1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/slab.h> 3 #include <linux/file.h> 4 #include <linux/fdtable.h> 5 #include <linux/freezer.h> 6 #include <linux/mm.h> 7 #include <linux/stat.h> 8 #include <linux/fcntl.h> 9 #include <linux/swap.h> 10 #include <linux/ctype.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/pagemap.h> 14 #include <linux/perf_event.h> 15 #include <linux/highmem.h> 16 #include <linux/spinlock.h> 17 #include <linux/key.h> 18 #include <linux/personality.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/sched/coredump.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/utsname.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/module.h> 27 #include <linux/namei.h> 28 #include <linux/mount.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/tsacct_kern.h> 32 #include <linux/cn_proc.h> 33 #include <linux/audit.h> 34 #include <linux/tracehook.h> 35 #include <linux/kmod.h> 36 #include <linux/fsnotify.h> 37 #include <linux/fs_struct.h> 38 #include <linux/pipe_fs_i.h> 39 #include <linux/oom.h> 40 #include <linux/compat.h> 41 #include <linux/fs.h> 42 #include <linux/path.h> 43 #include <linux/timekeeping.h> 44 45 #include <linux/uaccess.h> 46 #include <asm/mmu_context.h> 47 #include <asm/tlb.h> 48 #include <asm/exec.h> 49 50 #include <trace/events/task.h> 51 #include "internal.h" 52 53 #include <trace/events/sched.h> 54 55 int core_uses_pid; 56 unsigned int core_pipe_limit; 57 char core_pattern[CORENAME_MAX_SIZE] = "core"; 58 static int core_name_size = CORENAME_MAX_SIZE; 59 60 struct core_name { 61 char *corename; 62 int used, size; 63 }; 64 65 /* The maximal length of core_pattern is also specified in sysctl.c */ 66 67 static int expand_corename(struct core_name *cn, int size) 68 { 69 char *corename = krealloc(cn->corename, size, GFP_KERNEL); 70 71 if (!corename) 72 return -ENOMEM; 73 74 if (size > core_name_size) /* racy but harmless */ 75 core_name_size = size; 76 77 cn->size = ksize(corename); 78 cn->corename = corename; 79 return 0; 80 } 81 82 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, 83 va_list arg) 84 { 85 int free, need; 86 va_list arg_copy; 87 88 again: 89 free = cn->size - cn->used; 90 91 va_copy(arg_copy, arg); 92 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); 93 va_end(arg_copy); 94 95 if (need < free) { 96 cn->used += need; 97 return 0; 98 } 99 100 if (!expand_corename(cn, cn->size + need - free + 1)) 101 goto again; 102 103 return -ENOMEM; 104 } 105 106 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) 107 { 108 va_list arg; 109 int ret; 110 111 va_start(arg, fmt); 112 ret = cn_vprintf(cn, fmt, arg); 113 va_end(arg); 114 115 return ret; 116 } 117 118 static __printf(2, 3) 119 int cn_esc_printf(struct core_name *cn, const char *fmt, ...) 120 { 121 int cur = cn->used; 122 va_list arg; 123 int ret; 124 125 va_start(arg, fmt); 126 ret = cn_vprintf(cn, fmt, arg); 127 va_end(arg); 128 129 if (ret == 0) { 130 /* 131 * Ensure that this coredump name component can't cause the 132 * resulting corefile path to consist of a ".." or ".". 133 */ 134 if ((cn->used - cur == 1 && cn->corename[cur] == '.') || 135 (cn->used - cur == 2 && cn->corename[cur] == '.' 136 && cn->corename[cur+1] == '.')) 137 cn->corename[cur] = '!'; 138 139 /* 140 * Empty names are fishy and could be used to create a "//" in a 141 * corefile name, causing the coredump to happen one directory 142 * level too high. Enforce that all components of the core 143 * pattern are at least one character long. 144 */ 145 if (cn->used == cur) 146 ret = cn_printf(cn, "!"); 147 } 148 149 for (; cur < cn->used; ++cur) { 150 if (cn->corename[cur] == '/') 151 cn->corename[cur] = '!'; 152 } 153 return ret; 154 } 155 156 static int cn_print_exe_file(struct core_name *cn, bool name_only) 157 { 158 struct file *exe_file; 159 char *pathbuf, *path, *ptr; 160 int ret; 161 162 exe_file = get_mm_exe_file(current->mm); 163 if (!exe_file) 164 return cn_esc_printf(cn, "%s (path unknown)", current->comm); 165 166 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 167 if (!pathbuf) { 168 ret = -ENOMEM; 169 goto put_exe_file; 170 } 171 172 path = file_path(exe_file, pathbuf, PATH_MAX); 173 if (IS_ERR(path)) { 174 ret = PTR_ERR(path); 175 goto free_buf; 176 } 177 178 if (name_only) { 179 ptr = strrchr(path, '/'); 180 if (ptr) 181 path = ptr + 1; 182 } 183 ret = cn_esc_printf(cn, "%s", path); 184 185 free_buf: 186 kfree(pathbuf); 187 put_exe_file: 188 fput(exe_file); 189 return ret; 190 } 191 192 /* format_corename will inspect the pattern parameter, and output a 193 * name into corename, which must have space for at least 194 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 195 */ 196 static int format_corename(struct core_name *cn, struct coredump_params *cprm, 197 size_t **argv, int *argc) 198 { 199 const struct cred *cred = current_cred(); 200 const char *pat_ptr = core_pattern; 201 int ispipe = (*pat_ptr == '|'); 202 bool was_space = false; 203 int pid_in_pattern = 0; 204 int err = 0; 205 206 cn->used = 0; 207 cn->corename = NULL; 208 if (expand_corename(cn, core_name_size)) 209 return -ENOMEM; 210 cn->corename[0] = '\0'; 211 212 if (ispipe) { 213 int argvs = sizeof(core_pattern) / 2; 214 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); 215 if (!(*argv)) 216 return -ENOMEM; 217 (*argv)[(*argc)++] = 0; 218 ++pat_ptr; 219 if (!(*pat_ptr)) 220 return -ENOMEM; 221 } 222 223 /* Repeat as long as we have more pattern to process and more output 224 space */ 225 while (*pat_ptr) { 226 /* 227 * Split on spaces before doing template expansion so that 228 * %e and %E don't get split if they have spaces in them 229 */ 230 if (ispipe) { 231 if (isspace(*pat_ptr)) { 232 was_space = true; 233 pat_ptr++; 234 continue; 235 } else if (was_space) { 236 was_space = false; 237 err = cn_printf(cn, "%c", '\0'); 238 if (err) 239 return err; 240 (*argv)[(*argc)++] = cn->used; 241 } 242 } 243 if (*pat_ptr != '%') { 244 err = cn_printf(cn, "%c", *pat_ptr++); 245 } else { 246 switch (*++pat_ptr) { 247 /* single % at the end, drop that */ 248 case 0: 249 goto out; 250 /* Double percent, output one percent */ 251 case '%': 252 err = cn_printf(cn, "%c", '%'); 253 break; 254 /* pid */ 255 case 'p': 256 pid_in_pattern = 1; 257 err = cn_printf(cn, "%d", 258 task_tgid_vnr(current)); 259 break; 260 /* global pid */ 261 case 'P': 262 err = cn_printf(cn, "%d", 263 task_tgid_nr(current)); 264 break; 265 case 'i': 266 err = cn_printf(cn, "%d", 267 task_pid_vnr(current)); 268 break; 269 case 'I': 270 err = cn_printf(cn, "%d", 271 task_pid_nr(current)); 272 break; 273 /* uid */ 274 case 'u': 275 err = cn_printf(cn, "%u", 276 from_kuid(&init_user_ns, 277 cred->uid)); 278 break; 279 /* gid */ 280 case 'g': 281 err = cn_printf(cn, "%u", 282 from_kgid(&init_user_ns, 283 cred->gid)); 284 break; 285 case 'd': 286 err = cn_printf(cn, "%d", 287 __get_dumpable(cprm->mm_flags)); 288 break; 289 /* signal that caused the coredump */ 290 case 's': 291 err = cn_printf(cn, "%d", 292 cprm->siginfo->si_signo); 293 break; 294 /* UNIX time of coredump */ 295 case 't': { 296 time64_t time; 297 298 time = ktime_get_real_seconds(); 299 err = cn_printf(cn, "%lld", time); 300 break; 301 } 302 /* hostname */ 303 case 'h': 304 down_read(&uts_sem); 305 err = cn_esc_printf(cn, "%s", 306 utsname()->nodename); 307 up_read(&uts_sem); 308 break; 309 /* executable, could be changed by prctl PR_SET_NAME etc */ 310 case 'e': 311 err = cn_esc_printf(cn, "%s", current->comm); 312 break; 313 /* file name of executable */ 314 case 'f': 315 err = cn_print_exe_file(cn, true); 316 break; 317 case 'E': 318 err = cn_print_exe_file(cn, false); 319 break; 320 /* core limit size */ 321 case 'c': 322 err = cn_printf(cn, "%lu", 323 rlimit(RLIMIT_CORE)); 324 break; 325 default: 326 break; 327 } 328 ++pat_ptr; 329 } 330 331 if (err) 332 return err; 333 } 334 335 out: 336 /* Backward compatibility with core_uses_pid: 337 * 338 * If core_pattern does not include a %p (as is the default) 339 * and core_uses_pid is set, then .