xref: /openbmc/linux/fs/coredump.c (revision e4781421e883340b796da5a724bda7226817990b)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/freezer.h>
5 #include <linux/mm.h>
6 #include <linux/stat.h>
7 #include <linux/fcntl.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/init.h>
11 #include <linux/pagemap.h>
12 #include <linux/perf_event.h>
13 #include <linux/highmem.h>
14 #include <linux/spinlock.h>
15 #include <linux/key.h>
16 #include <linux/personality.h>
17 #include <linux/binfmts.h>
18 #include <linux/coredump.h>
19 #include <linux/utsname.h>
20 #include <linux/pid_namespace.h>
21 #include <linux/module.h>
22 #include <linux/namei.h>
23 #include <linux/mount.h>
24 #include <linux/security.h>
25 #include <linux/syscalls.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/cn_proc.h>
28 #include <linux/audit.h>
29 #include <linux/tracehook.h>
30 #include <linux/kmod.h>
31 #include <linux/fsnotify.h>
32 #include <linux/fs_struct.h>
33 #include <linux/pipe_fs_i.h>
34 #include <linux/oom.h>
35 #include <linux/compat.h>
36 #include <linux/sched.h>
37 #include <linux/fs.h>
38 #include <linux/path.h>
39 #include <linux/timekeeping.h>
40 
41 #include <linux/uaccess.h>
42 #include <asm/mmu_context.h>
43 #include <asm/tlb.h>
44 #include <asm/exec.h>
45 
46 #include <trace/events/task.h>
47 #include "internal.h"
48 
49 #include <trace/events/sched.h>
50 
51 int core_uses_pid;
52 unsigned int core_pipe_limit;
53 char core_pattern[CORENAME_MAX_SIZE] = "core";
54 static int core_name_size = CORENAME_MAX_SIZE;
55 
56 struct core_name {
57 	char *corename;
58 	int used, size;
59 };
60 
61 /* The maximal length of core_pattern is also specified in sysctl.c */
62 
63 static int expand_corename(struct core_name *cn, int size)
64 {
65 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
66 
67 	if (!corename)
68 		return -ENOMEM;
69 
70 	if (size > core_name_size) /* racy but harmless */
71 		core_name_size = size;
72 
73 	cn->size = ksize(corename);
74 	cn->corename = corename;
75 	return 0;
76 }
77 
78 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
79 				     va_list arg)
80 {
81 	int free, need;
82 	va_list arg_copy;
83 
84 again:
85 	free = cn->size - cn->used;
86 
87 	va_copy(arg_copy, arg);
88 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
89 	va_end(arg_copy);
90 
91 	if (need < free) {
92 		cn->used += need;
93 		return 0;
94 	}
95 
96 	if (!expand_corename(cn, cn->size + need - free + 1))
97 		goto again;
98 
99 	return -ENOMEM;
100 }
101 
102 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
103 {
104 	va_list arg;
105 	int ret;
106 
107 	va_start(arg, fmt);
108 	ret = cn_vprintf(cn, fmt, arg);
109 	va_end(arg);
110 
111 	return ret;
112 }
113 
114 static __printf(2, 3)
115 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
116 {
117 	int cur = cn->used;
118 	va_list arg;
119 	int ret;
120 
121 	va_start(arg, fmt);
122 	ret = cn_vprintf(cn, fmt, arg);
123 	va_end(arg);
124 
125 	if (ret == 0) {
126 		/*
127 		 * Ensure that this coredump name component can't cause the
128 		 * resulting corefile path to consist of a ".." or ".".
129 		 */
130 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
131 				(cn->used - cur == 2 && cn->corename[cur] == '.'
132 				&& cn->corename[cur+1] == '.'))
133 			cn->corename[cur] = '!';
134 
135 		/*
136 		 * Empty names are fishy and could be used to create a "//" in a
137 		 * corefile name, causing the coredump to happen one directory
138 		 * level too high. Enforce that all components of the core
139 		 * pattern are at least one character long.
