xref: /openbmc/linux/fs/coredump.c (revision d2999e1b)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40 
41 #include <trace/events/task.h>
42 #include "internal.h"
43 
44 #include <trace/events/sched.h>
45 
46 int core_uses_pid;
47 unsigned int core_pipe_limit;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 static int core_name_size = CORENAME_MAX_SIZE;
50 
51 struct core_name {
52 	char *corename;
53 	int used, size;
54 };
55 
56 /* The maximal length of core_pattern is also specified in sysctl.c */
57 
58 static int expand_corename(struct core_name *cn, int size)
59 {
60 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
61 
62 	if (!corename)
63 		return -ENOMEM;
64 
65 	if (size > core_name_size) /* racy but harmless */
66 		core_name_size = size;
67 
68 	cn->size = ksize(corename);
69 	cn->corename = corename;
70 	return 0;
71 }
72 
73 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
74 {
75 	int free, need;
76 	va_list arg_copy;
77 
78 again:
79 	free = cn->size - cn->used;
80 
81 	va_copy(arg_copy, arg);
82 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
83 	va_end(arg_copy);
84 
85 	if (need < free) {
86 		cn->used += need;
87 		return 0;
88 	}
89 
90 	if (!expand_corename(cn, cn->size + need - free + 1))
91 		goto again;
92 
93 	return -ENOMEM;
94 }
95 
96 static int cn_printf(struct core_name *cn, const char *fmt, ...)
97 {
98 	va_list arg;
99 	int ret;
100 
101 	va_start(arg, fmt);
102 	ret = cn_vprintf(cn, fmt, arg);
103 	va_end(arg);
104 
105 	return ret;
106 }
107 
108 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
109 {
110 	int cur = cn->used;
111 	va_list arg;
112 	int ret;
113 
114 	va_start(arg, fmt);
115 	ret = cn_vprintf(cn, fmt, arg);
116 	va_end(arg);
117 
118 	for (; cur < cn->used; ++cur) {
119 		if (cn->corename[cur] == '/')
120 			cn->corename[cur] = '!';
121 	}
122 	return ret;
123 }
124 
125 static int cn_print_exe_file(struct core_name *cn)
126 {
127 	struct file *exe_file;
128 	char *pathbuf, *path;
129 	int ret;
130 
131 	exe_file = get_mm_exe_file(current->mm);
132 	if (!exe_file)
133 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
134 
135 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
136 	if (!pathbuf) {
137 		ret = -ENOMEM;
138 		goto put_exe_file;
139 	}
140 
141 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
142 	if (IS_ERR(path)) {
143 		ret = PTR_ERR(path);
144 		goto free_buf;
145 	}
146 
147 	ret = cn_esc_printf(cn, "%s", path);
148 
149 free_buf:
150 	kfree(pathbuf);
151 put_exe_file:
152 	fput(exe_file);
153 	return ret;
154 }
155 
156 /* format_corename will inspect the pattern parameter, and output a
157  * name into corename, which must have space for at least
158  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
159  */
160 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
161 {
162 	const struct cred *cred = current_cred();
163 	const char *pat_ptr = core_pattern;
164 	int ispipe = (*pat_ptr == '|');
165 	int pid_in_pattern = 0;
166 	int err = 0;
167 
168 	cn->used = 0;
169 	cn->corename = NULL;
170 	if (expand_corename(cn, core_name_size))
171 		return -ENOMEM;
172 	cn->corename[0] = '\0';
173 
174 	if (ispipe)
175 		++pat_ptr;
176 
177 	/* Repeat as long as we have more pattern to process and more output
178 	   space */
179 	while (*pat_ptr) {
180 		if (*pat_ptr != '%') {
181 			err = cn_printf(cn, "%c", *pat_ptr++);
182 		} else {
183 			switch (*++pat_ptr) {
184 			/* single % at the end, drop that */
185 			case 0:
186 				goto out;
187 			/* Double percent, output one percent */
188 			case '%':
189 				err = cn_printf(cn, "%c", '%');
190 				break;
191 			/* pid */
192 			case 'p':
193 				pid_in_pattern = 1;
194 				err = cn_printf(cn, "%d",
195 					      task_tgid_vnr(current));
196 				break;
197 			/* global pid */
198 			case 'P':
199 				err = cn_printf(cn, "%d",
200 					      task_tgid_nr(current));
201 				break;
202 			/* uid */
203 			case 'u':
204 				err = cn_printf(cn, "%d", cred->uid);
205 				break;
206 			/* gid */
207 			case 'g':
208 				err = cn_printf(cn, "%d", cred->gid);
