xref: /openbmc/linux/fs/crypto/crypto.c (revision 2127c01b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This contains encryption functions for per-file encryption.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Michael Halcrow, 2014.
9  *
10  * Filename encryption additions
11  *	Uday Savagaonkar, 2014
12  * Encryption policy handling additions
13  *	Ildar Muslukhov, 2014
14  * Add fscrypt_pullback_bio_page()
15  *	Jaegeuk Kim, 2015.
16  *
17  * This has not yet undergone a rigorous security audit.
18  *
19  * The usage of AES-XTS should conform to recommendations in NIST
20  * Special Publication 800-38E and IEEE P1619/D16.
21  */
22 
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/ratelimit.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <crypto/aes.h>
31 #include <crypto/skcipher.h>
32 #include "fscrypt_private.h"
33 
34 static unsigned int num_prealloc_crypto_pages = 32;
35 static unsigned int num_prealloc_crypto_ctxs = 128;
36 
37 module_param(num_prealloc_crypto_pages, uint, 0444);
38 MODULE_PARM_DESC(num_prealloc_crypto_pages,
39 		"Number of crypto pages to preallocate");
40 module_param(num_prealloc_crypto_ctxs, uint, 0444);
41 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
42 		"Number of crypto contexts to preallocate");
43 
44 static mempool_t *fscrypt_bounce_page_pool = NULL;
45 
46 static LIST_HEAD(fscrypt_free_ctxs);
47 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
48 
49 static struct workqueue_struct *fscrypt_read_workqueue;
50 static DEFINE_MUTEX(fscrypt_init_mutex);
51 
52 static struct kmem_cache *fscrypt_ctx_cachep;
53 struct kmem_cache *fscrypt_info_cachep;
54 
55 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
56 {
57 	queue_work(fscrypt_read_workqueue, work);
58 }
59 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
60 
61 /**
62  * fscrypt_release_ctx() - Release a decryption context
63  * @ctx: The decryption context to release.
64  *
65  * If the decryption context was allocated from the pre-allocated pool, return
66  * it to that pool.  Else, free it.
67  */
68 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
69 {
70 	unsigned long flags;
71 
72 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
73 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
74 	} else {
75 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
76 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
77 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
78 	}
79 }
80 EXPORT_SYMBOL(fscrypt_release_ctx);
81 
82 /**
83  * fscrypt_get_ctx() - Get a decryption context
84  * @gfp_flags:   The gfp flag for memory allocation
85  *
86  * Allocate and initialize a decryption context.
87  *
88  * Return: A new decryption context on success; an ERR_PTR() otherwise.
89  */
90 struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
91 {
92 	struct fscrypt_ctx *ctx;
93 	unsigned long flags;
94 
95 	/*
96 	 * First try getting a ctx from the free list so that we don't have to
97 	 * call into the slab allocator.
98 	 */
99 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
100 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
101 					struct fscrypt_ctx, free_list);
102 	if (ctx)
103 		list_del(&ctx->free_list);
104 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
105 	if (!ctx) {
106 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
107 		if (!ctx)
108 			return ERR_PTR(-ENOMEM);
109 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
110 	} else {
111 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
112 	}
113 	return ctx;
114 }
115 EXPORT_SYMBOL(fscrypt_get_ctx);
116 
117 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
118 {
119 	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
120 }
121 
122 /**
123  * fscrypt_free_bounce_page() - free a ciphertext bounce page
124  *
125  * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
126  * or by fscrypt_alloc_bounce_page() directly.