140 		 */
141 		if (cn->used == cur)
142 			ret = cn_printf(cn, "!");
143 	}
144 
145 	for (; cur < cn->used; ++cur) {
146 		if (cn->corename[cur] == '/')
147 			cn->corename[cur] = '!';
148 	}
149 	return ret;
150 }
151 
152 static int cn_print_exe_file(struct core_name *cn)
153 {
154 	struct file *exe_file;
155 	char *pathbuf, *path;
156 	int ret;
157 
158 	exe_file = get_mm_exe_file(current->mm);
159 	if (!exe_file)
160 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
161 
162 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
163 	if (!pathbuf) {
164 		ret = -ENOMEM;
165 		goto put_exe_file;
166 	}
167 
168 	path = file_path(exe_file, pathbuf, PATH_MAX);
169 	if (IS_ERR(path)) {
170 		ret = PTR_ERR(path);
171 		goto free_buf;
172 	}
173 
174 	ret = cn_esc_printf(cn, "%s", path);
175 
176 free_buf:
177 	kfree(pathbuf);
178 put_exe_file:
179 	fput(exe_file);
180 	return ret;
181 }
182 
183 /* format_corename will inspect the pattern parameter, and output a
184  * name into corename, which must have space for at least
185  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
186  */
187 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
188 {
189 	const struct cred *cred = current_cred();
190 	const char *pat_ptr = core_pattern;
191 	int ispipe = (*pat_ptr == '|');
192 	int pid_in_pattern = 0;
193 	int err = 0;
194 
195 	cn->used = 0;
196 	cn->corename = NULL;
197 	if (expand_corename(cn, core_name_size))
198 		return -ENOMEM;
199 	cn->corename[0] = '\0';
200 
201 	if (ispipe)
202 		++pat_ptr;
203 
204 	/* Repeat as long as we have more pattern to process and more output
205 	   space */
206 	while (*pat_ptr) {
207 		if (*pat_ptr != '%') {
208 			err = cn_printf(cn, "%c", *pat_ptr++);
209 		} else {
210 			switch (*++pat_ptr) {
211 			/* single % at the end, drop that */
212 			case 0:
213 				goto out;
214 			/* Double percent, output one percent */
215 			case '%':
216 				err = cn_printf(cn, "%c", '%');
217 				break;
218 			/* pid */
219 			case 'p':
220 				pid_in_pattern = 1;
221 				err = cn_printf(cn, "%d",
222 					      task_tgid_vnr(current));
223 				break;
224 			/* global pid */
225 			case 'P':
226 				err = cn_printf(cn, "%d",
227 					      task_tgid_nr(current));
228 				break;
229 			case 'i':
230 				err = cn_printf(cn, "%d",
231 					      task_pid_vnr(current));
232 				break;
233 			case 'I':
234 				err = cn_printf(cn, "%d",
235 					      task_pid_nr(current));
236 				break;
237 			/* uid */
238 			case 'u':
239 				err = cn_printf(cn, "%u",
240 						from_kuid(&init_user_ns,
241 							  cred->uid));
242 				break;
243 			/* gid */
244 			case 'g':
245 				err = cn_printf(cn, "%u",
246 						from_kgid(&init_user_ns,
247 							  cred->gid));
248 				break;
249 			case 'd':
250 				err = cn_printf(cn, "%d",
251 					__get_dumpable(cprm->mm_flags));
252 				break;
253 			/* signal that caused the coredump */
254 			case 's':
255 				err = cn_printf(cn, "%d",
256 						cprm->siginfo->si_signo);
257 				break;
258 			/* UNIX time of coredump */
259 			case 't': {
260 				time64_t time;
261 
262 				time = ktime_get_real_seconds();
263 				err = cn_printf(cn, "%lld", time);
264 				break;
265 			}
266 			/* hostname */
267 			case 'h':
268 				down_read(&uts_sem);
269 				err = cn_esc_printf(cn, "%s",
270 					      utsname()->nodename);
271 				up_read(&uts_sem);
272 				break;
273 			/* executable */
274 			case 'e':
275 				err = cn_esc_printf(cn, "%s", current->comm);
276 				break;
277 			case 'E':
278 				err = cn_print_exe_file(cn);
279 				break;
280 			/* core limit size */
281 			case 'c':
282 				err = cn_printf(cn, "%lu",
283 					      rlimit(RLIMIT_CORE));
284 				break;
285 			default:
286 				break;
287 			}
288 			++pat_ptr;
289 		}
290 
291 		if (err)
292 			return err;
293 	}
294 
295 out:
296 	/* Backward compatibility with core_uses_pid:
297 	 *
298 	 * If core_pattern does not include a %p (as is the default)
299 	 * and core_uses_pid is set, then .%pid will be appended to
300 	 * the filename. Do not do this for piped commands. */
301 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
