xref: /openbmc/linux/fs/coredump.c (revision e6dec923)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/freezer.h>
5 #include <linux/mm.h>
6 #include <linux/stat.h>
7 #include <linux/fcntl.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/init.h>
11 #include <linux/pagemap.h>
12 #include <linux/perf_event.h>
13 #include <linux/highmem.h>
14 #include <linux/spinlock.h>
15 #include <linux/key.h>
16 #include <linux/personality.h>
17 #include <linux/binfmts.h>
18 #include <linux/coredump.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/utsname.h>
23 #include <linux/pid_namespace.h>
24 #include <linux/module.h>
25 #include <linux/namei.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/tsacct_kern.h>
30 #include <linux/cn_proc.h>
31 #include <linux/audit.h>
32 #include <linux/tracehook.h>
33 #include <linux/kmod.h>
34 #include <linux/fsnotify.h>
35 #include <linux/fs_struct.h>
36 #include <linux/pipe_fs_i.h>
37 #include <linux/oom.h>
38 #include <linux/compat.h>
39 #include <linux/fs.h>
40 #include <linux/path.h>
41 #include <linux/timekeeping.h>
42 
43 #include <linux/uaccess.h>
44 #include <asm/mmu_context.h>
45 #include <asm/tlb.h>
46 #include <asm/exec.h>
47 
48 #include <trace/events/task.h>
49 #include "internal.h"
50 
51 #include <trace/events/sched.h>
52 
53 int core_uses_pid;
54 unsigned int core_pipe_limit;
55 char core_pattern[CORENAME_MAX_SIZE] = "core";
56 static int core_name_size = CORENAME_MAX_SIZE;
57 
58 struct core_name {
59 	char *corename;
60 	int used, size;
61 };
62 
63 /* The maximal length of core_pattern is also specified in sysctl.c */
64 
65 static int expand_corename(struct core_name *cn, int size)
66 {
67 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
68 
69 	if (!corename)
70 		return -ENOMEM;
71 
72 	if (size > core_name_size) /* racy but harmless */
73 		core_name_size = size;
74 
75 	cn->size = ksize(corename);
76 	cn->corename = corename;
77 	return 0;
78 }
79 
80 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
81 				     va_list arg)
82 {
83 	int free, need;
84 	va_list arg_copy;
85 
86 again:
87 	free = cn->size - cn->used;
88 
89 	va_copy(arg_copy, arg);
90 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
91 	va_end(arg_copy);
92 
93 	if (need < free) {
94 		cn->used += need;
95 		return 0;
96 	}
97 
98 	if (!expand_corename(cn, cn->size + need - free + 1))
99 		goto again;
100 
101 	return -ENOMEM;
102 }
103 
104 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
105 {
106 	va_list arg;
107 	int ret;
108 
109 	va_start(arg, fmt);
110 	ret = cn_vprintf(cn, fmt, arg);
111 	va_end(arg);
112 
113 	return ret;
114 }
115 
116 static __printf(2, 3)
117 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
118 {
119 	int cur = cn->used;
120 	va_list arg;
121 	int ret;
122 
123 	va_start(arg, fmt);
124 	ret = cn_vprintf(cn, fmt, arg);
125 	va_end(arg);
126 
127 	if (ret == 0) {
128 		/*
129 		 * Ensure that this coredump name component can't cause the
130 		 * resulting corefile path to consist of a ".." or ".".
131 		 */
132 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
133 				(cn->used - cur == 2 && cn->corename[cur] == '.'
134 				&& cn->corename[cur+1] == '.'))
135 			cn->corename[cur] = '!';
136 
137 		/*
138 		 * Empty names are fishy and could be used to create a "//" in a
139 		 * corefile name, causing the coredump to happen one directory
140 		 * level too high. Enforce that all components of the core
141 		 * pattern are at least one character long.
