xref: /openbmc/linux/fs/crypto/crypto.c (revision 6aa7de05)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include "fscrypt_private.h"
31 
32 static unsigned int num_prealloc_crypto_pages = 32;
33 static unsigned int num_prealloc_crypto_ctxs = 128;
34 
35 module_param(num_prealloc_crypto_pages, uint, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 		"Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs, uint, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 		"Number of crypto contexts to preallocate");
41 
42 static mempool_t *fscrypt_bounce_page_pool = NULL;
43 
44 static LIST_HEAD(fscrypt_free_ctxs);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46 
47 struct workqueue_struct *fscrypt_read_workqueue;
48 static DEFINE_MUTEX(fscrypt_init_mutex);
49 
50 static struct kmem_cache *fscrypt_ctx_cachep;
51 struct kmem_cache *fscrypt_info_cachep;
52 
53 /**
54  * fscrypt_release_ctx() - Releases an encryption context
55  * @ctx: The encryption context to release.
56  *
57  * If the encryption context was allocated from the pre-allocated pool, returns
58  * it to that pool. Else, frees it.
59  *
60  * If there's a bounce page in the context, this frees that.
61  */
62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63 {
64 	unsigned long flags;
65 
66 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
67 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 		ctx->w.bounce_page = NULL;
69 	}
70 	ctx->w.control_page = NULL;
71 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 	} else {
74 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 	}
78 }
79 EXPORT_SYMBOL(fscrypt_release_ctx);
80 
81 /**
82  * fscrypt_get_ctx() - Gets an encryption context
83  * @inode:       The inode for which we are doing the crypto
84  * @gfp_flags:   The gfp flag for memory allocation
85  *
86  * Allocates and initializes an encryption context.
87  *
88  * Return: An allocated and initialized encryption context on success; error
89  * value or NULL otherwise.
90  */
91 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
92 {
93 	struct fscrypt_ctx *ctx = NULL;
94 	struct fscrypt_info *ci = inode->i_crypt_info;
95 	unsigned long flags;
96 
97 	if (ci == NULL)
98 		return ERR_PTR(-ENOKEY);
99 
100 	/*
101 	 * We first try getting the ctx from a free list because in
102 	 * the common case the ctx will have an allocated and
103 	 * initialized crypto tfm, so it's probably a worthwhile
104 	 * optimization. For the bounce page, we first try getting it
105 	 * from the kernel allocator because that's just about as fast
106 	 * as getting it from a list and because a cache of free pages
107 	 * should generally be a "last resort" option for a filesystem
108 	 * to be able to do its job.
109 	 */
110 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 					struct fscrypt_ctx, free_list);
113 	if (ctx)
114 		list_del(&ctx->free_list);
115 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 	if (!ctx) {
117 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
118 		if (!ctx)
119 			return ERR_PTR(-ENOMEM);
120 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 	} else {
122 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 	}
124 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
125 	return ctx;
126 }
127 EXPORT_SYMBOL(fscrypt_get_ctx);
128 
129 /**
130  * page_crypt_complete() - completion callback for page crypto
131  * @req: The asynchronous cipher request context
132  * @res: The result of the cipher operation
133  */
134 static void page_crypt_complete(struct crypto_async_request *req, int res)
135 {
136 	struct fscrypt_completion_result *ecr = req->data;
137 
138 	if (res == -EINPROGRESS)
139 		return;
140 	ecr->res = res;
141 	complete(&ecr->completion);
142 }
143 
144 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
145 			   u64 lblk_num, struct page *src_page,
146 			   struct page *dest_page, unsigned int len,
147 			   unsigned int offs, gfp_t gfp_flags)
148 {
149 	struct {
150 		__le64 index;
151 		u8 padding[FS_IV_SIZE - sizeof(__le64)];
152 	} iv;
153 	struct skcipher_request *req = NULL;
154 	DECLARE_FS_COMPLETION_RESULT(ecr);
155 	struct scatterlist dst, src;
156 	struct fscrypt_info *ci = inode->i_crypt_info;
157 	struct crypto_skcipher *tfm = ci->ci_ctfm;
158 	int res = 0;
159 
160 	BUG_ON(len == 0);
161 
162 	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
163 	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
164 	iv.index = cpu_to_le64(lblk_num);
165 	memset(iv.padding, 0, sizeof(iv.padding));
166 
167 	if (ci->ci_essiv_tfm != NULL) {
168 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
169 					  (u8 *)&iv);
170 	}
171 
172 	req = skcipher_request_alloc(tfm, gfp_flags);
173 	if (!req) {
174 		printk_ratelimited(KERN_ERR
175 				"%s: crypto_request_alloc() failed\n",
176 				__func__);
177 		return -ENOMEM;
178 	}
179 
180 	skcipher_request_set_callback(
181 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
182 		page_crypt_complete, &ecr);
183 
184 	sg_init_table(&dst, 1);
185 	sg_set_page(&dst, dest_page, len, offs);
186 	sg_init_table(&src, 1);
187 	sg_set_page(&src, src_page, len, offs);
188 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
189 	if (rw == FS_DECRYPT)
190 		res = crypto_skcipher_decrypt(req);
191 	else
192 		res = crypto_skcipher_encrypt(req);
193 	if (res == -EINPROGRESS || res == -EBUSY) {
194 		BUG_ON(req->base.data != &ecr);
195 		wait_for_completion(&ecr.completion);
196 		res = ecr.res;
197 	}
198 	skcipher_request_free(req);
199 	if (res) {
200 		printk_ratelimited(KERN_ERR
201 			"%s: crypto_skcipher_encrypt() returned %d\n",
202 			__func__, res);
203 		return res;
204 	}
205 	return 0;
206 }
207 
208 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
209 				       gfp_t gfp_flags)
210 {
211 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
212 	if (ctx->w.bounce_page == NULL)
213 		return ERR_PTR(-ENOMEM);
214 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
215 	return ctx->w.bounce_page;
216 }
217 
218 /**
219  * fscypt_encrypt_page() - Encrypts a page
220  * @inode:     The inode for which the encryption should take place
221  * @page:      The page to encrypt. Must be locked for bounce-page
222  *             encryption.