209 				break;
210 			case 'd':
211 				err = cn_printf(cn, "%d",
212 					__get_dumpable(cprm->mm_flags));
213 				break;
214 			/* signal that caused the coredump */
215 			case 's':
216 				err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
217 				break;
218 			/* UNIX time of coredump */
219 			case 't': {
220 				struct timeval tv;
221 				do_gettimeofday(&tv);
222 				err = cn_printf(cn, "%lu", tv.tv_sec);
223 				break;
224 			}
225 			/* hostname */
226 			case 'h':
227 				down_read(&uts_sem);
228 				err = cn_esc_printf(cn, "%s",
229 					      utsname()->nodename);
230 				up_read(&uts_sem);
231 				break;
232 			/* executable */
233 			case 'e':
234 				err = cn_esc_printf(cn, "%s", current->comm);
235 				break;
236 			case 'E':
237 				err = cn_print_exe_file(cn);
238 				break;
239 			/* core limit size */
240 			case 'c':
241 				err = cn_printf(cn, "%lu",
242 					      rlimit(RLIMIT_CORE));
243 				break;
244 			default:
245 				break;
246 			}
247 			++pat_ptr;
248 		}
249 
250 		if (err)
251 			return err;
252 	}
253 
254 out:
255 	/* Backward compatibility with core_uses_pid:
256 	 *
257 	 * If core_pattern does not include a %p (as is the default)
258 	 * and core_uses_pid is set, then .%pid will be appended to
259 	 * the filename. Do not do this for piped commands. */
260 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
261 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
262 		if (err)
263 			return err;
264 	}
265 	return ispipe;
266 }
267 
268 static int zap_process(struct task_struct *start, int exit_code)
269 {
270 	struct task_struct *t;
271 	int nr = 0;
272 
273 	start->signal->group_exit_code = exit_code;
274 	start->signal->group_stop_count = 0;
275 
276 	t = start;
277 	do {
278 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
279 		if (t != current && t->mm) {
280 			sigaddset(&t->pending.signal, SIGKILL);
281 			signal_wake_up(t, 1);
282 			nr++;
283 		}
284 	} while_each_thread(start, t);
285 
286 	return nr;
287 }
288 
289 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
290 			struct core_state *core_state, int exit_code)
291 {
292 	struct task_struct *g, *p;
293 	unsigned long flags;
294 	int nr = -EAGAIN;
295 
296 	spin_lock_irq(&tsk->sighand->siglock);
297 	if (!signal_group_exit(tsk->signal)) {
298 		mm->core_state = core_state;
299 		nr = zap_process(tsk, exit_code);
300 		tsk->signal->group_exit_task = tsk;
301 		/* ignore all signals except SIGKILL, see prepare_signal() */
302 		tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
303 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
304 	}
305 	spin_unlock_irq(&tsk->sighand->siglock);
306 	if (unlikely(nr < 0))
307 		return nr;
308 
309 	tsk->flags = PF_DUMPCORE;
310 	if (atomic_read(&mm->mm_users) == nr + 1)
311 		goto done;
312 	/*
313 	 * We should find and kill all tasks which use this mm, and we should
314 	 * count them correctly into ->nr_threads. We don't take tasklist
315 	 * lock, but this is safe wrt:
316 	 *
317 	 * fork:
318 	 *	None of sub-threads can fork after zap_process(leader). All
319 	 *	processes which were created before this point should be
320 	 *	visible to zap_threads() because copy_process() adds the new
321 	 *	process to the tail of init_task.tasks list, and lock/unlock
322 	 *	of ->siglock provides a memory barrier.
323 	 *
324 	 * do_exit:
325 	 *	The caller holds mm->mmap_sem. This means that the task which
326 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
327 	 *	its ->mm.
328 	 *
329 	 * de_thread:
330 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
331 	 *	we must see either old or new leader, this does not matter.
332 	 *	However, it can change p->sighand, so lock_task_sighand(p)
333 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
334 	 *	it can't fail.
335 	 *
336 	 *	Note also that "g" can be the old leader with ->mm == NULL
337 	 *	and already unhashed and thus removed from ->thread_group.
338 	 *	This is OK, __unhash_process()->list_del_rcu() does not
339 	 *	clear the ->next pointer, we will find the new leader via
340 	 *	next_thread().