142 		 */
143 		if (cn->used == cur)
144 			ret = cn_printf(cn, "!");
145 	}
146 
147 	for (; cur < cn->used; ++cur) {
148 		if (cn->corename[cur] == '/')
149 			cn->corename[cur] = '!';
150 	}
151 	return ret;
152 }
153 
154 static int cn_print_exe_file(struct core_name *cn)
155 {
156 	struct file *exe_file;
157 	char *pathbuf, *path;
158 	int ret;
159 
160 	exe_file = get_mm_exe_file(current->mm);
161 	if (!exe_file)
162 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
163 
164 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
165 	if (!pathbuf) {
166 		ret = -ENOMEM;
167 		goto put_exe_file;
168 	}
169 
170 	path = file_path(exe_file, pathbuf, PATH_MAX);
171 	if (IS_ERR(path)) {
172 		ret = PTR_ERR(path);
173 		goto free_buf;
174 	}
175 
176 	ret = cn_esc_printf(cn, "%s", path);
177 
178 free_buf:
179 	kfree(pathbuf);
180 put_exe_file:
181 	fput(exe_file);
182 	return ret;
183 }
184 
185 /* format_corename will inspect the pattern parameter, and output a
186  * name into corename, which must have space for at least
187  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
188  */
189 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
190 {
191 	const struct cred *cred = current_cred();
192 	const char *pat_ptr = core_pattern;
193 	int ispipe = (*pat_ptr == '|');
194 	int pid_in_pattern = 0;
195 	int err = 0;
196 
197 	cn->used = 0;
198 	cn->corename = NULL;
199 	if (expand_corename(cn, core_name_size))
200 		return -ENOMEM;
201 	cn->corename[0] = '\0';
202 
203 	if (ispipe)
204 		++pat_ptr;
205 
206 	/* Repeat as long as we have more pattern to process and more output
207 	   space */
208 	while (*pat_ptr) {
209 		if (*pat_ptr != '%') {
210 			err = cn_printf(cn, "%c", *pat_ptr++);
211 		} else {
212 			switch (*++pat_ptr) {
213 			/* single % at the end, drop that */
214 			case 0:
215 				goto out;
216 			/* Double percent, output one percent */
217 			case '%':
218 				err = cn_printf(cn, "%c", '%');
219 				break;
220 			/* pid */
221 			case 'p':
222 				pid_in_pattern = 1;
223 				err = cn_printf(cn, "%d",
224 					      task_tgid_vnr(current));
225 				break;
226 			/* global pid */
227 			case 'P':
228 				err = cn_printf(cn, "%d",
229 					      task_tgid_nr(current));
230 				break;
231 			case 'i':
232 				err = cn_printf(cn, "%d",
233 					      task_pid_vnr(current));
234 				break;
235 			case 'I':
236 				err = cn_printf(cn, "%d",
237 					      task_pid_nr(current));
238 				break;
239 			/* uid */
240 			case 'u':
241 				err = cn_printf(cn, "%u",
242 						from_kuid(&init_user_ns,
243 							  cred->uid));
244 				break;
245 			/* gid */
246 			case 'g':
247 				err = cn_printf(cn, "%u",
248 						from_kgid(&init_user_ns,
249 							  cred->gid));
250 				break;
251 			case 'd':
252 				err = cn_printf(cn, "%d",
253 					__get_dumpable(cprm->mm_flags));
254 				break;
255 			/* signal that caused the coredump */
256 			case 's':
257 				err = cn_printf(cn, "%d",
258 						cprm->siginfo->si_signo);
259 				break;
260 			/* UNIX time of coredump */
261 			case 't': {
262 				time64_t time;
263 
264 				time = ktime_get_real_seconds();
265 				err = cn_printf(cn, "%lld", time);
266 				break;
267 			}
268 			/* hostname */
269 			case 'h':
270 				down_read(&uts_sem);
271 				err = cn_esc_printf(cn, "%s",
272 					      utsname()->nodename);
273 				up_read(&uts_sem);
274 				break;
275 			/* executable */
276 			case 'e':
