1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This contains encryption functions for per-file encryption. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * Copyright (C) 2015, Motorola Mobility 7 * 8 * Written by Michael Halcrow, 2014. 9 * 10 * Filename encryption additions 11 * Uday Savagaonkar, 2014 12 * Encryption policy handling additions 13 * Ildar Muslukhov, 2014 14 * Add fscrypt_pullback_bio_page() 15 * Jaegeuk Kim, 2015. 16 * 17 * This has not yet undergone a rigorous security audit. 18 * 19 * The usage of AES-XTS should conform to recommendations in NIST 20 * Special Publication 800-38E and IEEE P1619/D16. 21 */ 22 23 #include <linux/pagemap.h> 24 #include <linux/mempool.h> 25 #include <linux/module.h> 26 #include <linux/scatterlist.h> 27 #include <linux/ratelimit.h> 28 #include <linux/dcache.h> 29 #include <linux/namei.h> 30 #include <crypto/aes.h> 31 #include <crypto/skcipher.h> 32 #include "fscrypt_private.h" 33 34 static unsigned int num_prealloc_crypto_pages = 32; 35 static unsigned int num_prealloc_crypto_ctxs = 128; 36 37 module_param(num_prealloc_crypto_pages, uint, 0444); 38 MODULE_PARM_DESC(num_prealloc_crypto_pages, 39 "Number of crypto pages to preallocate"); 40 module_param(num_prealloc_crypto_ctxs, uint, 0444); 41 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 42 "Number of crypto contexts to preallocate"); 43 44 static mempool_t *fscrypt_bounce_page_pool = NULL; 45 46 static LIST_HEAD(fscrypt_free_ctxs); 47 static DEFINE_SPINLOCK(fscrypt_ctx_lock); 48 49 static struct workqueue_struct *fscrypt_read_workqueue; 50 static DEFINE_MUTEX(fscrypt_init_mutex); 51 52 static struct kmem_cache *fscrypt_ctx_cachep; 53 struct kmem_cache *fscrypt_info_cachep; 54 55 void fscrypt_enqueue_decrypt_work(struct work_struct *work) 56 { 57 queue_work(fscrypt_read_workqueue, work); 58 } 59 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); 60 61 /** 62 * fscrypt_release_ctx() - Releases an encryption context 63 * @ctx: The encryption context to release. 64 * 65 * If the encryption context was allocated from the pre-allocated pool, returns 66 * it to that pool. Else, frees it. 67 * 68 * If there's a bounce page in the context, this frees that. 69 */ 70 void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 71 { 72 unsigned long flags; 73 74 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { 75 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); 76 ctx->w.bounce_page = NULL; 77 } 78 ctx->w.control_page = NULL; 79 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { 80 kmem_cache_free(fscrypt_ctx_cachep, ctx); 81 } else { 82 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 83 list_add(&ctx->free_list, &fscrypt_free_ctxs); 84 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 85 } 86 } 87 EXPORT_SYMBOL(fscrypt_release_ctx); 88 89 /** 90 * fscrypt_get_ctx() - Gets an encryption context 91 * @gfp_flags: The gfp flag for memory allocation 92 * 93 * Allocates and initializes an encryption context. 94 * 95 * Return: A new encryption context on success; an ERR_PTR() otherwise. 96 */ 97 struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags) 98 { 99 struct fscrypt_ctx *ctx; 100 unsigned long flags; 101 102 /* 103 * We first try getting the ctx from a free list because in 104 * the common case the ctx will have an allocated and 105 * initialized crypto tfm, so it's probably a worthwhile 106 * optimization. For the bounce page, we first try getting it 107 * from the kernel allocator because that's just about as fast 108 * as getting it from a list and because a cache of free pages 109 * should generally be a "last resort" option for a filesystem 110 * to be able to do its job. 111 */ 112 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 113 ctx = list_first_entry_or_null(&fscrypt_free_ctxs, 114 struct fscrypt_ctx, free_list); 115 if (ctx) 116 list_del(&ctx->free_list); 117 