302 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
303 		if (err)
304 			return err;
305 	}
306 	return ispipe;
307 }
308 
309 static int zap_process(struct task_struct *start, int exit_code, int flags)
310 {
311 	struct task_struct *t;
312 	int nr = 0;
313 
314 	/* ignore all signals except SIGKILL, see prepare_signal() */
315 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
316 	start->signal->group_exit_code = exit_code;
317 	start->signal->group_stop_count = 0;
318 
319 	for_each_thread(start, t) {
320 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
321 		if (t != current && t->mm) {
322 			sigaddset(&t->pending.signal, SIGKILL);
323 			signal_wake_up(t, 1);
324 			nr++;
325 		}
326 	}
327 
328 	return nr;
329 }
330 
331 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
332 			struct core_state *core_state, int exit_code)
333 {
334 	struct task_struct *g, *p;
335 	unsigned long flags;
336 	int nr = -EAGAIN;
337 
338 	spin_lock_irq(&tsk->sighand->siglock);
339 	if (!signal_group_exit(tsk->signal)) {
340 		mm->core_state = core_state;
341 		tsk->signal->group_exit_task = tsk;
342 		nr = zap_process(tsk, exit_code, 0);
343 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
344 	}
345 	spin_unlock_irq(&tsk->sighand->siglock);
346 	if (unlikely(nr < 0))
347 		return nr;
348 
349 	tsk->flags |= PF_DUMPCORE;
350 	if (atomic_read(&mm->mm_users) == nr + 1)
351 		goto done;
352 	/*
353 	 * We should find and kill all tasks which use this mm, and we should
354 	 * count them correctly into ->nr_threads. We don't take tasklist
355 	 * lock, but this is safe wrt:
356 	 *
357 	 * fork:
358 	 *	None of sub-threads can fork after zap_process(leader). All
359 	 *	processes which were created before this point should be
360 	 *	visible to zap_threads() because copy_process() adds the new
361 	 *	process to the tail of init_task.tasks list, and lock/unlock
362 	 *	of ->siglock provides a memory barrier.
363 	 *
364 	 * do_exit:
365 	 *	The caller holds mm->mmap_sem. This means that the task which
366 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
367 	 *	its ->mm.
368 	 *
369 	 * de_thread:
370 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
371 	 *	we must see either old or new leader, this does not matter.
372 	 *	However, it can change p->sighand, so lock_task_sighand(p)
373 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
374 	 *	it can't fail.
375 	 *
376 	 *	Note also that "g" can be the old leader with ->mm == NULL
377 	 *	and already unhashed and thus removed from ->thread_group.
378 	 *	This is OK, __unhash_process()->list_del_rcu() does not
379 	 *	clear the ->next pointer, we will find the new leader via
380 	 *	next_thread().
381 	 */
382 	rcu_read_lock();
383 	for_each_process(g) {
384 		if (g == tsk->group_leader)
385 			continue;
386 		if (g->flags & PF_KTHREAD)
387 			continue;
388 
389 		for_each_thread(g, p) {
390 			if (unlikely(!p->mm))
391 				continue;
392 			if (unlikely(p->mm == mm)) {
393 				lock_task_sighand(p, &flags);
394 				nr += zap_process(p, exit_code,
395 							SIGNAL_GROUP_EXIT);
396 				unlock_task_sighand(p, &flags);
397 			}
398 			break;
399 		}
400 	}
401 	rcu_read_unlock();
402 done:
403 	atomic_set(&core_state->nr_threads, nr);
404 	return nr;
405 }
406 
407 static int coredump_wait(int exit_code, struct core_state *core_state)
408 {
409 	struct task_struct *tsk = current;
410 	struct mm_struct *mm = tsk->mm;
411 	int core_waiters = -EBUSY;
412 
413 	init_completion(&core_state->startup);
414 	core_state->dumper.task = tsk;
415 	core_state->dumper.next = NULL;
416 
417 	if (down_write_killable(&mm->mmap_sem))
418 		return -EINTR;
419 
420 	if (!mm->core_state)
421 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
422 	up_write(&mm->mmap_sem);
423 
424 	if (core_waiters > 0) {
425 		struct core_thread *ptr;
426 
427 		freezer_do_not_count();
428 		wait_for_completion(&core_state->startup);
429 		freezer_count();
430 		/*
431 		 * Wait for all the threads to become inactive, so that
432 		 * all the thread context (extended register state, like
433 		 * fpu etc) gets copied to the memory.
