xref: /openbmc/linux/fs/crypto/crypto.c (revision 110e6f26)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/bio.h>
28 #include <linux/dcache.h>
29 #include <linux/fscrypto.h>
30 #include <linux/ecryptfs.h>
31 
32 static unsigned int num_prealloc_crypto_pages = 32;
33 static unsigned int num_prealloc_crypto_ctxs = 128;
34 
35 module_param(num_prealloc_crypto_pages, uint, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 		"Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs, uint, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 		"Number of crypto contexts to preallocate");
41 
42 static mempool_t *fscrypt_bounce_page_pool = NULL;
43 
44 static LIST_HEAD(fscrypt_free_ctxs);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46 
47 static struct workqueue_struct *fscrypt_read_workqueue;
48 static DEFINE_MUTEX(fscrypt_init_mutex);
49 
50 static struct kmem_cache *fscrypt_ctx_cachep;
51 struct kmem_cache *fscrypt_info_cachep;
52 
53 /**
54  * fscrypt_release_ctx() - Releases an encryption context
55  * @ctx: The encryption context to release.
56  *
57  * If the encryption context was allocated from the pre-allocated pool, returns
58  * it to that pool. Else, frees it.
59  *
60  * If there's a bounce page in the context, this frees that.
61  */
62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63 {
64 	unsigned long flags;
65 
66 	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
67 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 		ctx->w.bounce_page = NULL;
69 	}
70 	ctx->w.control_page = NULL;
71 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 	} else {
74 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 	}
78 }
79 EXPORT_SYMBOL(fscrypt_release_ctx);
80 
81 /**
82  * fscrypt_get_ctx() - Gets an encryption context
83  * @inode:       The inode for which we are doing the crypto
84  *
85  * Allocates and initializes an encryption context.
86  *
87  * Return: An allocated and initialized encryption context on success; error
88  * value or NULL otherwise.
89  */
90 struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode)
91 {
92 	struct fscrypt_ctx *ctx = NULL;
93 	struct fscrypt_info *ci = inode->i_crypt_info;
94 	unsigned long flags;
95 
96 	if (ci == NULL)
97 		return ERR_PTR(-ENOKEY);
98 
99 	/*
100 	 * We first try getting the ctx from a free list because in
101 	 * the common case the ctx will have an allocated and
102 	 * initialized crypto tfm, so it's probably a worthwhile
103 	 * optimization. For the bounce page, we first try getting it
104 	 * from the kernel allocator because that's just about as fast
105 	 * as getting it from a list and because a cache of free pages
106 	 * should generally be a "last resort" option for a filesystem
107 	 * to be able to do its job.
108 	 */
109 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
110 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
111 					struct fscrypt_ctx, free_list);
112 	if (ctx)
113 		list_del(&ctx->free_list);
114 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
115 	if (!ctx) {
116 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
117 		if (!ctx)
118 			return ERR_PTR(-ENOMEM);
119 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
120 	} else {
121 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122 	}
123 	ctx->flags &= ~FS_WRITE_PATH_FL;
124 	return ctx;
125 }
126 EXPORT_SYMBOL(fscrypt_get_ctx);
127 
128 /**
129  * fscrypt_complete() - The completion callback for page encryption
130  * @req: The asynchronous encryption request context
131  * @res: The result of the encryption operation
132  */
133 static void fscrypt_complete(struct crypto_async_request *req, int res)
134 {
135 	struct fscrypt_completion_result *ecr = req->data;
136 
137 	if (res == -EINPROGRESS)
138 		return;
139 	ecr->res = res;
140 	complete(&ecr->completion);
141 }
142 
143 typedef enum {
144 	FS_DECRYPT = 0,
145 	FS_ENCRYPT,
146 } fscrypt_direction_t;
147 