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 118 if (!ctx) { 119 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); 120 if (!ctx) 121 return ERR_PTR(-ENOMEM); 122 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 123 } else { 124 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 125 } 126 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; 127 return ctx; 128 } 129 EXPORT_SYMBOL(fscrypt_get_ctx); 130 131 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, 132 const struct fscrypt_info *ci) 133 { 134 memset(iv, 0, ci->ci_mode->ivsize); 135 iv->lblk_num = cpu_to_le64(lblk_num); 136 137 if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY) 138 memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE); 139 140 if (ci->ci_essiv_tfm != NULL) 141 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw); 142 } 143 144 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, 145 u64 lblk_num, struct page *src_page, 146 struct page *dest_page, unsigned int len, 147 unsigned int offs, gfp_t gfp_flags) 148 { 149 union fscrypt_iv iv; 150 struct skcipher_request *req = NULL; 151 DECLARE_CRYPTO_WAIT(wait); 152 struct scatterlist dst, src; 153 struct fscrypt_info *ci = inode->i_crypt_info; 154 struct crypto_skcipher *tfm = ci->ci_ctfm; 155 int res = 0; 156 157 BUG_ON(len == 0); 158 159 fscrypt_generate_iv(&iv, lblk_num, ci); 160 161 req = skcipher_request_alloc(tfm, gfp_flags); 162 if (!req) 163 return -ENOMEM; 164 165 skcipher_request_set_callback( 166 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 167 crypto_req_done, &wait); 168 169 sg_init_table(&dst, 1); 170 sg_set_page(&dst, dest_page, len, offs); 171 sg_init_table(&src, 1); 172 sg_set_page(&src, src_page, len, offs); 173 skcipher_request_set_crypt(req, &src, &dst, len, &iv); 174 if (rw == FS_DECRYPT) 175 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); 176 else 177 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 178 skcipher_request_free(req); 179 if (res) { 180 fscrypt_err(inode->i_sb, 181 "%scryption failed for inode %lu, block %llu: %d", 182 (rw == FS_DECRYPT ? "de" : "en"), 183 inode->i_ino, lblk_num, res); 184 return res; 185 } 186 return 0; 187 } 188 189 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, 190 gfp_t gfp_flags) 191 { 192 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); 193 if (ctx->w.bounce_page == NULL) 194 return ERR_PTR(-ENOMEM); 195 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; 196 return ctx->w.bounce_page; 197 } 198 199 /** 200 * fscypt_encrypt_page() - Encrypts a page 201 * @inode: The inode for which the encryption should take place 202 * @page: The page to encrypt. Must be locked for bounce-page 203 * encryption. 204 * @len: Length of data to encrypt in @page and encrypted 205 * data in returned page. 206 * @offs: Offset of data within @page and returned 207 * page holding encrypted data. 208 * @lblk_num: Logical block number. This must be unique for multiple 209 * calls with same inode, except when overwriting 210 * previously written data. 211 * @gfp_flags: The gfp flag for memory allocation 212 * 213 * Encrypts @page using the ctx encryption context. Performs encryption 214 * either in-place or into a newly allocated bounce page. 215 * Called on the page write path. 216 * 217 * Bounce page allocation is the default. 218 * In this case, the contents of @page are encrypted and stored in an 219 * allocated bounce page. @page has to be locked and the caller must call 220 * fscrypt_restore_control_page() on the returned ciphertext page to 221 * release the bounce buffer and the encryption context. 222 * 223 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in 224 * fscrypt_operations. Here, the input-page is returned with its content 225 * encrypted. 