434 		 */
435 		ptr = core_state->dumper.next;
436 		while (ptr != NULL) {
437 			wait_task_inactive(ptr->task, 0);
438 			ptr = ptr->next;
439 		}
440 	}
441 
442 	return core_waiters;
443 }
444 
445 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
446 {
447 	struct core_thread *curr, *next;
448 	struct task_struct *task;
449 
450 	spin_lock_irq(&current->sighand->siglock);
451 	if (core_dumped && !__fatal_signal_pending(current))
452 		current->signal->group_exit_code |= 0x80;
453 	current->signal->group_exit_task = NULL;
454 	current->signal->flags = SIGNAL_GROUP_EXIT;
455 	spin_unlock_irq(&current->sighand->siglock);
456 
457 	next = mm->core_state->dumper.next;
458 	while ((curr = next) != NULL) {
459 		next = curr->next;
460 		task = curr->task;
461 		/*
462 		 * see exit_mm(), curr->task must not see
463 		 * ->task == NULL before we read ->next.
464 		 */
465 		smp_mb();
466 		curr->task = NULL;
467 		wake_up_process(task);
468 	}
469 
470 	mm->core_state = NULL;
471 }
472 
473 static bool dump_interrupted(void)
474 {
475 	/*
476 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
477 	 * can do try_to_freeze() and check __fatal_signal_pending(),
478 	 * but then we need to teach dump_write() to restart and clear
479 	 * TIF_SIGPENDING.
480 	 */
481 	return signal_pending(current);
482 }
483 
484 static void wait_for_dump_helpers(struct file *file)
485 {
486 	struct pipe_inode_info *pipe = file->private_data;
487 
488 	pipe_lock(pipe);
489 	pipe->readers++;
490 	pipe->writers--;
491 	wake_up_interruptible_sync(&pipe->wait);
492 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
493 	pipe_unlock(pipe);
494 
495 	/*
496 	 * We actually want wait_event_freezable() but then we need
497 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
498 	 */
499 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
500 
501 	pipe_lock(pipe);
502 	pipe->readers--;
503 	pipe->writers++;
504 	pipe_unlock(pipe);
505 }
506 
507 /*
508  * umh_pipe_setup
509  * helper function to customize the process used
510  * to collect the core in userspace.  Specifically
511  * it sets up a pipe and installs it as fd 0 (stdin)
512  * for the process.  Returns 0 on success, or
513  * PTR_ERR on failure.
514  * Note that it also sets the core limit to 1.  This
515  * is a special value that we use to trap recursive
516  * core dumps
517  */
518 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
519 {
520 	struct file *files[2];
521 	struct coredump_params *cp = (struct coredump_params *)info->data;
522 	int err = create_pipe_files(files, 0);
523 	if (err)
524 		return err;
525 
526 	cp->file = files[1];
527 
528 	err = replace_fd(0, files[0], 0);
529 	fput(files[0]);
530 	/* and disallow core files too */
531 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
532 
533 	return err;
534 }
535 
536 void do_coredump(const siginfo_t *siginfo)
537 {
538 	struct core_state core_state;
539 	struct core_name cn;
540 	struct mm_struct *mm = current->mm;
541 	struct linux_binfmt * binfmt;
542 	const struct cred *old_cred;
543 	struct cred *cred;
544 	int retval = 0;
545 	int ispipe;
546 	struct files_struct *displaced;
547 	/* require nonrelative corefile path and be extra careful */
548 	bool need_suid_safe = false;
549 	bool core_dumped = false;
550 	static atomic_t core_dump_count = ATOMIC_INIT(0);
551 	struct coredump_params cprm = {
552 		.siginfo = siginfo,
553 		.regs = signal_pt_regs(),
554 		.limit = rlimit(RLIMIT_CORE),
555 		/*
556 		 * We must use the same mm->flags while dumping core to avoid
557 		 * inconsistency of bit flags, since this flag is not protected
558 		 * by any locks.
559 		 */
560 		.mm_flags = mm->flags,
561 	};
562 
563 	audit_core_dumps(siginfo->si_signo);
564 
565 	binfmt = mm->binfmt;
566 	if (!binfmt || !binfmt->core_dump)
567 		goto fail;
568 	if (!__get_dumpable(cprm.mm_flags))
569 		goto fail;
570 
571 	cred = prepare_creds();
572 	if (!cred)
573 		goto fail;
574 	/*
575 	 * We cannot trust fsuid as being the "true" uid of the process
576 	 * nor do we know its entire history. We only know it was tainted
577 	 * so we dump it as root in mode 2, and only into a controlled
578 	 * environment (pipe handler or fully qualified path).