148 static int do_page_crypto(struct inode *inode,
149 			fscrypt_direction_t rw, pgoff_t index,
150 			struct page *src_page, struct page *dest_page)
151 {
152 	u8 xts_tweak[FS_XTS_TWEAK_SIZE];
153 	struct skcipher_request *req = NULL;
154 	DECLARE_FS_COMPLETION_RESULT(ecr);
155 	struct scatterlist dst, src;
156 	struct fscrypt_info *ci = inode->i_crypt_info;
157 	struct crypto_skcipher *tfm = ci->ci_ctfm;
158 	int res = 0;
159 
160 	req = skcipher_request_alloc(tfm, GFP_NOFS);
161 	if (!req) {
162 		printk_ratelimited(KERN_ERR
163 				"%s: crypto_request_alloc() failed\n",
164 				__func__);
165 		return -ENOMEM;
166 	}
167 
168 	skcipher_request_set_callback(
169 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
170 		fscrypt_complete, &ecr);
171 
172 	BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
173 	memcpy(xts_tweak, &index, sizeof(index));
174 	memset(&xts_tweak[sizeof(index)], 0,
175 			FS_XTS_TWEAK_SIZE - sizeof(index));
176 
177 	sg_init_table(&dst, 1);
178 	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
179 	sg_init_table(&src, 1);
180 	sg_set_page(&src, src_page, PAGE_SIZE, 0);
181 	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
182 					xts_tweak);
183 	if (rw == FS_DECRYPT)
184 		res = crypto_skcipher_decrypt(req);
185 	else
186 		res = crypto_skcipher_encrypt(req);
187 	if (res == -EINPROGRESS || res == -EBUSY) {
188 		BUG_ON(req->base.data != &ecr);
189 		wait_for_completion(&ecr.completion);
190 		res = ecr.res;
191 	}
192 	skcipher_request_free(req);
193 	if (res) {
194 		printk_ratelimited(KERN_ERR
195 			"%s: crypto_skcipher_encrypt() returned %d\n",
196 			__func__, res);
197 		return res;
198 	}
199 	return 0;
200 }
201 
202 static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx)
203 {
204 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool,
205 							GFP_NOWAIT);
206 	if (ctx->w.bounce_page == NULL)
207 		return ERR_PTR(-ENOMEM);
208 	ctx->flags |= FS_WRITE_PATH_FL;
209 	return ctx->w.bounce_page;
210 }
211 
212 /**
213  * fscypt_encrypt_page() - Encrypts a page
214  * @inode:          The inode for which the encryption should take place
215  * @plaintext_page: The page to encrypt. Must be locked.
216  *
217  * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
218  * encryption context.
219  *
220  * Called on the page write path.  The caller must call
221  * fscrypt_restore_control_page() on the returned ciphertext page to
222  * release the bounce buffer and the encryption context.
223  *
224  * Return: An allocated page with the encrypted content on success. Else, an
225  * error value or NULL.
226  */
227 struct page *fscrypt_encrypt_page(struct inode *inode,
228 				struct page *plaintext_page)
229 {
230 	struct fscrypt_ctx *ctx;
231 	struct page *ciphertext_page = NULL;
232 	int err;
233 
234 	BUG_ON(!PageLocked(plaintext_page));
235 
236 	ctx = fscrypt_get_ctx(inode);
237 	if (IS_ERR(ctx))
238 		return (struct page *)ctx;
239 
240 	/* The encryption operation will require a bounce page. */
241 	ciphertext_page = alloc_bounce_page(ctx);
242 	if (IS_ERR(ciphertext_page))
243 		goto errout;
244 
245 	ctx->w.control_page = plaintext_page;
246 	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
247 					plaintext_page, ciphertext_page);
248 	if (err) {
249 		ciphertext_page = ERR_PTR(err);
250 		goto errout;
251 	}
252 	SetPagePrivate(ciphertext_page);
253 	set_page_private(ciphertext_page, (unsigned long)ctx);
254 	lock_page(ciphertext_page);
255 	return ciphertext_page;
256 
257 errout:
258 	fscrypt_release_ctx(ctx);
259 	return ciphertext_page;
260 }
261 EXPORT_SYMBOL(fscrypt_encrypt_page);
262 
263 /**
264  * f2crypt_decrypt_page() - Decrypts a page in-place
265  * @page: The page to decrypt. Must be locked.
266  *
267  * Decrypts page in-place using the ctx encryption context.
268  *
269  * Called from the read completion callback.
270  *
271  * Return: Zero on success, non-zero otherwise.