277 				err = cn_esc_printf(cn, "%s", current->comm);
278 				break;
279 			case 'E':
280 				err = cn_print_exe_file(cn);
281 				break;
282 			/* core limit size */
283 			case 'c':
284 				err = cn_printf(cn, "%lu",
285 					      rlimit(RLIMIT_CORE));
286 				break;
287 			default:
288 				break;
289 			}
290 			++pat_ptr;
291 		}
292 
293 		if (err)
294 			return err;
295 	}
296 
297 out:
298 	/* Backward compatibility with core_uses_pid:
299 	 *
300 	 * If core_pattern does not include a %p (as is the default)
301 	 * and core_uses_pid is set, then .%pid will be appended to
302 	 * the filename. Do not do this for piped commands. */
303 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
304 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
305 		if (err)
306 			return err;
307 	}
308 	return ispipe;
309 }
310 
311 static int zap_process(struct task_struct *start, int exit_code, int flags)
312 {
313 	struct task_struct *t;
314 	int nr = 0;
315 
316 	/* ignore all signals except SIGKILL, see prepare_signal() */
317 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
318 	start->signal->group_exit_code = exit_code;
319 	start->signal->group_stop_count = 0;
320 
321 	for_each_thread(start, t) {
322 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
323 		if (t != current && t->mm) {
324 			sigaddset(&t->pending.signal, SIGKILL);
325 			signal_wake_up(t, 1);
326 			nr++;
327 		}
328 	}
329 
330 	return nr;
331 }
332 
333 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
334 			struct core_state *core_state, int exit_code)
335 {
336 	struct task_struct *g, *p;
337 	unsigned long flags;
338 	int nr = -EAGAIN;
339 
340 	spin_lock_irq(&tsk->sighand->siglock);
341 	if (!signal_group_exit(tsk->signal)) {
342 		mm->core_state = core_state;
343 		tsk->signal->group_exit_task = tsk;
344 		nr = zap_process(tsk, exit_code, 0);
345 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
346 	}
347 	spin_unlock_irq(&tsk->sighand->siglock);
348 	if (unlikely(nr < 0))
349 		return nr;
350 
351 	tsk->flags |= PF_DUMPCORE;
352 	if (atomic_read(&mm->mm_users) == nr + 1)
353 		goto done;
354 	/*
355 	 * We should find and kill all tasks which use this mm, and we should
356 	 * count them correctly into ->nr_threads. We don't take tasklist
357 	 * lock, but this is safe wrt:
358 	 *
359 	 * fork:
360 	 *	None of sub-threads can fork after zap_process(leader). All
361 	 *	processes which were created before this point should be
362 	 *	visible to zap_threads() because copy_process() adds the new
363 	 *	process to the tail of init_task.tasks list, and lock/unlock
364 	 *	of ->siglock provides a memory barrier.
365 	 *
366 	 * do_exit:
367 	 *	The caller holds mm->mmap_sem. This means that the task which
368 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
369 	 *	its ->mm.
370 	 *
371 	 * de_thread:
372 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
373 	 *	we must see either old or new leader, this does not matter.
374 	 *	However, it can change p->sighand, so lock_task_sighand(p)
375 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
376 	 *	it can't fail.
377 	 *
378 	 *	Note also that "g" can be the old leader with ->mm == NULL
379 	 *	and already unhashed and thus removed from ->thread_group.
380 	 *	This is OK, __unhash_process()->list_del_rcu() does not
381 	 *	clear the ->next pointer, we will find the new leader via
382 	 *	next_thread().