223  * @len:       Length of data to encrypt in @page and encrypted
224  *             data in returned page.
225  * @offs:      Offset of data within @page and returned
226  *             page holding encrypted data.
227  * @lblk_num:  Logical block number. This must be unique for multiple
228  *             calls with same inode, except when overwriting
229  *             previously written data.
230  * @gfp_flags: The gfp flag for memory allocation
231  *
232  * Encrypts @page using the ctx encryption context. Performs encryption
233  * either in-place or into a newly allocated bounce page.
234  * Called on the page write path.
235  *
236  * Bounce page allocation is the default.
237  * In this case, the contents of @page are encrypted and stored in an
238  * allocated bounce page. @page has to be locked and the caller must call
239  * fscrypt_restore_control_page() on the returned ciphertext page to
240  * release the bounce buffer and the encryption context.
241  *
242  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
243  * fscrypt_operations. Here, the input-page is returned with its content
244  * encrypted.
245  *
246  * Return: A page with the encrypted content on success. Else, an
247  * error value or NULL.
248  */
249 struct page *fscrypt_encrypt_page(const struct inode *inode,
250 				struct page *page,
251 				unsigned int len,
252 				unsigned int offs,
253 				u64 lblk_num, gfp_t gfp_flags)
254 
255 {
256 	struct fscrypt_ctx *ctx;
257 	struct page *ciphertext_page = page;
258 	int err;
259 
260 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
261 
262 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
263 		/* with inplace-encryption we just encrypt the page */
264 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
265 					     ciphertext_page, len, offs,
266 					     gfp_flags);
267 		if (err)
268 			return ERR_PTR(err);
269 
270 		return ciphertext_page;
271 	}
272 
273 	BUG_ON(!PageLocked(page));
274 
275 	ctx = fscrypt_get_ctx(inode, gfp_flags);
276 	if (IS_ERR(ctx))
277 		return (struct page *)ctx;
278 
279 	/* The encryption operation will require a bounce page. */
280 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
281 	if (IS_ERR(ciphertext_page))
282 		goto errout;
283 
284 	ctx->w.control_page = page;
285 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
286 				     page, ciphertext_page, len, offs,
287 				     gfp_flags);
288 	if (err) {
289 		ciphertext_page = ERR_PTR(err);
290 		goto errout;
291 	}
292 	SetPagePrivate(ciphertext_page);
293 	set_page_private(ciphertext_page, (unsigned long)ctx);
294 	lock_page(ciphertext_page);
295 	return ciphertext_page;
296 
297 errout:
298 	fscrypt_release_ctx(ctx);
299 	return ciphertext_page;
300 }
301 EXPORT_SYMBOL(fscrypt_encrypt_page);
302 
303 /**
304  * fscrypt_decrypt_page() - Decrypts a page in-place
305  * @inode:     The corresponding inode for the page to decrypt.
306  * @page:      The page to decrypt. Must be locked in case
307  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
308  * @len:       Number of bytes in @page to be decrypted.
309  * @offs:      Start of data in @page.
310  * @lblk_num:  Logical block number.
311  *
312  * Decrypts page in-place using the ctx encryption context.
313  *
314  * Called from the read completion callback.
315  *
316  * Return: Zero on success, non-zero otherwise.
317  */
318 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
319 			unsigned int len, unsigned int offs, u64 lblk_num)
320 {
321 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
322 		BUG_ON(!PageLocked(page));
323 
324 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
325 				      len, offs, GFP_NOFS);
326 }
327 EXPORT_SYMBOL(fscrypt_decrypt_page);
328 
329 /*
330  * Validate dentries for encrypted directories to make sure we aren't
331  * potentially caching stale data after a key has been added or
332  * removed.