127  */
128 void fscrypt_free_bounce_page(struct page *bounce_page)
129 {
130 	if (!bounce_page)
131 		return;
132 	set_page_private(bounce_page, (unsigned long)NULL);
133 	ClearPagePrivate(bounce_page);
134 	mempool_free(bounce_page, fscrypt_bounce_page_pool);
135 }
136 EXPORT_SYMBOL(fscrypt_free_bounce_page);
137 
138 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
139 			 const struct fscrypt_info *ci)
140 {
141 	memset(iv, 0, ci->ci_mode->ivsize);
142 	iv->lblk_num = cpu_to_le64(lblk_num);
143 
144 	if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
145 		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
146 
147 	if (ci->ci_essiv_tfm != NULL)
148 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
149 }
150 
151 /* Encrypt or decrypt a single filesystem block of file contents */
152 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
153 			u64 lblk_num, struct page *src_page,
154 			struct page *dest_page, unsigned int len,
155 			unsigned int offs, gfp_t gfp_flags)
156 {
157 	union fscrypt_iv iv;
158 	struct skcipher_request *req = NULL;
159 	DECLARE_CRYPTO_WAIT(wait);
160 	struct scatterlist dst, src;
161 	struct fscrypt_info *ci = inode->i_crypt_info;
162 	struct crypto_skcipher *tfm = ci->ci_ctfm;
163 	int res = 0;
164 
165 	if (WARN_ON_ONCE(len <= 0))
166 		return -EINVAL;
167 	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
168 		return -EINVAL;
169 
170 	fscrypt_generate_iv(&iv, lblk_num, ci);
171 
172 	req = skcipher_request_alloc(tfm, gfp_flags);
173 	if (!req)
174 		return -ENOMEM;
175 
176 	skcipher_request_set_callback(
177 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
178 		crypto_req_done, &wait);
179 
180 	sg_init_table(&dst, 1);
181 	sg_set_page(&dst, dest_page, len, offs);
182 	sg_init_table(&src, 1);
183 	sg_set_page(&src, src_page, len, offs);
184 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
185 	if (rw == FS_DECRYPT)
186 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
187 	else
188 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
189 	skcipher_request_free(req);
190 	if (res) {
191 		fscrypt_err(inode->i_sb,
192 			    "%scryption failed for inode %lu, block %llu: %d",
193 			    (rw == FS_DECRYPT ? "de" : "en"),
194 			    inode->i_ino, lblk_num, res);
195 		return res;
196 	}
197 	return 0;
198 }
199 
200 /**
201  * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
202  * @page:      The locked pagecache page containing the block(s) to encrypt
203  * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
204  *		multiple of the filesystem's block size.
205  * @offs:      Byte offset within @page of the first block to encrypt.  Must be
206  *		a multiple of the filesystem's block size.
207  * @gfp_flags: Memory allocation flags
208  *
209  * A new bounce page is allocated, and the specified block(s) are encrypted into
210  * it.  In the bounce page, the ciphertext block(s) will be located at the same
211  * offsets at which the plaintext block(s) were located in the source page; any
212  * other parts of the bounce page will be left uninitialized.  However, normally
213  * blocksize == PAGE_SIZE and the whole page is encrypted at once.
214  *
215  * This is for use by the filesystem's ->writepages() method.
216  *
217  * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
218  */
219 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
220 					      unsigned int len,
221 					      unsigned int offs,
222 					      gfp_t gfp_flags)
223 
224 {
225 	const struct inode *inode = page->mapping->host;
226 	const unsigned int blockbits = inode->i_blkbits;
227 	const unsigned int blocksize = 1 << blockbits;
228 	struct page *ciphertext_page;
229 	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
230 		       (offs >> blockbits);
231 	unsigned int i;
232 	int err;
233 
234 	if (WARN_ON_ONCE(!PageLocked(page)))
235 		return ERR_PTR(-EINVAL);
236 
237 	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
238 		return ERR_PTR(-EINVAL);
239 
240 	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
241 	if (!ciphertext_page)
242 		return ERR_PTR(-ENOMEM);
243 
244 	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
245 		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
246 					  page, ciphertext_page,
247 					  blocksize, i, gfp_flags);
248 		if (err) {
249 			fscrypt_free_bounce_page(ciphertext_page);
250 			return ERR_PTR(err);
251 		}
252 	}
253 	SetPagePrivate(ciphertext_page);
254 	set_page_private(ciphertext_page, (unsigned long)page);
255 	return ciphertext_page;
256 }
257 EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
258 
259 /**
260  * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
261  * @inode:     The inode to which this block belongs
262  * @page:      The page containing the block to encrypt
263  * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
264  *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
265  * @offs:      Byte offset within @page at which the block to encrypt begins
266  * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
267  *		number of the block within the file
268  * @gfp_flags: Memory allocation flags
269  *
270  * Encrypt a possibly-compressed filesystem block that is located in an
271  * arbitrary page, not necessarily in the original pagecache page.  The @inode
272  * and @lblk_num must be specified, as they can't be determined from @page.