272  */
273 int fscrypt_decrypt_page(struct page *page)
274 {
275 	BUG_ON(!PageLocked(page));
276 
277 	return do_page_crypto(page->mapping->host,
278 			FS_DECRYPT, page->index, page, page);
279 }
280 EXPORT_SYMBOL(fscrypt_decrypt_page);
281 
282 int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
283 				sector_t pblk, unsigned int len)
284 {
285 	struct fscrypt_ctx *ctx;
286 	struct page *ciphertext_page = NULL;
287 	struct bio *bio;
288 	int ret, err = 0;
289 
290 	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
291 
292 	ctx = fscrypt_get_ctx(inode);
293 	if (IS_ERR(ctx))
294 		return PTR_ERR(ctx);
295 
296 	ciphertext_page = alloc_bounce_page(ctx);
297 	if (IS_ERR(ciphertext_page)) {
298 		err = PTR_ERR(ciphertext_page);
299 		goto errout;
300 	}
301 
302 	while (len--) {
303 		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
304 						ZERO_PAGE(0), ciphertext_page);
305 		if (err)
306 			goto errout;
307 
308 		bio = bio_alloc(GFP_KERNEL, 1);
309 		if (!bio) {
310 			err = -ENOMEM;
311 			goto errout;
312 		}
313 		bio->bi_bdev = inode->i_sb->s_bdev;
314 		bio->bi_iter.bi_sector =
315 			pblk << (inode->i_sb->s_blocksize_bits - 9);
316 		ret = bio_add_page(bio, ciphertext_page,
317 					inode->i_sb->s_blocksize, 0);
318 		if (ret != inode->i_sb->s_blocksize) {
319 			/* should never happen! */
320 			WARN_ON(1);
321 			bio_put(bio);
322 			err = -EIO;
323 			goto errout;
324 		}
325 		err = submit_bio_wait(WRITE, bio);
326 		if ((err == 0) && bio->bi_error)
327 			err = -EIO;
328 		bio_put(bio);
329 		if (err)
330 			goto errout;
331 		lblk++;
332 		pblk++;
333 	}
334 	err = 0;
335 errout:
336 	fscrypt_release_ctx(ctx);
337 	return err;
338 }
339 EXPORT_SYMBOL(fscrypt_zeroout_range);
340 
341 /*
342  * Validate dentries for encrypted directories to make sure we aren't
343  * potentially caching stale data after a key has been added or
344  * removed.
345  */
346 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
347 {
348 	struct inode *dir = d_inode(dentry->d_parent);
349 	struct fscrypt_info *ci = dir->i_crypt_info;
350 	int dir_has_key, cached_with_key;
351 
352 	if (!dir->i_sb->s_cop->is_encrypted(dir))
353 		return 0;
354 
355 	if (ci && ci->ci_keyring_key &&
356 	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
357 					  (1 << KEY_FLAG_REVOKED) |
358 					  (1 << KEY_FLAG_DEAD))))
359 		ci = NULL;
360 
361 	/* this should eventually be an flag in d_flags */
362 	spin_lock(&dentry->d_lock);
363 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
364 	spin_unlock(&dentry->d_lock);
365 	dir_has_key = (ci != NULL);
366 
367 	/*
368 	 * If the dentry was cached without the key, and it is a
369 	 * negative dentry, it might be a valid name.  We can't check
370 	 * if the key has since been made available due to locking
371 	 * reasons, so we fail the validation so ext4_lookup() can do
372 	 * this check.
373 	 *
374 	 * We also fail the validation if the dentry was created with
375 	 * the key present, but we no longer have the key, or vice versa.
376 	 */
377 	if ((!cached_with_key && d_is_negative(dentry)) ||
378 			(!cached_with_key && dir_has_key) ||
379 			(cached_with_key && !dir_has_key))
380 		return 0;
381 	return 1;
382 }
383 
384 const struct dentry_operations fscrypt_d_ops = {
385 	.d_revalidate = fscrypt_d_revalidate,
386 };
387 EXPORT_SYMBOL(fscrypt_d_ops);
388 
389 /*
390  * Call fscrypt_decrypt_page on every single page, reusing the encryption
391  * context.