579 	 */
580 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
581 		/* Setuid core dump mode */
582 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
583 		need_suid_safe = true;
584 	}
585 
586 	retval = coredump_wait(siginfo->si_signo, &core_state);
587 	if (retval < 0)
588 		goto fail_creds;
589 
590 	old_cred = override_creds(cred);
591 
592 	ispipe = format_corename(&cn, &cprm);
593 
594 	if (ispipe) {
595 		int dump_count;
596 		char **helper_argv;
597 		struct subprocess_info *sub_info;
598 
599 		if (ispipe < 0) {
600 			printk(KERN_WARNING "format_corename failed\n");
601 			printk(KERN_WARNING "Aborting core\n");
602 			goto fail_unlock;
603 		}
604 
605 		if (cprm.limit == 1) {
606 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
607 			 *
608 			 * Normally core limits are irrelevant to pipes, since
609 			 * we're not writing to the file system, but we use
610 			 * cprm.limit of 1 here as a special value, this is a
611 			 * consistent way to catch recursive crashes.
612 			 * We can still crash if the core_pattern binary sets
613 			 * RLIM_CORE = !1, but it runs as root, and can do
614 			 * lots of stupid things.
615 			 *
616 			 * Note that we use task_tgid_vnr here to grab the pid
617 			 * of the process group leader.  That way we get the
618 			 * right pid if a thread in a multi-threaded
619 			 * core_pattern process dies.
620 			 */
621 			printk(KERN_WARNING
622 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
623 				task_tgid_vnr(current), current->comm);
624 			printk(KERN_WARNING "Aborting core\n");
625 			goto fail_unlock;
626 		}
627 		cprm.limit = RLIM_INFINITY;
628 
629 		dump_count = atomic_inc_return(&core_dump_count);
630 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
631 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
632 			       task_tgid_vnr(current), current->comm);
633 			printk(KERN_WARNING "Skipping core dump\n");
634 			goto fail_dropcount;
635 		}
636 
637 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
638 		if (!helper_argv) {
639 			printk(KERN_WARNING "%s failed to allocate memory\n",
640 			       __func__);
641 			goto fail_dropcount;
642 		}
643 
644 		retval = -ENOMEM;
645 		sub_info = call_usermodehelper_setup(helper_argv[0],
646 						helper_argv, NULL, GFP_KERNEL,
647 						umh_pipe_setup, NULL, &cprm);
648 		if (sub_info)
649 			retval = call_usermodehelper_exec(sub_info,
650 							  UMH_WAIT_EXEC);
651 
652 		argv_free(helper_argv);
653 		if (retval) {
654 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
655 			       cn.corename);
656 			goto close_fail;
657 		}
658 	} else {
659 		struct inode *inode;
660 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
661 				 O_LARGEFILE | O_EXCL;
662 
663 		if (cprm.limit < binfmt->min_coredump)
664 			goto fail_unlock;
665 
666 		if (need_suid_safe && cn.corename[0] != '/') {
667 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
668 				"to fully qualified path!\n",
669 				task_tgid_vnr(current), current->comm);
670 			printk(KERN_WARNING "Skipping core dump\n");
671 			goto fail_unlock;
672 		}
673 
674 		/*
675 		 * Unlink the file if it exists unless this is a SUID
676 		 * binary - in that case, we're running around with root
677 		 * privs and don't want to unlink another user's coredump.
678 		 */
679 		if (!need_suid_safe) {
680 			mm_segment_t old_fs;
681 
682 			old_fs = get_fs();
683 			set_fs(KERNEL_DS);
684 			/*
685 			 * If it doesn't exist, that's fine. If there's some
686 			 * other problem, we'll catch it at the filp_open().
687 			 */
688 			(void) sys_unlink((const char __user *)cn.corename);
689 			set_fs(old_fs);
690 		}
691 
692 		/*
693 		 * There is a race between unlinking and creating the
694 		 * file, but if that causes an EEXIST here, that's
695 		 * fine - another process raced with us while creating
696 		 * the corefile, and the other process won. To userspace,
697 		 * what matters is that at least one of the two processes
698 		 * writes its coredump successfully, not which one.