%pid will be appended to 340 * the filename. Do not do this for piped commands. */ 341 if (!ispipe && !pid_in_pattern && core_uses_pid) { 342 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 343 if (err) 344 return err; 345 } 346 return ispipe; 347 } 348 349 static int zap_process(struct task_struct *start, int exit_code, int flags) 350 { 351 struct task_struct *t; 352 int nr = 0; 353 354 /* ignore all signals except SIGKILL, see prepare_signal() */ 355 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; 356 start->signal->group_exit_code = exit_code; 357 start->signal->group_stop_count = 0; 358 359 for_each_thread(start, t) { 360 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 361 if (t != current && t->mm) { 362 sigaddset(&t->pending.signal, SIGKILL); 363 signal_wake_up(t, 1); 364 nr++; 365 } 366 } 367 368 return nr; 369 } 370 371 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 372 struct core_state *core_state, int exit_code) 373 { 374 struct task_struct *g, *p; 375 unsigned long flags; 376 int nr = -EAGAIN; 377 378 spin_lock_irq(&tsk->sighand->siglock); 379 if (!signal_group_exit(tsk->signal)) { 380 mm->core_state = core_state; 381 tsk->signal->group_exit_task = tsk; 382 nr = zap_process(tsk, exit_code, 0); 383 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 384 } 385 spin_unlock_irq(&tsk->sighand->siglock); 386 if (unlikely(nr < 0)) 387 return nr; 388 389 tsk->flags |= PF_DUMPCORE; 390 if (atomic_read(&mm->mm_users) == nr + 1) 391 goto done; 392 /* 393 * We should find and kill all tasks which use this mm, and we should 394 * count them correctly into ->nr_threads. We don't take tasklist 395 * lock, but this is safe wrt: 396 * 397 * fork: 398 * None of sub-threads can fork after zap_process(leader). All 399 * processes which were created before this point should be 400 * visible to zap_threads() because copy_process() adds the new 401 * process to the tail of init_task.tasks list, and lock/unlock 402 * of ->siglock provides a memory barrier. 403 * 404 * do_exit: 405 * The caller holds mm->mmap_lock. This means that the task which 406 * uses this mm can't pass exit_mm(), so it can't exit or clear 407 * its ->mm. 408 * 409 * de_thread: 410 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 411 * we must see either old or new leader, this does not matter. 412 * However, it can change p->sighand, so lock_task_sighand(p) 413 * must be used. Since p->mm != NULL and we hold ->mmap_lock 414 * it can't fail. 415 * 416 * Note also that "g" can be the old leader with ->mm == NULL 417 * and already unhashed and thus removed from ->thread_group. 418 * This is OK, __unhash_process()->list_del_rcu() does not 419 * clear the ->next pointer, we will find the new leader via 420 * next_thread(). 421 */ 422 rcu_read_lock(); 423 for_each_process(g) { 424 if (g == tsk->group_leader) 425 continue; 426 if (g->flags & PF_KTHREAD) 427 continue; 428 429 for_each_thread(g, p) { 430 if (unlikely(!p->mm)) 431 continue; 432 if (unlikely(p->mm == mm)) { 433 lock_task_sighand(p, &flags); 434 nr += zap_process(p, exit_code, 435 SIGNAL_GROUP_EXIT); 436 unlock_task_sighand(p, &flags); 437 } 438 break; 439 } 440 } 441 rcu_read_unlock(); 442 done: 443 atomic_set(&core_state->nr_threads, nr); 444 return nr; 445 } 446 447 static int coredump_wait(int exit_code, struct core_state *core_state) 448 { 449 struct task_struct *tsk = current; 450 struct mm_struct *mm = tsk->mm; 451 int core_waiters = -EBUSY; 452 453 init_completion(&core_state->startup); 454 core_state->dumper.task = tsk; 455 core_state->dumper.next = NULL; 456 457 if (mmap_write_lock_killable(mm)) 458 return -EINTR; 459 460 if (!mm->core_state) 461 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 462 mmap_write_unlock(mm); 463 464 if (core_waiters > 0) { 465 struct core_thread *ptr; 466 467 freezer_do_not_count(); 468 wait_for_completion(&core_state->startup); 469 freezer_count(); 470 /* 471 * Wait for all the threads to become inactive, so that 472 * all the thread context (extended register state, like 473 * fpu etc) gets copied to the memory. 474 */ 475 ptr = core_state->dumper.next; 476 while (ptr != NULL) { 477 wait_task_inactive(ptr->task, 0); 478 ptr = ptr->next; 479 } 480 } 481 482 return core_waiters; 483 } 484 485 static void coredump_finish(struct mm_struct *mm, bool core_dumped) 486 { 487 struct core_thread *curr, *next; 488 struct task_struct *task; 489 490 spin_lock_irq(¤t->sighand->siglock); 491 if (core_dumped && !__fatal_signal_pending(current)) 492 current->signal->group_exit_code |= 0x80; 493 current->signal->group_exit_task = NULL; 494 current->signal->flags = SIGNAL_GROUP_EXIT; 495 spin_unlock_irq(¤t->sighand->siglock); 496 497 next = mm->core_state->dumper.next; 498 while ((curr = next) != NULL) { 499 next = curr->next; 500 task = curr->task; 501 /* 502 * see exit_mm(), curr->task must not see 503 * ->task == NULL before we read ->next. 504 */ 505 smp_mb(); 506 curr->task = NULL; 507 wake_up_process(task); 508 } 509 510 mm->core_state = NULL; 511 } 512 513 static bool dump_interrupted(void) 514 { 515 /* 516 * SIGKILL or freezing() interrupt the coredumping. Perhaps we 517 * can do try_to_freeze() and check __fatal_signal_pending(), 518 * but then we need to teach dump_write() to restart and clear 519 * TIF_SIGPENDING. 520 */ 521 return signal_pending(current); 522 } 523 524 static void wait_for_dump_helpers(struct file *file) 525 { 526 struct pipe_inode_info *pipe = file->private_data; 527 528 pipe_lock(pipe); 529 pipe->readers++; 530 pipe->writers--; 531 wake_up_interruptible_sync(&pipe->rd_wait); 532 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 533 pipe_unlock(pipe); 534 535 /* 536 * We actually want wait_event_freezable() but then we need 537 * to clear TIF_SIGPENDING and improve dump_interrupted(). 538 */ 539 wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); 540 541 pipe_lock(pipe); 542 pipe->readers--; 543 pipe->writers++; 544 pipe_unlock(pipe); 545 } 546 547 /* 548 * umh_pipe_setup 549 * helper function to customize the process used 550 * to collect the core in userspace. Specifically 551 * it sets up a pipe and installs it as fd 0 (stdin) 552 * for the process. Returns 0 on success, or 553 * PTR_ERR on failure. 554 * Note that it also sets the core limit to 1. This 555 * is a special value that we use to trap recursive 556 * core dumps 557 */ 558 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 559 { 560 struct file *files[2]; 561 struct coredump_params *cp = (struct coredump_params *)info->data; 562 int err = create_pipe_files(files, 0); 563 if (err) 564 return err; 565 566 cp->file = files[1]; 567 568 err = replace_fd(0, files[0], 0); 569 fput(files[0]); 570 /* and disallow core files too */ 571 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 572 573 return err; 574 } 575 576 void do_coredump(const kernel_siginfo_t *siginfo) 577 { 578 struct core_state core_state; 579 struct core_name cn; 580 struct mm_struct *mm = current->mm; 581 struct linux_binfmt * binfmt; 582 const struct cred *old_cred; 583 struct cred *cred; 584 int retval = 0; 585 int ispipe; 586 size_t *argv = NULL; 587 int argc = 0; 588 struct files_struct *displaced; 589 /* require nonrelative corefile path and be extra careful */ 590 bool need_suid_safe = false; 591 bool core_dumped = false; 592 static atomic_t core_dump_count = ATOMIC_INIT(0); 593 struct coredump_params cprm = { 594 .siginfo = siginfo, 595 .regs = signal_pt_regs(), 596 .limit = rlimit(RLIMIT_CORE), 597 /* 598 * We must use the same mm->flags while dumping core to avoid 599 * inconsistency of bit flags, since this flag is not protected 600 * by any locks. 