341 	 */
342 	rcu_read_lock();
343 	for_each_process(g) {
344 		if (g == tsk->group_leader)
345 			continue;
346 		if (g->flags & PF_KTHREAD)
347 			continue;
348 		p = g;
349 		do {
350 			if (p->mm) {
351 				if (unlikely(p->mm == mm)) {
352 					lock_task_sighand(p, &flags);
353 					nr += zap_process(p, exit_code);
354 					p->signal->flags = SIGNAL_GROUP_EXIT;
355 					unlock_task_sighand(p, &flags);
356 				}
357 				break;
358 			}
359 		} while_each_thread(g, p);
360 	}
361 	rcu_read_unlock();
362 done:
363 	atomic_set(&core_state->nr_threads, nr);
364 	return nr;
365 }
366 
367 static int coredump_wait(int exit_code, struct core_state *core_state)
368 {
369 	struct task_struct *tsk = current;
370 	struct mm_struct *mm = tsk->mm;
371 	int core_waiters = -EBUSY;
372 
373 	init_completion(&core_state->startup);
374 	core_state->dumper.task = tsk;
375 	core_state->dumper.next = NULL;
376 
377 	down_write(&mm->mmap_sem);
378 	if (!mm->core_state)
379 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
380 	up_write(&mm->mmap_sem);
381 
382 	if (core_waiters > 0) {
383 		struct core_thread *ptr;
384 
385 		wait_for_completion(&core_state->startup);
386 		/*
387 		 * Wait for all the threads to become inactive, so that
388 		 * all the thread context (extended register state, like
389 		 * fpu etc) gets copied to the memory.
390 		 */
391 		ptr = core_state->dumper.next;
392 		while (ptr != NULL) {
393 			wait_task_inactive(ptr->task, 0);
394 			ptr = ptr->next;
395 		}
396 	}
397 
398 	return core_waiters;
399 }
400 
401 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
402 {
403 	struct core_thread *curr, *next;
404 	struct task_struct *task;
405 
406 	spin_lock_irq(&current->sighand->siglock);
407 	if (core_dumped && !__fatal_signal_pending(current))
408 		current->signal->group_exit_code |= 0x80;
409 	current->signal->group_exit_task = NULL;
410 	current->signal->flags = SIGNAL_GROUP_EXIT;
411 	spin_unlock_irq(&current->sighand->siglock);
412 
413 	next = mm->core_state->dumper.next;
414 	while ((curr = next) != NULL) {
415 		next = curr->next;
416 		task = curr->task;
417 		/*
418 		 * see exit_mm(), curr->task must not see
419 		 * ->task == NULL before we read ->next.
420 		 */
421 		smp_mb();
422 		curr->task = NULL;
423 		wake_up_process(task);
424 	}
425 
426 	mm->core_state = NULL;
427 }
428 
429 static bool dump_interrupted(void)
430 {
431 	/*
432 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
433 	 * can do try_to_freeze() and check __fatal_signal_pending(),
434 	 * but then we need to teach dump_write() to restart and clear
435 	 * TIF_SIGPENDING.
436 	 */
437 	return signal_pending(current);
438 }
439 
440 static void wait_for_dump_helpers(struct file *file)
441 {
442 	struct pipe_inode_info *pipe = file->private_data;
443 
444 	pipe_lock(pipe);
445 	pipe->readers++;
446 	pipe->writers--;
447 	wake_up_interruptible_sync(&pipe->wait);
448 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
449 	pipe_unlock(pipe);
450 
451 	/*
452 	 * We actually want wait_event_freezable() but then we need
453 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
454 	 */
455 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
456 
457 	pipe_lock(pipe);
458 	pipe->readers--;
459 	pipe->writers++;
460 	pipe_unlock(pipe);
461 }
462 
463 /*
464  * umh_pipe_setup
465  * helper function to customize the process used
466  * to collect the core in userspace.  Specifically
467  * it sets up a pipe and installs it as fd 0 (stdin)
468  * for the process.  Returns 0 on success, or
469  * PTR_ERR on failure.