273  *
274  * Return: 0 on success; -errno on failure
275  */
276 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
277 				  unsigned int len, unsigned int offs,
278 				  u64 lblk_num, gfp_t gfp_flags)
279 {
280 	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
281 				   len, offs, gfp_flags);
282 }
283 EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
284 
285 /**
286  * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
287  * @page:      The locked pagecache page containing the block(s) to decrypt
288  * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
289  *		multiple of the filesystem's block size.
290  * @offs:      Byte offset within @page of the first block to decrypt.  Must be
291  *		a multiple of the filesystem's block size.
292  *
293  * The specified block(s) are decrypted in-place within the pagecache page,
294  * which must still be locked and not uptodate.  Normally, blocksize ==
295  * PAGE_SIZE and the whole page is decrypted at once.
296  *
297  * This is for use by the filesystem's ->readpages() method.
298  *
299  * Return: 0 on success; -errno on failure
300  */
301 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
302 				     unsigned int offs)
303 {
304 	const struct inode *inode = page->mapping->host;
305 	const unsigned int blockbits = inode->i_blkbits;
306 	const unsigned int blocksize = 1 << blockbits;
307 	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
308 		       (offs >> blockbits);
309 	unsigned int i;
310 	int err;
311 
312 	if (WARN_ON_ONCE(!PageLocked(page)))
313 		return -EINVAL;
314 
315 	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
316 		return -EINVAL;
317 
318 	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
319 		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
320 					  page, blocksize, i, GFP_NOFS);
321 		if (err)
322 			return err;
323 	}
324 	return 0;
325 }
326 EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
327 
328 /**
329  * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
330  * @inode:     The inode to which this block belongs
331  * @page:      The page containing the block to decrypt
332  * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
333  *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
334  * @offs:      Byte offset within @page at which the block to decrypt begins
335  * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
336  *		number of the block within the file
337  *
338  * Decrypt a possibly-compressed filesystem block that is located in an
339  * arbitrary page, not necessarily in the original pagecache page.  The @inode
340  * and @lblk_num must be specified, as they can't be determined from @page.
341  *
342  * Return: 0 on success; -errno on failure
343  */
344 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
345 				  unsigned int len, unsigned int offs,
346 				  u64 lblk_num)
347 {
348 	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
349 				   len, offs, GFP_NOFS);
350 }
351 EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
352 
353 /*
354  * Validate dentries in encrypted directories to make sure we aren't potentially
355  * caching stale dentries after a key has been added.
356  */
357 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
358 {
359 	struct dentry *dir;
360 	int err;
361 	int valid;
362 
363 	/*
364 	 * Plaintext names are always valid, since fscrypt doesn't support
365 	 * reverting to ciphertext names without evicting the directory's inode
366 	 * -- which implies eviction of the dentries in the directory.
367 	 */
368 	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
369 		return 1;
370 
371 	/*
372 	 * Ciphertext name; valid if the directory's key is still unavailable.
373 	 *
374 	 * Although fscrypt forbids rename() on ciphertext names, we still must
375 	 * use dget_parent() here rather than use ->d_parent directly.  That's
376 	 * because a corrupted fs image may contain directory hard links, which
377 	 * the VFS handles by moving the directory's dentry tree in the dcache
378 	 * each time ->lookup() finds the directory and it already has a dentry
379 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
380 	 * a reference to some ->d_parent to prevent it from being freed.
381 	 */
382 
383 	if (flags & LOOKUP_RCU)
384 		return -ECHILD;
385 
386 	dir = dget_parent(dentry);
387 	err = fscrypt_get_encryption_info(d_inode(dir));
388 	valid = !fscrypt_has_encryption_key(d_inode(dir));
389 	dput(dir);
390 
391 	if (err < 0)
392 		return err;
393 
394 	return valid;
395 }
396 
397 const struct dentry_operations fscrypt_d_ops = {
398 	.d_revalidate = fscrypt_d_revalidate,
399 };
400 
401 static void fscrypt_destroy(void)
402 {
403 	struct fscrypt_ctx *pos, *n;
404 
405 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
406 		kmem_cache_free(fscrypt_ctx_cachep, pos);
407 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
408 	mempool_destroy(fscrypt_bounce_page_pool);
409 	fscrypt_bounce_page_pool = NULL;
410 }
411 
412 /**
413  * fscrypt_initialize() - allocate major buffers for fs encryption.