392  */
393 static void completion_pages(struct work_struct *work)
394 {
395 	struct fscrypt_ctx *ctx =
396 		container_of(work, struct fscrypt_ctx, r.work);
397 	struct bio *bio = ctx->r.bio;
398 	struct bio_vec *bv;
399 	int i;
400 
401 	bio_for_each_segment_all(bv, bio, i) {
402 		struct page *page = bv->bv_page;
403 		int ret = fscrypt_decrypt_page(page);
404 
405 		if (ret) {
406 			WARN_ON_ONCE(1);
407 			SetPageError(page);
408 		} else {
409 			SetPageUptodate(page);
410 		}
411 		unlock_page(page);
412 	}
413 	fscrypt_release_ctx(ctx);
414 	bio_put(bio);
415 }
416 
417 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
418 {
419 	INIT_WORK(&ctx->r.work, completion_pages);
420 	ctx->r.bio = bio;
421 	queue_work(fscrypt_read_workqueue, &ctx->r.work);
422 }
423 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
424 
425 void fscrypt_pullback_bio_page(struct page **page, bool restore)
426 {
427 	struct fscrypt_ctx *ctx;
428 	struct page *bounce_page;
429 
430 	/* The bounce data pages are unmapped. */
431 	if ((*page)->mapping)
432 		return;
433 
434 	/* The bounce data page is unmapped. */
435 	bounce_page = *page;
436 	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
437 
438 	/* restore control page */
439 	*page = ctx->w.control_page;
440 
441 	if (restore)
442 		fscrypt_restore_control_page(bounce_page);
443 }
444 EXPORT_SYMBOL(fscrypt_pullback_bio_page);
445 
446 void fscrypt_restore_control_page(struct page *page)
447 {
448 	struct fscrypt_ctx *ctx;
449 
450 	ctx = (struct fscrypt_ctx *)page_private(page);
451 	set_page_private(page, (unsigned long)NULL);
452 	ClearPagePrivate(page);
453 	unlock_page(page);
454 	fscrypt_release_ctx(ctx);
455 }
456 EXPORT_SYMBOL(fscrypt_restore_control_page);
457 
458 static void fscrypt_destroy(void)
459 {
460 	struct fscrypt_ctx *pos, *n;
461 
462 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
463 		kmem_cache_free(fscrypt_ctx_cachep, pos);
464 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
465 	mempool_destroy(fscrypt_bounce_page_pool);
466 	fscrypt_bounce_page_pool = NULL;
467 }
468 
469 /**
470  * fscrypt_initialize() - allocate major buffers for fs encryption.
471  *
472  * We only call this when we start accessing encrypted files, since it
473  * results in memory getting allocated that wouldn't otherwise be used.
474  *
475  * Return: Zero on success, non-zero otherwise.
476  */
477 int fscrypt_initialize(void)
478 {
479 	int i, res = -ENOMEM;
480 
481 	if (fscrypt_bounce_page_pool)
482 		return 0;
483 
484 	mutex_lock(&fscrypt_init_mutex);
485 	if (fscrypt_bounce_page_pool)
486 		goto already_initialized;
487 
488 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
489 		struct fscrypt_ctx *ctx;
490 
491 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
492 		if (!ctx)
493 			goto fail;
494 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
495 	}
496 
497 	fscrypt_bounce_page_pool =
498 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
499 	if (!fscrypt_bounce_page_pool)
500 		goto fail;
501 
502 already_initialized:
503 	mutex_unlock(&fscrypt_init_mutex);
504 	return 0;
505 fail:
506 	fscrypt_destroy();
507 	mutex_unlock(&fscrypt_init_mutex);
508 	return res;
509 }
510 EXPORT_SYMBOL(fscrypt_initialize);
511 
512 /**
513  * fscrypt_init() - Set up for fs encryption.
514  */
515 static int __init fscrypt_init(void)
516 {
517 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
518 							WQ_HIGHPRI, 0);
519 	if (!fscrypt_read_workqueue)
520 		goto fail;
521 
522 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
523 	if (!fscrypt_ctx_cachep)
524 		goto fail_free_queue;
525 
526 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
527 	if (!fscrypt_info_cachep)
528 		goto fail_free_ctx;
529 
530 	return 0;
531 
532 fail_free_ctx:
533 	kmem_cache_destroy(fscrypt_ctx_cachep);
534 fail_free_queue:
535 	destroy_workqueue(fscrypt_read_workqueue);
536 fail:
537 	return -ENOMEM;
538 }
539 module_init(fscrypt_init)
540 
541 /**
542  * fscrypt_exit() - Shutdown the fs encryption system
543  */
544 static void __exit fscrypt_exit(void)
545 {
546 	fscrypt_destroy();
547 
548 	if (fscrypt_read_workqueue)
549 		destroy_workqueue(fscrypt_read_workqueue);
550 	kmem_cache_destroy(fscrypt_ctx_cachep);
551 	kmem_cache_destroy(fscrypt_info_cachep);
552 }
553 module_exit(fscrypt_exit);
554 
555 MODULE_LICENSE("GPL");
556