470  * Note that it also sets the core limit to 1.  This
471  * is a special value that we use to trap recursive
472  * core dumps
473  */
474 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
475 {
476 	struct file *files[2];
477 	struct coredump_params *cp = (struct coredump_params *)info->data;
478 	int err = create_pipe_files(files, 0);
479 	if (err)
480 		return err;
481 
482 	cp->file = files[1];
483 
484 	err = replace_fd(0, files[0], 0);
485 	fput(files[0]);
486 	/* and disallow core files too */
487 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
488 
489 	return err;
490 }
491 
492 void do_coredump(const siginfo_t *siginfo)
493 {
494 	struct core_state core_state;
495 	struct core_name cn;
496 	struct mm_struct *mm = current->mm;
497 	struct linux_binfmt * binfmt;
498 	const struct cred *old_cred;
499 	struct cred *cred;
500 	int retval = 0;
501 	int flag = 0;
502 	int ispipe;
503 	struct files_struct *displaced;
504 	bool need_nonrelative = false;
505 	bool core_dumped = false;
506 	static atomic_t core_dump_count = ATOMIC_INIT(0);
507 	struct coredump_params cprm = {
508 		.siginfo = siginfo,
509 		.regs = signal_pt_regs(),
510 		.limit = rlimit(RLIMIT_CORE),
511 		/*
512 		 * We must use the same mm->flags while dumping core to avoid
513 		 * inconsistency of bit flags, since this flag is not protected
514 		 * by any locks.
515 		 */
516 		.mm_flags = mm->flags,
517 	};
518 
519 	audit_core_dumps(siginfo->si_signo);
520 
521 	binfmt = mm->binfmt;
522 	if (!binfmt || !binfmt->core_dump)
523 		goto fail;
524 	if (!__get_dumpable(cprm.mm_flags))
525 		goto fail;
526 
527 	cred = prepare_creds();
528 	if (!cred)
529 		goto fail;
530 	/*
531 	 * We cannot trust fsuid as being the "true" uid of the process
532 	 * nor do we know its entire history. We only know it was tainted
533 	 * so we dump it as root in mode 2, and only into a controlled
534 	 * environment (pipe handler or fully qualified path).
535 	 */
536 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
537 		/* Setuid core dump mode */
538 		flag = O_EXCL;		/* Stop rewrite attacks */
539 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
540 		need_nonrelative = true;
541 	}
542 
543 	retval = coredump_wait(siginfo->si_signo, &core_state);
544 	if (retval < 0)
545 		goto fail_creds;
546 
547 	old_cred = override_creds(cred);
548 
549 	ispipe = format_corename(&cn, &cprm);
550 
551 	if (ispipe) {
552 		int dump_count;
553 		char **helper_argv;
554 		struct subprocess_info *sub_info;
555 
556 		if (ispipe < 0) {
557 			printk(KERN_WARNING "format_corename failed\n");
558 			printk(KERN_WARNING "Aborting core\n");
559 			goto fail_unlock;
560 		}
561 
562 		if (cprm.limit == 1) {
563 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
564 			 *
565 			 * Normally core limits are irrelevant to pipes, since
566 			 * we're not writing to the file system, but we use
567 			 * cprm.limit of 1 here as a speacial value, this is a
568 			 * consistent way to catch recursive crashes.
569 			 * We can still crash if the core_pattern binary sets
570 			 * RLIM_CORE = !1, but it runs as root, and can do
571 			 * lots of stupid things.
572 			 *
573 			 * Note that we use task_tgid_vnr here to grab the pid
574 			 * of the process group leader.  That way we get the
575 			 * right pid if a thread in a multi-threaded
576 			 * core_pattern process dies.