383 	 */
384 	rcu_read_lock();
385 	for_each_process(g) {
386 		if (g == tsk->group_leader)
387 			continue;
388 		if (g->flags & PF_KTHREAD)
389 			continue;
390 
391 		for_each_thread(g, p) {
392 			if (unlikely(!p->mm))
393 				continue;
394 			if (unlikely(p->mm == mm)) {
395 				lock_task_sighand(p, &flags);
396 				nr += zap_process(p, exit_code,
397 							SIGNAL_GROUP_EXIT);
398 				unlock_task_sighand(p, &flags);
399 			}
400 			break;
401 		}
402 	}
403 	rcu_read_unlock();
404 done:
405 	atomic_set(&core_state->nr_threads, nr);
406 	return nr;
407 }
408 
409 static int coredump_wait(int exit_code, struct core_state *core_state)
410 {
411 	struct task_struct *tsk = current;
412 	struct mm_struct *mm = tsk->mm;
413 	int core_waiters = -EBUSY;
414 
415 	init_completion(&core_state->startup);
416 	core_state->dumper.task = tsk;
417 	core_state->dumper.next = NULL;
418 
419 	if (down_write_killable(&mm->mmap_sem))
420 		return -EINTR;
421 
422 	if (!mm->core_state)
423 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
424 	up_write(&mm->mmap_sem);
425 
426 	if (core_waiters > 0) {
427 		struct core_thread *ptr;
428 
429 		freezer_do_not_count();
430 		wait_for_completion(&core_state->startup);
431 		freezer_count();
432 		/*
433 		 * Wait for all the threads to become inactive, so that
434 		 * all the thread context (extended register state, like
435 		 * fpu etc) gets copied to the memory.
436 		 */
437 		ptr = core_state->dumper.next;
438 		while (ptr != NULL) {
439 			wait_task_inactive(ptr->task, 0);
440 			ptr = ptr->next;
441 		}
442 	}
443 
444 	return core_waiters;
445 }
446 
447 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
448 {
449 	struct core_thread *curr, *next;
450 	struct task_struct *task;
451 
452 	spin_lock_irq(&current->sighand->siglock);
453 	if (core_dumped && !__fatal_signal_pending(current))
454 		current->signal->group_exit_code |= 0x80;
455 	current->signal->group_exit_task = NULL;
456 	current->signal->flags = SIGNAL_GROUP_EXIT;
457 	spin_unlock_irq(&current->sighand->siglock);
458 
459 	next = mm->core_state->dumper.next;
460 	while ((curr = next) != NULL) {
461 		next = curr->next;
462 		task = curr->task;
463 		/*
464 		 * see exit_mm(), curr->task must not see
465 		 * ->task == NULL before we read ->next.
466 		 */
467 		smp_mb();
468 		curr->task = NULL;
469 		wake_up_process(task);
470 	}
471 
472 	mm->core_state = NULL;
473 }
474 
475 static bool dump_interrupted(void)
476 {
477 	/*
478 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
479 	 * can do try_to_freeze() and check __fatal_signal_pending(),
480 	 * but then we need to teach dump_write() to restart and clear
481 	 * TIF_SIGPENDING.
482 	 */
483 	return signal_pending(current);
484 }
485 
486 static void wait_for_dump_helpers(struct file *file)
487 {
488 	struct pipe_inode_info *pipe = file->private_data;
489 
490 	pipe_lock(pipe);
491 	pipe->readers++;
492 	pipe->writers--;
493 	wake_up_interruptible_sync(&pipe->wait);
494 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
495 	pipe_unlock(pipe);
496 
497 	/*
498 	 * We actually want wait_event_freezable() but then we need
499 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
500 	 */
501 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
502 
503 	pipe_lock(pipe);
504 	pipe->readers--;
505 	pipe->writers++;
506 	pipe_unlock(pipe);
507 }
508 
509 /*
510  * umh_pipe_setup
511  * helper function to customize the process used
512  * to collect the core in userspace.  Specifically
513  * it sets up a pipe and installs it as fd 0 (stdin)
514  * for the process.  Returns 0 on success, or
515  * PTR_ERR on failure.