414  * @cop_flags:  fscrypt operations flags
415  *
416  * We only call this when we start accessing encrypted files, since it
417  * results in memory getting allocated that wouldn't otherwise be used.
418  *
419  * Return: Zero on success, non-zero otherwise.
420  */
421 int fscrypt_initialize(unsigned int cop_flags)
422 {
423 	int i, res = -ENOMEM;
424 
425 	/* No need to allocate a bounce page pool if this FS won't use it. */
426 	if (cop_flags & FS_CFLG_OWN_PAGES)
427 		return 0;
428 
429 	mutex_lock(&fscrypt_init_mutex);
430 	if (fscrypt_bounce_page_pool)
431 		goto already_initialized;
432 
433 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
434 		struct fscrypt_ctx *ctx;
435 
436 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
437 		if (!ctx)
438 			goto fail;
439 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
440 	}
441 
442 	fscrypt_bounce_page_pool =
443 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
444 	if (!fscrypt_bounce_page_pool)
445 		goto fail;
446 
447 already_initialized:
448 	mutex_unlock(&fscrypt_init_mutex);
449 	return 0;
450 fail:
451 	fscrypt_destroy();
452 	mutex_unlock(&fscrypt_init_mutex);
453 	return res;
454 }
455 
456 void fscrypt_msg(struct super_block *sb, const char *level,
457 		 const char *fmt, ...)
458 {
459 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
460 				      DEFAULT_RATELIMIT_BURST);
461 	struct va_format vaf;
462 	va_list args;
463 
464 	if (!__ratelimit(&rs))
465 		return;
466 
467 	va_start(args, fmt);
468 	vaf.fmt = fmt;
469 	vaf.va = &args;
470 	if (sb)
471 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
472 	else
473 		printk("%sfscrypt: %pV\n", level, &vaf);
474 	va_end(args);
475 }
476 
477 /**
478  * fscrypt_init() - Set up for fs encryption.
479  */
480 static int __init fscrypt_init(void)
481 {
482 	/*
483 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
484 	 * even when they happen to complete on the same CPU.  This sacrifices
485 	 * locality, but it's worthwhile since decryption is CPU-intensive.
486 	 *
487 	 * Also use a high-priority workqueue to prioritize decryption work,
488 	 * which blocks reads from completing, over regular application tasks.
489 	 */
490 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
491 						 WQ_UNBOUND | WQ_HIGHPRI,
492 						 num_online_cpus());
493 	if (!fscrypt_read_workqueue)
494 		goto fail;
495 
496 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
497 	if (!fscrypt_ctx_cachep)
498 		goto fail_free_queue;
499 
500 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
501 	if (!fscrypt_info_cachep)
502 		goto fail_free_ctx;
503 
504 	return 0;
505 
506 fail_free_ctx:
507 	kmem_cache_destroy(fscrypt_ctx_cachep);
508 fail_free_queue:
509 	destroy_workqueue(fscrypt_read_workqueue);
510 fail:
511 	return -ENOMEM;
512 }
513 module_init(fscrypt_init)
514 
515 /**
516  * fscrypt_exit() - Shutdown the fs encryption system
517  */
518 static void __exit fscrypt_exit(void)
519 {
520 	fscrypt_destroy();
521 
522 	if (fscrypt_read_workqueue)
523 		destroy_workqueue(fscrypt_read_workqueue);
524 	kmem_cache_destroy(fscrypt_ctx_cachep);
525 	kmem_cache_destroy(fscrypt_info_cachep);
526 
527 	fscrypt_essiv_cleanup();
528 }
529 module_exit(fscrypt_exit);
530 
531 MODULE_LICENSE("GPL");
532