601 */ 602 .mm_flags = mm->flags, 603 }; 604 605 audit_core_dumps(siginfo->si_signo); 606 607 binfmt = mm->binfmt; 608 if (!binfmt || !binfmt->core_dump) 609 goto fail; 610 if (!__get_dumpable(cprm.mm_flags)) 611 goto fail; 612 613 cred = prepare_creds(); 614 if (!cred) 615 goto fail; 616 /* 617 * We cannot trust fsuid as being the "true" uid of the process 618 * nor do we know its entire history. We only know it was tainted 619 * so we dump it as root in mode 2, and only into a controlled 620 * environment (pipe handler or fully qualified path). 621 */ 622 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { 623 /* Setuid core dump mode */ 624 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ 625 need_suid_safe = true; 626 } 627 628 retval = coredump_wait(siginfo->si_signo, &core_state); 629 if (retval < 0) 630 goto fail_creds; 631 632 old_cred = override_creds(cred); 633 634 ispipe = format_corename(&cn, &cprm, &argv, &argc); 635 636 if (ispipe) { 637 int argi; 638 int dump_count; 639 char **helper_argv; 640 struct subprocess_info *sub_info; 641 642 if (ispipe < 0) { 643 printk(KERN_WARNING "format_corename failed\n"); 644 printk(KERN_WARNING "Aborting core\n"); 645 goto fail_unlock; 646 } 647 648 if (cprm.limit == 1) { 649 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. 650 * 651 * Normally core limits are irrelevant to pipes, since 652 * we're not writing to the file system, but we use 653 * cprm.limit of 1 here as a special value, this is a 654 * consistent way to catch recursive crashes. 655 * We can still crash if the core_pattern binary sets 656 * RLIM_CORE = !1, but it runs as root, and can do 657 * lots of stupid things. 658 * 659 * Note that we use task_tgid_vnr here to grab the pid 660 * of the process group leader. That way we get the 661 * right pid if a thread in a multi-threaded 662 * core_pattern process dies. 663 */ 664 printk(KERN_WARNING 665 "Process %d(%s) has RLIMIT_CORE set to 1\n", 666 task_tgid_vnr(current), current->comm); 667 printk(KERN_WARNING "Aborting core\n"); 668 goto fail_unlock; 669 } 670 cprm.limit = RLIM_INFINITY; 671 672 dump_count = atomic_inc_return(&core_dump_count); 673 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 674 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 675 task_tgid_vnr(current), current->comm); 676 printk(KERN_WARNING "Skipping core dump\n"); 677 goto fail_dropcount; 678 } 679 680 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), 681 GFP_KERNEL); 682 if (!helper_argv) { 683 printk(KERN_WARNING "%s failed to allocate memory\n", 684 __func__); 685 goto fail_dropcount; 686 } 687 for (argi = 0; argi < argc; argi++) 688 helper_argv[argi] = cn.corename + argv[argi]; 689 helper_argv[argi] = NULL; 690 691 retval = -ENOMEM; 692 sub_info = call_usermodehelper_setup(helper_argv[0], 693 helper_argv, NULL, GFP_KERNEL, 694 umh_pipe_setup, NULL, &cprm); 695 if (sub_info) 696 retval = call_usermodehelper_exec(sub_info, 697 UMH_WAIT_EXEC); 698 699 kfree(helper_argv); 700 if (retval) { 701 printk(KERN_INFO "Core dump to |%s pipe failed\n", 702 cn.corename); 703 goto close_fail; 704 } 705 } else { 706 struct inode *inode; 707 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | 708 O_LARGEFILE | O_EXCL; 709 710 if (cprm.limit < binfmt->min_coredump) 711 goto fail_unlock; 712 713 if (need_suid_safe && cn.corename[0] != '/') { 714 printk(KERN_WARNING "Pid %d(%s) can only dump core "\ 715 "to fully qualified path!