516  * Note that it also sets the core limit to 1.  This
517  * is a special value that we use to trap recursive
518  * core dumps
519  */
520 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
521 {
522 	struct file *files[2];
523 	struct coredump_params *cp = (struct coredump_params *)info->data;
524 	int err = create_pipe_files(files, 0);
525 	if (err)
526 		return err;
527 
528 	cp->file = files[1];
529 
530 	err = replace_fd(0, files[0], 0);
531 	fput(files[0]);
532 	/* and disallow core files too */
533 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
534 
535 	return err;
536 }
537 
538 void do_coredump(const siginfo_t *siginfo)
539 {
540 	struct core_state core_state;
541 	struct core_name cn;
542 	struct mm_struct *mm = current->mm;
543 	struct linux_binfmt * binfmt;
544 	const struct cred *old_cred;
545 	struct cred *cred;
546 	int retval = 0;
547 	int ispipe;
548 	struct files_struct *displaced;
549 	/* require nonrelative corefile path and be extra careful */
550 	bool need_suid_safe = false;
551 	bool core_dumped = false;
552 	static atomic_t core_dump_count = ATOMIC_INIT(0);
553 	struct coredump_params cprm = {
554 		.siginfo = siginfo,
555 		.regs = signal_pt_regs(),
556 		.limit = rlimit(RLIMIT_CORE),
557 		/*
558 		 * We must use the same mm->flags while dumping core to avoid
559 		 * inconsistency of bit flags, since this flag is not protected
560 		 * by any locks.
561 		 */
562 		.mm_flags = mm->flags,
563 	};
564 
565 	audit_core_dumps(siginfo->si_signo);
566 
567 	binfmt = mm->binfmt;
568 	if (!binfmt || !binfmt->core_dump)
569 		goto fail;
570 	if (!__get_dumpable(cprm.mm_flags))
571 		goto fail;
572 
573 	cred = prepare_creds();
574 	if (!cred)
575 		goto fail;
576 	/*
577 	 * We cannot trust fsuid as being the "true" uid of the process
578 	 * nor do we know its entire history. We only know it was tainted
579 	 * so we dump it as root in mode 2, and only into a controlled
580 	 * environment (pipe handler or fully qualified path).
581 	 */
582 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
583 		/* Setuid core dump mode */
584 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
585 		need_suid_safe = true;
586 	}
587 
588 	retval = coredump_wait(siginfo->si_signo, &core_state);
589 	if (retval < 0)
590 		goto fail_creds;
591 
592 	old_cred = override_creds(cred);
593 
594 	ispipe = format_corename(&cn, &cprm);
595 
596 	if (ispipe) {
597 		int dump_count;
598 		char **helper_argv;
599 		struct subprocess_info *sub_info;
600 
601 		if (ispipe < 0) {
602 			printk(KERN_WARNING "format_corename failed\n");
603 			printk(KERN_WARNING "Aborting core\n");
604 			goto fail_unlock;
605 		}
606 
607 		if (cprm.limit == 1) {
608 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
609 			 *
610 			 * Normally core limits are irrelevant to pipes, since
611 			 * we're not writing to the file system, but we use
612 			 * cprm.limit of 1 here as a special value, this is a
613 			 * consistent way to catch recursive crashes.
614 			 * We can still crash if the core_pattern binary sets
615 			 * RLIM_CORE = !1, but it runs as root, and can do
616 			 * lots of stupid things.
617 			 *
618 			 * Note that we use task_tgid_vnr here to grab the pid
619 			 * of the process group leader.  That way we get the
620 			 * right pid if a thread in a multi-threaded
621 			 * core_pattern process dies.
