * fscrypt_init() - Set up for fs encryption. 449 */ 450 static int __init fscrypt_init(void) 451 { 452 /* 453 * Use an unbound workqueue to allow bios to be decrypted in parallel 454 * even when they happen to complete on the same CPU. This sacrifices 455 * locality, but it's worthwhile since decryption is CPU-intensive. 456 * 457 * Also use a high-priority workqueue to prioritize decryption work, 458 * which blocks reads from completing, over regular application tasks. 459 */ 460 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", 461 WQ_UNBOUND | WQ_HIGHPRI, 462 num_online_cpus()); 463 if (!fscrypt_read_workqueue) 464 goto fail; 465 466 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); 467 if (!fscrypt_ctx_cachep) 468 goto fail_free_queue; 469 470 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); 471 if (!fscrypt_info_cachep) 472 goto fail_free_ctx; 473 474 return 0; 475 476 fail_free_ctx: 477 kmem_cache_destroy(fscrypt_ctx_cachep); 478 fail_free_queue: 479 destroy_workqueue(fscrypt_read_workqueue); 480 fail: 481 return -ENOMEM; 482 } 483 module_init(fscrypt_init) 484 485 /** 486 * fscrypt_exit() - Shutdown the fs encryption system 487 */ 488 static void __exit fscrypt_exit(void) 489 { 490 fscrypt_destroy(); 491 492 if (fscrypt_read_workqueue) 493 destroy_workqueue(fscrypt_read_workqueue); 494 kmem_cache_destroy(fscrypt_ctx_cachep); 495 kmem_cache_destroy(fscrypt_info_cachep); 496 497 fscrypt_essiv_cleanup(); 498 } 499 module_exit(fscrypt_exit); 500 501 MODULE_LICENSE("GPL"); 502