699 		 */
700 		if (need_suid_safe) {
701 			/*
702 			 * Using user namespaces, normal user tasks can change
703 			 * their current->fs->root to point to arbitrary
704 			 * directories. Since the intention of the "only dump
705 			 * with a fully qualified path" rule is to control where
706 			 * coredumps may be placed using root privileges,
707 			 * current->fs->root must not be used. Instead, use the
708 			 * root directory of init_task.
709 			 */
710 			struct path root;
711 
712 			task_lock(&init_task);
713 			get_fs_root(init_task.fs, &root);
714 			task_unlock(&init_task);
715 			cprm.file = file_open_root(root.dentry, root.mnt,
716 				cn.corename, open_flags, 0600);
717 			path_put(&root);
718 		} else {
719 			cprm.file = filp_open(cn.corename, open_flags, 0600);
720 		}
721 		if (IS_ERR(cprm.file))
722 			goto fail_unlock;
723 
724 		inode = file_inode(cprm.file);
725 		if (inode->i_nlink > 1)
726 			goto close_fail;
727 		if (d_unhashed(cprm.file->f_path.dentry))
728 			goto close_fail;
729 		/*
730 		 * AK: actually i see no reason to not allow this for named
731 		 * pipes etc, but keep the previous behaviour for now.
732 		 */
733 		if (!S_ISREG(inode->i_mode))
734 			goto close_fail;
735 		/*
736 		 * Don't dump core if the filesystem changed owner or mode
737 		 * of the file during file creation. This is an issue when
738 		 * a process dumps core while its cwd is e.g. on a vfat
739 		 * filesystem.
740 		 */
741 		if (!uid_eq(inode->i_uid, current_fsuid()))
742 			goto close_fail;
743 		if ((inode->i_mode & 0677) != 0600)
744 			goto close_fail;
745 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
746 			goto close_fail;
747 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
748 			goto close_fail;
749 	}
750 
751 	/* get us an unshared descriptor table; almost always a no-op */
752 	retval = unshare_files(&displaced);
753 	if (retval)
754 		goto close_fail;
755 	if (displaced)
756 		put_files_struct(displaced);
757 	if (!dump_interrupted()) {
758 		file_start_write(cprm.file);
759 		core_dumped = binfmt->core_dump(&cprm);
760 		file_end_write(cprm.file);
761 	}
762 	if (ispipe && core_pipe_limit)
763 		wait_for_dump_helpers(cprm.file);
764 close_fail:
765 	if (cprm.file)
766 		filp_close(cprm.file, NULL);
767 fail_dropcount:
768 	if (ispipe)
769 		atomic_dec(&core_dump_count);
770 fail_unlock:
771 	kfree(cn.corename);
772 	coredump_finish(mm, core_dumped);
773 	revert_creds(old_cred);
774 fail_creds:
775 	put_cred(cred);
776 fail:
777 	return;
778 }
779 
780 /*
781  * Core dumping helper functions.  These are the only things you should
782  * do on a core-file: use only these functions to write out all the
783  * necessary info.
784  */
785 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
786 {
787 	struct file *file = cprm->file;
788 	loff_t pos = file->f_pos;
789 	ssize_t n;
790 	if (cprm->written + nr > cprm->limit)
791 		return 0;
792 	while (nr) {
793 		if (dump_interrupted())
794 			return 0;
795 		n = __kernel_write(file, addr, nr, &pos);
796 		if (n <= 0)
797 			return 0;
798 		file->f_pos = pos;
799 		cprm->written += n;
800 		cprm->pos += n;
801 		nr -= n;
802 	}
803 	return 1;
804 }
805 EXPORT_SYMBOL(dump_emit);
806 
807 int dump_skip(struct coredump_params *cprm, size_t nr)
808 {
809 	static char zeroes[PAGE_SIZE];
810 	struct file *file = cprm->file;
811 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
812 		if (dump_interrupted() ||
813 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
814 			return 0;
815 		cprm->pos += nr;
816 		return 1;
817 	} else {
818 		while (nr > PAGE_SIZE) {
819 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
820 				return 0;
821 			nr -= PAGE_SIZE;
822 		}
823 		return dump_emit(cprm, zeroes, nr);
824 	}
825 }
826 EXPORT_SYMBOL(dump_skip);
827 
828 int dump_align(struct coredump_params *cprm, int align)
829 {
830 	unsigned mod = cprm->pos & (align - 1);
831 	if (align & (align - 1))
832 		return 0;
833 	return mod ? dump_skip(cprm, align - mod) : 1;
834 }
835 EXPORT_SYMBOL(dump_align);
836