622 			 */
623 			printk(KERN_WARNING
624 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
625 				task_tgid_vnr(current), current->comm);
626 			printk(KERN_WARNING "Aborting core\n");
627 			goto fail_unlock;
628 		}
629 		cprm.limit = RLIM_INFINITY;
630 
631 		dump_count = atomic_inc_return(&core_dump_count);
632 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
633 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
634 			       task_tgid_vnr(current), current->comm);
635 			printk(KERN_WARNING "Skipping core dump\n");
636 			goto fail_dropcount;
637 		}
638 
639 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
640 		if (!helper_argv) {
641 			printk(KERN_WARNING "%s failed to allocate memory\n",
642 			       __func__);
643 			goto fail_dropcount;
644 		}
645 
646 		retval = -ENOMEM;
647 		sub_info = call_usermodehelper_setup(helper_argv[0],
648 						helper_argv, NULL, GFP_KERNEL,
649 						umh_pipe_setup, NULL, &cprm);
650 		if (sub_info)
651 			retval = call_usermodehelper_exec(sub_info,
652 							  UMH_WAIT_EXEC);
653 
654 		argv_free(helper_argv);
655 		if (retval) {
656 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
657 			       cn.corename);
658 			goto close_fail;
659 		}
660 	} else {
661 		struct inode *inode;
662 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
663 				 O_LARGEFILE | O_EXCL;
664 
665 		if (cprm.limit < binfmt->min_coredump)
666 			goto fail_unlock;
667 
668 		if (need_suid_safe && cn.corename[0] != '/') {
669 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
670 				"to fully qualified path!\n",
671 				task_tgid_vnr(current), current->comm);
672 			printk(KERN_WARNING "Skipping core dump\n");
673 			goto fail_unlock;
674 		}
675 
676 		/*
677 		 * Unlink the file if it exists unless this is a SUID
678 		 * binary - in that case, we're running around with root
679 		 * privs and don't want to unlink another user's coredump.
680 		 */
681 		if (!need_suid_safe) {
682 			mm_segment_t old_fs;
683 
684 			old_fs = get_fs();
685 			set_fs(KERNEL_DS);
686 			/*
687 			 * If it doesn't exist, that's fine. If there's some
688 			 * other problem, we'll catch it at the filp_open().
689 			 */
690 			(void) sys_unlink((const char __user *)cn.corename);
691 			set_fs(old_fs);
692 		}
693 
694 		/*
695 		 * There is a race between unlinking and creating the
696 		 * file, but if that causes an EEXIST here, that's
697 		 * fine - another process raced with us while creating
698 		 * the corefile, and the other process won. To userspace,
699 		 * what matters is that at least one of the two processes
700 		 * writes its coredump successfully, not which one.
701 		 */
702 		if (need_suid_safe) {
703 			/*
704 			 * Using user namespaces, normal user tasks can change
705 			 * their current->fs->root to point to arbitrary
706 			 * directories. Since the intention of the "only dump
707 			 * with a fully qualified path" rule is to control where
708 			 * coredumps may be placed using root privileges,
709 			 * current->fs->root must not be used. Instead, use the
710 			 * root directory of init_task.
711 			 */
712 			struct path root;
713 
714 			task_lock(&init_task);
715 			get_fs_root(init_task.fs, &root);
716 			task_unlock(&init_task);
717 			cprm.file = file_open_root(root.dentry, root.mnt,
718 				cn.corename, open_flags, 0600);
719 			path_put(&root);
720 		} else {
721 			cprm.file = filp_open(cn.corename, open_flags, 0600);
722 		}
723 		if (IS_ERR(cprm.file))
724 			goto fail_unlock;
725 
726 		inode = file_inode(cprm.file);
727 		if (inode->i_nlink > 1)
728 			goto close_fail;
729 		if (d_unhashed(cprm.file->f_path.dentry))
730 			goto close_fail;
731 		/*
732 		 * AK: actually i see no reason to not allow this for named
733 		 * pipes etc, but keep the previous behaviour for now.