\n", 716 task_tgid_vnr(current), current->comm); 717 printk(KERN_WARNING "Skipping core dump\n"); 718 goto fail_unlock; 719 } 720 721 /* 722 * Unlink the file if it exists unless this is a SUID 723 * binary - in that case, we're running around with root 724 * privs and don't want to unlink another user's coredump. 725 */ 726 if (!need_suid_safe) { 727 /* 728 * If it doesn't exist, that's fine. If there's some 729 * other problem, we'll catch it at the filp_open(). 730 */ 731 do_unlinkat(AT_FDCWD, getname_kernel(cn.corename)); 732 } 733 734 /* 735 * There is a race between unlinking and creating the 736 * file, but if that causes an EEXIST here, that's 737 * fine - another process raced with us while creating 738 * the corefile, and the other process won. To userspace, 739 * what matters is that at least one of the two processes 740 * writes its coredump successfully, not which one. 741 */ 742 if (need_suid_safe) { 743 /* 744 * Using user namespaces, normal user tasks can change 745 * their current->fs->root to point to arbitrary 746 * directories. Since the intention of the "only dump 747 * with a fully qualified path" rule is to control where 748 * coredumps may be placed using root privileges, 749 * current->fs->root must not be used. Instead, use the 750 * root directory of init_task. 751 */ 752 struct path root; 753 754 task_lock(&init_task); 755 get_fs_root(init_task.fs, &root); 756 task_unlock(&init_task); 757 cprm.file = file_open_root(root.dentry, root.mnt, 758 cn.corename, open_flags, 0600); 759 path_put(&root); 760 } else { 761 cprm.file = filp_open(cn.corename, open_flags, 0600); 762 } 763 if (IS_ERR(cprm.file)) 764 goto fail_unlock; 765 766 inode = file_inode(cprm.file); 767 if (inode->i_nlink > 1) 768 goto close_fail; 769 if (d_unhashed(cprm.file->f_path.dentry)) 770 goto close_fail; 771 /* 772 * AK: actually i see no reason to not allow this for named 773 * pipes etc, but keep the previous behaviour for now. 774 */ 775 if (!S_ISREG(inode->i_mode)) 776 goto close_fail; 777 /* 778 * Don't dump core if the filesystem changed owner or mode 779 * of the file during file creation. This is an issue when 780 * a process dumps core while its cwd is e.g. on a vfat 781 * filesystem. 782 */ 783 if (!uid_eq(inode->i_uid, current_fsuid())) 784 goto close_fail; 785 if ((inode->i_mode & 0677) != 0600) 786 goto close_fail; 787 if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) 788 goto close_fail; 789 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 790 goto close_fail; 791 } 792 793 /* get us an unshared descriptor table; almost always a no-op */ 794 retval = unshare_files(&displaced); 795 if (retval) 796 goto close_fail; 797 if (displaced) 798 put_files_struct(displaced); 799 if (!dump_interrupted()) { 800 /* 801 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would 802 * have this set to NULL. 803 */ 804 if (!cprm.file) { 805 pr_info("Core dump to |%s disabled\n", cn.corename); 806 goto close_fail; 807 } 808 file_start_write(cprm.file); 809 core_dumped = binfmt->core_dump(&cprm); 810 file_end_write(cprm.file); 811 } 812 if (ispipe && core_pipe_limit) 813 wait_for_dump_helpers(cprm.file); 814 close_fail: 815 if (cprm.file) 816 filp_close(cprm.file, NULL); 817 fail_dropcount: 818 if (ispipe) 819 atomic_dec(&core_dump_count); 820 fail_unlock: 821 kfree(argv); 822 kfree(cn.corename); 823 coredump_finish(mm, core_dumped); 824 revert_creds(old_cred); 825 fail_creds: 826 put_cred(cred); 827 fail: 828 return; 829 } 830 831 /* 832 * Core dumping helper functions. These are the only things you should 833 * do on a core-file: use only these functions to write out all the 834 * necessary info. 835 */ 836 int dump_emit(struct coredump_params *cprm, const void *addr, int nr) 837 { 838 struct file *file = cprm->file; 839 loff_t pos = file->f_pos; 840 ssize_t n; 841 if (cprm->written + nr > cprm->limit) 842 return 0; 843 844 845 if (dump_interrupted()) 846 return 0; 847 n = __kernel_write(file, addr, nr, &pos); 848 if (n != nr) 849 return 0; 850 file->f_pos = pos; 851 cprm->written += n; 852 cprm->pos += n; 853 854 return 1; 855 } 856 EXPORT_SYMBOL(dump_emit); 857 858 int dump_skip(struct coredump_params *cprm, size_t nr) 859 { 860 static char zeroes[PAGE_SIZE]; 861 struct file *file = cprm->file; 862 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 863 if (dump_interrupted() || 864 file->f_op->llseek(file, nr, SEEK_CUR) < 0) 865 return 0; 866 cprm->pos += nr; 867 return 1; 868 } else { 869 while (nr > PAGE_SIZE) { 870 if (!dump_emit(cprm, zeroes, PAGE_SIZE)) 871 return 0; 872 nr -= PAGE_SIZE; 873 } 874 return dump_emit(cprm, zeroes, nr); 875 } 876 } 877 EXPORT_SYMBOL(dump_skip); 878 879 #ifdef CONFIG_ELF_CORE 880 int dump_user_range(struct coredump_params *cprm, unsigned long start, 881 unsigned long len) 882 { 883 unsigned long addr; 884 885 for (addr = start; addr < start + len; addr += PAGE_SIZE) { 886 struct page *page; 887 int stop; 888 889 /* 890 * To avoid having to allocate page tables for virtual address 891 * ranges that have never been used yet, and also to make it 892 * easy to generate sparse core files, use a helper that returns 893 * NULL when encountering an empty page table entry that would 894 * otherwise have been filled with the zero page. 895 */ 896 page = get_dump_page(addr); 897 if (page) { 898 void *kaddr = kmap(page); 899 900 stop = !dump_emit(cprm, kaddr, PAGE_SIZE); 901 kunmap(page); 902 put_page(page); 903 } else { 904 stop = !dump_skip(cprm, PAGE_SIZE); 905 } 906 if (stop) 907 return 0; 908 } 909 return 1; 910 } 911 #endif 912 913 int dump_align(struct coredump_params *cprm, int align) 914 { 915 unsigned mod = cprm->pos & (align - 1); 916 if (align & (align - 1)) 917 return 0; 918 return mod ? dump_skip(cprm, align - mod) : 1; 919 } 920 EXPORT_SYMBOL(dump_align); 921 922 /* 923 * Ensures that file size is big enough to contain the current file 924 * postion. This prevents gdb from complaining about a truncated file 925 * if the last "write" to the file was dump_skip. 926 */ 927 void dump_truncate(struct coredump_params *cprm) 928 { 929 struct file *file = cprm->file; 930 loff_t offset; 931 932 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 933 offset = file->f_op->llseek(file, 0, SEEK_CUR); 934 if (i_size_read(file->f_mapping->host) < offset) 935 do_truncate(file->f_path.dentry, offset, 0, file); 936 } 937 } 938 EXPORT_SYMBOL(dump_truncate); 939 940 /* 941 * The purpose of always_dump_vma() is to make sure that special kernel mappings 942 * that are useful for post-mortem analysis are included in every core dump. 943 * In that way we ensure that the core dump is fully interpretable later 944 * without matching up the same kernel and hardware config to see what PC values 945 * meant. These special mappings include - vDSO, vsyscall, and other 946 * architecture specific mappings 947 */ 948 static bool always_dump_vma(struct vm_area_struct *vma) 949 { 950 /* Any vsyscall mappings? */ 951 if (vma == get_gate_vma(vma->vm_mm)) 952 return true; 953 954 /* 955 * Assume that all vmas with a .name op should always be dumped. 956 * If this changes, a new vm_ops field can easily be added. 957 */ 958 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) 959 return true; 960 961 /* 962 * arch_vma_name() returns non-NULL for special architecture mappings, 963 * such as vDSO sections. 