333  */
334 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
335 {
336 	struct dentry *dir;
337 	int dir_has_key, cached_with_key;
338 
339 	if (flags & LOOKUP_RCU)
340 		return -ECHILD;
341 
342 	dir = dget_parent(dentry);
343 	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
344 		dput(dir);
345 		return 0;
346 	}
347 
348 	/* this should eventually be an flag in d_flags */
349 	spin_lock(&dentry->d_lock);
350 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
351 	spin_unlock(&dentry->d_lock);
352 	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
353 	dput(dir);
354 
355 	/*
356 	 * If the dentry was cached without the key, and it is a
357 	 * negative dentry, it might be a valid name.  We can't check
358 	 * if the key has since been made available due to locking
359 	 * reasons, so we fail the validation so ext4_lookup() can do
360 	 * this check.
361 	 *
362 	 * We also fail the validation if the dentry was created with
363 	 * the key present, but we no longer have the key, or vice versa.
364 	 */
365 	if ((!cached_with_key && d_is_negative(dentry)) ||
366 			(!cached_with_key && dir_has_key) ||
367 			(cached_with_key && !dir_has_key))
368 		return 0;
369 	return 1;
370 }
371 
372 const struct dentry_operations fscrypt_d_ops = {
373 	.d_revalidate = fscrypt_d_revalidate,
374 };
375 EXPORT_SYMBOL(fscrypt_d_ops);
376 
377 void fscrypt_restore_control_page(struct page *page)
378 {
379 	struct fscrypt_ctx *ctx;
380 
381 	ctx = (struct fscrypt_ctx *)page_private(page);
382 	set_page_private(page, (unsigned long)NULL);
383 	ClearPagePrivate(page);
384 	unlock_page(page);
385 	fscrypt_release_ctx(ctx);
386 }
387 EXPORT_SYMBOL(fscrypt_restore_control_page);
388 
389 static void fscrypt_destroy(void)
390 {
391 	struct fscrypt_ctx *pos, *n;
392 
393 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
394 		kmem_cache_free(fscrypt_ctx_cachep, pos);
395 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
396 	mempool_destroy(fscrypt_bounce_page_pool);
397 	fscrypt_bounce_page_pool = NULL;
398 }
399 
400 /**
401  * fscrypt_initialize() - allocate major buffers for fs encryption.
402  * @cop_flags:  fscrypt operations flags
403  *
404  * We only call this when we start accessing encrypted files, since it
405  * results in memory getting allocated that wouldn't otherwise be used.
406  *
407  * Return: Zero on success, non-zero otherwise.
408  */
409 int fscrypt_initialize(unsigned int cop_flags)
410 {
411 	int i, res = -ENOMEM;
412 
413 	/*
414 	 * No need to allocate a bounce page pool if there already is one or
415 	 * this FS won't use it.
416 	 */
417 	if (cop_flags & FS_CFLG_OWN_PAGES || fscrypt_bounce_page_pool)
418 		return 0;
419 
420 	mutex_lock(&fscrypt_init_mutex);
421 	if (fscrypt_bounce_page_pool)
422 		goto already_initialized;
423 
424 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
425 		struct fscrypt_ctx *ctx;
426 
427 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
428 		if (!ctx)
429 			goto fail;
430 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
431 	}
432 
433 	fscrypt_bounce_page_pool =
434 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
435 	if (!fscrypt_bounce_page_pool)
436 		goto fail;
437 
438 already_initialized:
439 	mutex_unlock(&fscrypt_init_mutex);
440 	return 0;
441 fail:
442 	fscrypt_destroy();
443 	mutex_unlock(&fscrypt_init_mutex);
444 	return res;
445 }
446 
447 /**
448  * fscrypt_init() - Set up for fs encryption.
449  */
450 static int __init fscrypt_init(void)
451 {
452 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
453 							WQ_HIGHPRI, 0);
454 	if (!fscrypt_read_workqueue)
455 		goto fail;
456 
457 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
458 	if (!fscrypt_ctx_cachep)
459 		goto fail_free_queue;
460 
461 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
462 	if (!fscrypt_info_cachep)
463 		goto fail_free_ctx;
464 
465 	return 0;
466 
467 fail_free_ctx:
468 	kmem_cache_destroy(fscrypt_ctx_cachep);
469 fail_free_queue:
470 	destroy_workqueue(fscrypt_read_workqueue);
471 fail:
472 	return -ENOMEM;
473 }
474 module_init(fscrypt_init)
475 
476 /**
477  * fscrypt_exit() - Shutdown the fs encryption system
478  */
479 static void __exit fscrypt_exit(void)
480 {
481 	fscrypt_destroy();
482 
483 	if (fscrypt_read_workqueue)
484 		destroy_workqueue(fscrypt_read_workqueue);
485 	kmem_cache_destroy(fscrypt_ctx_cachep);
486 	kmem_cache_destroy(fscrypt_info_cachep);
487 
488 	fscrypt_essiv_cleanup();
489 }
490 module_exit(fscrypt_exit);
491 
492 MODULE_LICENSE("GPL");
493