734 		 */
735 		if (!S_ISREG(inode->i_mode))
736 			goto close_fail;
737 		/*
738 		 * Don't dump core if the filesystem changed owner or mode
739 		 * of the file during file creation. This is an issue when
740 		 * a process dumps core while its cwd is e.g. on a vfat
741 		 * filesystem.
742 		 */
743 		if (!uid_eq(inode->i_uid, current_fsuid()))
744 			goto close_fail;
745 		if ((inode->i_mode & 0677) != 0600)
746 			goto close_fail;
747 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
748 			goto close_fail;
749 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
750 			goto close_fail;
751 	}
752 
753 	/* get us an unshared descriptor table; almost always a no-op */
754 	retval = unshare_files(&displaced);
755 	if (retval)
756 		goto close_fail;
757 	if (displaced)
758 		put_files_struct(displaced);
759 	if (!dump_interrupted()) {
760 		file_start_write(cprm.file);
761 		core_dumped = binfmt->core_dump(&cprm);
762 		file_end_write(cprm.file);
763 	}
764 	if (ispipe && core_pipe_limit)
765 		wait_for_dump_helpers(cprm.file);
766 close_fail:
767 	if (cprm.file)
768 		filp_close(cprm.file, NULL);
769 fail_dropcount:
770 	if (ispipe)
771 		atomic_dec(&core_dump_count);
772 fail_unlock:
773 	kfree(cn.corename);
774 	coredump_finish(mm, core_dumped);
775 	revert_creds(old_cred);
776 fail_creds:
777 	put_cred(cred);
778 fail:
779 	return;
780 }
781 
782 /*
783  * Core dumping helper functions.  These are the only things you should
784  * do on a core-file: use only these functions to write out all the
785  * necessary info.
786  */
787 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
788 {
789 	struct file *file = cprm->file;
790 	loff_t pos = file->f_pos;
791 	ssize_t n;
792 	if (cprm->written + nr > cprm->limit)
793 		return 0;
794 	while (nr) {
795 		if (dump_interrupted())
796 			return 0;
797 		n = __kernel_write(file, addr, nr, &pos);
798 		if (n <= 0)
799 			return 0;
800 		file->f_pos = pos;
801 		cprm->written += n;
802 		cprm->pos += n;
803 		nr -= n;
804 	}
805 	return 1;
806 }
807 EXPORT_SYMBOL(dump_emit);
808 
809 int dump_skip(struct coredump_params *cprm, size_t nr)
810 {
811 	static char zeroes[PAGE_SIZE];
812 	struct file *file = cprm->file;
813 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
814 		if (dump_interrupted() ||
815 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
816 			return 0;
817 		cprm->pos += nr;
818 		return 1;
819 	} else {
820 		while (nr > PAGE_SIZE) {
821 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
822 				return 0;
823 			nr -= PAGE_SIZE;
824 		}
825 		return dump_emit(cprm, zeroes, nr);
826 	}
827 }
828 EXPORT_SYMBOL(dump_skip);
829 
830 int dump_align(struct coredump_params *cprm, int align)
831 {
832 	unsigned mod = cprm->pos & (align - 1);
833 	if (align & (align - 1))
834 		return 0;
835 	return mod ? dump_skip(cprm, align - mod) : 1;
836 }
837 EXPORT_SYMBOL(dump_align);
838 
839 /*
840  * Ensures that file size is big enough to contain the current file
841  * postion. This prevents gdb from complaining about a truncated file
842  * if the last "write" to the file was dump_skip.
843  */
844 void dump_truncate(struct coredump_params *cprm)
845 {
846 	struct file *file = cprm->file;
847 	loff_t offset;
848 
849 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
850 		offset = file->f_op->llseek(file, 0, SEEK_CUR);
851 		if (i_size_read(file->f_mapping->host) < offset)
852 			do_truncate(file->f_path.dentry, offset, 0, file);
853 	}
854 }
855 EXPORT_SYMBOL(dump_truncate);
856