964 */ 965 if (arch_vma_name(vma)) 966 return true; 967 968 return false; 969 } 970 971 /* 972 * Decide how much of @vma's contents should be included in a core dump. 973 */ 974 static unsigned long vma_dump_size(struct vm_area_struct *vma, 975 unsigned long mm_flags) 976 { 977 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 978 979 /* always dump the vdso and vsyscall sections */ 980 if (always_dump_vma(vma)) 981 goto whole; 982 983 if (vma->vm_flags & VM_DONTDUMP) 984 return 0; 985 986 /* support for DAX */ 987 if (vma_is_dax(vma)) { 988 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) 989 goto whole; 990 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) 991 goto whole; 992 return 0; 993 } 994 995 /* Hugetlb memory check */ 996 if (is_vm_hugetlb_page(vma)) { 997 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 998 goto whole; 999 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1000 goto whole; 1001 return 0; 1002 } 1003 1004 /* Do not dump I/O mapped devices or special mappings */ 1005 if (vma->vm_flags & VM_IO) 1006 return 0; 1007 1008 /* By default, dump shared memory if mapped from an anonymous file. */ 1009 if (vma->vm_flags & VM_SHARED) { 1010 if (file_inode(vma->vm_file)->i_nlink == 0 ? 1011 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1012 goto whole; 1013 return 0; 1014 } 1015 1016 /* Dump segments that have been written to. */ 1017 if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) 1018 goto whole; 1019 if (vma->vm_file == NULL) 1020 return 0; 1021 1022 if (FILTER(MAPPED_PRIVATE)) 1023 goto whole; 1024 1025 /* 1026 * If this is the beginning of an executable file mapping, 1027 * dump the first page to aid in determining what was mapped here. 1028 */ 1029 if (FILTER(ELF_HEADERS) && 1030 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) && 1031 (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) 1032 return PAGE_SIZE; 1033 1034 #undef FILTER 1035 1036 return 0; 1037 1038 whole: 1039 return vma->vm_end - vma->vm_start; 1040 } 1041 1042 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1043 struct vm_area_struct *gate_vma) 1044 { 1045 struct vm_area_struct *ret = tsk->mm->mmap; 1046 1047 if (ret) 1048 return ret; 1049 return gate_vma; 1050 } 1051 1052 /* 1053 * Helper function for iterating across a vma list. It ensures that the caller 1054 * will visit `gate_vma' prior to terminating the search. 1055 */ 1056 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1057 struct vm_area_struct *gate_vma) 1058 { 1059 struct vm_area_struct *ret; 1060 1061 ret = this_vma->vm_next; 1062 if (ret) 1063 return ret; 1064 if (this_vma == gate_vma) 1065 return NULL; 1066 return gate_vma; 1067 } 1068 1069 /* 1070 * Under the mmap_lock, take a snapshot of relevant information about the task's 1071 * VMAs. 1072 */ 1073 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count, 1074 struct core_vma_metadata **vma_meta, 1075 size_t *vma_data_size_ptr) 1076 { 1077 struct vm_area_struct *vma, *gate_vma; 1078 struct mm_struct *mm = current->mm; 1079 int i; 1080 size_t vma_data_size = 0; 1081 1082 /* 1083 * Once the stack expansion code is fixed to not change VMA bounds 1084 * under mmap_lock in read mode, this can be changed to take the 1085 * mmap_lock in read mode. 1086 */ 1087 if (mmap_write_lock_killable(mm)) 1088 return -EINTR; 1089 1090 gate_vma = get_gate_vma(mm); 1091 *vma_count = mm->map_count + (gate_vma ? 1 : 0); 1092 1093 *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL); 1094 if (!*vma_meta) { 1095 mmap_write_unlock(mm); 1096 return -ENOMEM; 1097 } 1098 1099 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 1100 vma = next_vma(vma, gate_vma), i++) { 1101 struct core_vma_metadata *m = (*vma_meta) + i; 1102 1103 m->start = vma->vm_start; 1104 m->end = vma->vm_end; 1105 m->flags = vma->vm_flags; 1106 m->dump_size = vma_dump_size(vma, cprm->mm_flags); 1107 1108 vma_data_size += m->dump_size; 1109 } 1110 1111 mmap_write_unlock(mm); 1112 1113 if (WARN_ON(i != *vma_count)) 1114 return -EFAULT; 1115 1116 *vma_data_size_ptr = vma_data_size; 1117 return 0; 1118 } 1119