226 * 227 * Return: A page with the encrypted content on success. Else, an 228 * error value or NULL. 229 */ 230 struct page *fscrypt_encrypt_page(const struct inode *inode, 231 struct page *page, 232 unsigned int len, 233 unsigned int offs, 234 u64 lblk_num, gfp_t gfp_flags) 235 236 { 237 struct fscrypt_ctx *ctx; 238 struct page *ciphertext_page = page; 239 int err; 240 241 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); 242 243 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { 244 /* with inplace-encryption we just encrypt the page */ 245 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, 246 ciphertext_page, len, offs, 247 gfp_flags); 248 if (err) 249 return ERR_PTR(err); 250 251 return ciphertext_page; 252 } 253 254 BUG_ON(!PageLocked(page)); 255 256 ctx = fscrypt_get_ctx(gfp_flags); 257 if (IS_ERR(ctx)) 258 return ERR_CAST(ctx); 259 260 /* The encryption operation will require a bounce page. */ 261 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); 262 if (IS_ERR(ciphertext_page)) 263 goto errout; 264 265 ctx->w.control_page = page; 266 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, 267 page, ciphertext_page, len, offs, 268 gfp_flags); 269 if (err) { 270 ciphertext_page = ERR_PTR(err); 271 goto errout; 272 } 273 SetPagePrivate(ciphertext_page); 274 set_page_private(ciphertext_page, (unsigned long)ctx); 275 lock_page(ciphertext_page); 276 return ciphertext_page; 277 278 errout: 279 fscrypt_release_ctx(ctx); 280 return ciphertext_page; 281 } 282 EXPORT_SYMBOL(fscrypt_encrypt_page); 283 284 /** 285 * fscrypt_decrypt_page() - Decrypts a page in-place 286 * @inode: The corresponding inode for the page to decrypt. 287 * @page: The page to decrypt. Must be locked in case 288 * it is a writeback page (FS_CFLG_OWN_PAGES unset). 289 * @len: Number of bytes in @page to be decrypted. 290 * @offs: Start of data in @page. 291 * @lblk_num: Logical block number. 292 * 293 * Decrypts page in-place using the ctx encryption context. 294 * 295 * Called from the read completion callback. 296 * 297 * Return: Zero on success, non-zero otherwise. 298 */ 299 int fscrypt_decrypt_page(const struct inode *inode, struct page *page, 300 unsigned int len, unsigned int offs, u64 lblk_num) 301 { 302 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) 303 BUG_ON(!PageLocked(page)); 304 305 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, 306 len, offs, GFP_NOFS); 307 } 308 EXPORT_SYMBOL(fscrypt_decrypt_page); 309 310 /* 311 * Validate dentries in encrypted directories to make sure we aren't potentially 312 * caching stale dentries after a key has been added. 313 */ 314 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 315 { 316 struct dentry *dir; 317 int err; 318 int valid; 319 320 /* 321 * Plaintext names are always valid, since fscrypt doesn't support 322 * reverting to ciphertext names without evicting the directory's inode 323 * -- which implies eviction of the dentries in the directory. 324 */ 325 if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME)) 326 return 1; 327 328 /* 329 * Ciphertext name; valid if the directory's key is still unavailable. 330 * 331 * Although fscrypt forbids rename() on ciphertext names, we still must 332 * use dget_parent() here rather than use ->d_parent directly. That's 333 * because a corrupted fs image may contain directory hard links, which 334 * the VFS handles by moving the directory's dentry tree in the dcache 335 * each time ->lookup() finds the directory and it already has a dentry 336 * elsewhere. Thus ->d_parent can be changing, and we must safely grab 337 * a reference to some ->d_parent to prevent it from being freed. 