577 			 */
578 			printk(KERN_WARNING
579 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
580 				task_tgid_vnr(current), current->comm);
581 			printk(KERN_WARNING "Aborting core\n");
582 			goto fail_unlock;
583 		}
584 		cprm.limit = RLIM_INFINITY;
585 
586 		dump_count = atomic_inc_return(&core_dump_count);
587 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
588 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
589 			       task_tgid_vnr(current), current->comm);
590 			printk(KERN_WARNING "Skipping core dump\n");
591 			goto fail_dropcount;
592 		}
593 
594 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
595 		if (!helper_argv) {
596 			printk(KERN_WARNING "%s failed to allocate memory\n",
597 			       __func__);
598 			goto fail_dropcount;
599 		}
600 
601 		retval = -ENOMEM;
602 		sub_info = call_usermodehelper_setup(helper_argv[0],
603 						helper_argv, NULL, GFP_KERNEL,
604 						umh_pipe_setup, NULL, &cprm);
605 		if (sub_info)
606 			retval = call_usermodehelper_exec(sub_info,
607 							  UMH_WAIT_EXEC);
608 
609 		argv_free(helper_argv);
610 		if (retval) {
611 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
612 			       cn.corename);
613 			goto close_fail;
614 		}
615 	} else {
616 		struct inode *inode;
617 
618 		if (cprm.limit < binfmt->min_coredump)
619 			goto fail_unlock;
620 
621 		if (need_nonrelative && cn.corename[0] != '/') {
622 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
623 				"to fully qualified path!\n",
624 				task_tgid_vnr(current), current->comm);
625 			printk(KERN_WARNING "Skipping core dump\n");
626 			goto fail_unlock;
627 		}
628 
629 		cprm.file = filp_open(cn.corename,
630 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
631 				 0600);
632 		if (IS_ERR(cprm.file))
633 			goto fail_unlock;
634 
635 		inode = file_inode(cprm.file);
636 		if (inode->i_nlink > 1)
637 			goto close_fail;
638 		if (d_unhashed(cprm.file->f_path.dentry))
639 			goto close_fail;
640 		/*
641 		 * AK: actually i see no reason to not allow this for named
642 		 * pipes etc, but keep the previous behaviour for now.
643 		 */
644 		if (!S_ISREG(inode->i_mode))
645 			goto close_fail;
646 		/*
647 		 * Dont allow local users get cute and trick others to coredump
648 		 * into their pre-created files.
649 		 */
650 		if (!uid_eq(inode->i_uid, current_fsuid()))
651 			goto close_fail;
652 		if (!cprm.file->f_op->write)
653 			goto close_fail;
654 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
655 			goto close_fail;
656 	}
657 
658 	/* get us an unshared descriptor table; almost always a no-op */
659 	retval = unshare_files(&displaced);
660 	if (retval)
661 		goto close_fail;
662 	if (displaced)
663 		put_files_struct(displaced);
664 	if (!dump_interrupted()) {
665 		file_start_write(cprm.file);
666 		core_dumped = binfmt->core_dump(&cprm);
667 		file_end_write(cprm.file);
668 	}
669 	if (ispipe && core_pipe_limit)
670 		wait_for_dump_helpers(cprm.file);
671 close_fail:
672 	if (cprm.file)
673 		filp_close(cprm.file, NULL);
674 fail_dropcount:
675 	if (ispipe)
676 		atomic_dec(&core_dump_count);
677 fail_unlock:
678 	kfree(cn.corename);
679 	coredump_finish(mm, core_dumped);
680 	revert_creds(old_cred);
681 fail_creds:
682 	put_cred(cred);
683 fail:
684 	return;
685 }
686 
687 /*
688  * Core dumping helper functions.  These are the only things you should
689  * do on a core-file: use only these functions to write out all the
690  * necessary info.
691  */
692 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
693 {
694 	struct file *file = cprm->file;
695 	loff_t pos = file->f_pos;
696 	ssize_t n;
697 	if (cprm->written + nr > cprm->limit)
698 		return 0;
699 	while (nr) {
700 		if (dump_interrupted())
701 			return 0;
702 		n = __kernel_write(file, addr, nr, &pos);
703 		if (n <= 0)
704 			return 0;
705 		file->f_pos = pos;
706 		cprm->written += n;
707 		nr -= n;
708 	}
709 	return 1;
710 }
711 EXPORT_SYMBOL(dump_emit);
712 
713 int dump_skip(struct coredump_params *cprm, size_t nr)
714 {
715 	static char zeroes[PAGE_SIZE];
716 	struct file *file = cprm->file;
717 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
718 		if (cprm->written + nr > cprm->limit)
719 			return 0;
720 		if (dump_interrupted() ||
721 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
722 			return 0;
723 		cprm->written += nr;
724 		return 1;
725 	} else {
726 		while (nr > PAGE_SIZE) {
727 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
728 				return 0;
729 			nr -= PAGE_SIZE;
730 		}
731 		return dump_emit(cprm, zeroes, nr);
732 	}
733 }
734 EXPORT_SYMBOL(dump_skip);
735 
736 int dump_align(struct coredump_params *cprm, int align)
737 {
738 	unsigned mod = cprm->written & (align - 1);
739 	if (align & (align - 1))
740 		return 0;
741 	return mod ? dump_skip(cprm, align - mod) : 1;
742 }
743 EXPORT_SYMBOL(dump_align);
744