338 */ 339 340 if (flags & LOOKUP_RCU) 341 return -ECHILD; 342 343 dir = dget_parent(dentry); 344 err = fscrypt_get_encryption_info(d_inode(dir)); 345 valid = !fscrypt_has_encryption_key(d_inode(dir)); 346 dput(dir); 347 348 if (err < 0) 349 return err; 350 351 return valid; 352 } 353 354 const struct dentry_operations fscrypt_d_ops = { 355 .d_revalidate = fscrypt_d_revalidate, 356 }; 357 358 void fscrypt_restore_control_page(struct page *page) 359 { 360 struct fscrypt_ctx *ctx; 361 362 ctx = (struct fscrypt_ctx *)page_private(page); 363 set_page_private(page, (unsigned long)NULL); 364 ClearPagePrivate(page); 365 unlock_page(page); 366 fscrypt_release_ctx(ctx); 367 } 368 EXPORT_SYMBOL(fscrypt_restore_control_page); 369 370 static void fscrypt_destroy(void) 371 { 372 struct fscrypt_ctx *pos, *n; 373 374 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) 375 kmem_cache_free(fscrypt_ctx_cachep, pos); 376 INIT_LIST_HEAD(&fscrypt_free_ctxs); 377 mempool_destroy(fscrypt_bounce_page_pool); 378 fscrypt_bounce_page_pool = NULL; 379 } 380 381 /** 382 * fscrypt_initialize() - allocate major buffers for fs encryption. 383 * @cop_flags: fscrypt operations flags 384 * 385 * We only call this when we start accessing encrypted files, since it 386 * results in memory getting allocated that wouldn't otherwise be used. 387 * 388 * Return: Zero on success, non-zero otherwise. 389 */ 390 int fscrypt_initialize(unsigned int cop_flags) 391 { 392 int i, res = -ENOMEM; 393 394 /* No need to allocate a bounce page pool if this FS won't use it. */ 395 if (cop_flags & FS_CFLG_OWN_PAGES) 396 return 0; 397 398 mutex_lock(&fscrypt_init_mutex); 399 if (fscrypt_bounce_page_pool) 400 goto already_initialized; 401 402 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 403 struct fscrypt_ctx *ctx; 404 405 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); 406 if (!ctx) 407 goto fail; 408 list_add(&ctx->free_list, &fscrypt_free_ctxs); 409 } 410 411 fscrypt_bounce_page_pool = 412 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 413 if (!fscrypt_bounce_page_pool) 414 goto fail; 415 416 already_initialized: 417 mutex_unlock(&fscrypt_init_mutex); 418 return 0; 419 fail: 420 fscrypt_destroy(); 421 mutex_unlock(&fscrypt_init_mutex); 422 return res; 423 } 424 425 void fscrypt_msg(struct super_block *sb, const char *level, 426 const char *fmt, ...) 427 { 428 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 429 DEFAULT_RATELIMIT_BURST); 430 struct va_format vaf; 431 va_list args; 432 433 if (!__ratelimit(&rs)) 434 return; 435 436 va_start(args, fmt); 437 vaf.fmt = fmt; 438 vaf.va = &args; 439 if (sb) 440 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf); 441 else 442 printk("%sfscrypt: %pV\n", level, &vaf); 443 va_end(args); 444 } 445 446 /** 447 * fscrypt_init() - Set up for fs encryption. 448 */ 449 static int __init fscrypt_init(void) 450 { 451 /* 452 * Use an unbound workqueue to allow bios to be decrypted in parallel 453 * even when they happen to complete on the same CPU. This sacrifices 454 * locality, but it's worthwhile since decryption is CPU-intensive. 455 * 456 * Also use a high-priority workqueue to prioritize decryption work, 457 * which blocks reads from completing, over regular application tasks. 458 */ 459 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", 460 WQ_UNBOUND | WQ_HIGHPRI, 461 num_online_cpus()); 462 if (!fscrypt_read_workqueue) 463 goto fail; 464 465 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); 466 if (!fscrypt_ctx_cachep) 467 goto fail_free_queue; 468 469 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); 470 if (!fscrypt_info_cachep) 471 goto fail_free_ctx; 472 473 return 0; 474 475 fail_free_ctx: 476 kmem_cache_destroy(fscrypt_ctx_cachep); 477 fail_free_queue: 478 destroy_workqueue(fscrypt_read_workqueue); 479 fail: 480 return -ENOMEM; 481 } 482 module_init(fscrypt_init) 483 484 /** 485 * fscrypt_exit() - Shutdown the fs encryption system 486 */ 487 static void __exit fscrypt_exit(void) 488 { 489 fscrypt_destroy(); 490 491 if (fscrypt_read_workqueue) 492 destroy_workqueue(fscrypt_read_workqueue); 493 kmem_cache_destroy(fscrypt_ctx_cachep); 494 kmem_cache_destroy(fscrypt_info_cachep); 495 496 fscrypt_essiv_cleanup(); 497 } 498 module_exit(fscrypt_exit); 499 500 MODULE_LICENSE("GPL"); 501